Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Σχετικά έγγραφα
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Second Order RLC Filters

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Srednicki Chapter 55

Finite Field Problems: Solutions

Math221: HW# 1 solutions

Section 8.3 Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Notes on the Open Economy

Solutions to Exercise Sheet 5

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

w o = R 1 p. (1) R = p =. = 1

Example Sheet 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

Solution to Review Problems for Midterm III

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2 Composition. Invertible Mappings

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ST5224: Advanced Statistical Theory II

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Statistical Inference I Locally most powerful tests

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

Answer sheet: Third Midterm for Math 2339

= 0.927rad, t = 1.16ms

F19MC2 Solutions 9 Complex Analysis

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

EE512: Error Control Coding

1 String with massive end-points

Matrices and Determinants

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Numerical Analysis FMN011

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Τομέας: Ανανεώσιμων Ενεργειακών Πόρων Εργαστήριο: Σχεδιομελέτης και κατεργασιών

Durbin-Levinson recursive method

( ) 2 and compare to M.

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ECON 381 SC ASSIGNMENT 2

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

PARTIAL NOTES for 6.1 Trigonometric Identities

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Exercise 2: The form of the generalized likelihood ratio

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

C.S. 430 Assignment 6, Sample Solutions

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 13 - Root Space Decomposition II

Tutorial Note - Week 09 - Solution

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

10.7 Performance of Second-Order System (Unit Step Response)

Differentiation exercise show differential equation

6.3 Forecasting ARMA processes

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου 2011

Final Test Grammar. Term C'

SOLVING CUBICS AND QUARTICS BY RADICALS

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Chapter 7 Analytic Trigonometry

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Part III - Pricing A Down-And-Out Call Option

Instruction Execution Times

Capacitors - Capacitance, Charge and Potential Difference

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

CE 530 Molecular Simulation

Section 9.2 Polar Equations and Graphs

The Simply Typed Lambda Calculus

TMA4115 Matematikk 3

Approximation of distance between locations on earth given by latitude and longitude

By R.L. Snyder (Revised March 24, 2005)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

Transcript:

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions xercise Solutions X5. ( β ).0 β 4. β 40. 0.0085 hapter 5 β 40. α 0.999 β 4..0 0.0085.95 X5. O 00 O n 3 β 0 or O 40.5 X5.3 0.7 430 β ( 50)( 3. 0)μ.3 0.453 3.0 μ 0. 453 3 ( )( 3.). 85 ( 0.453)(.85) 0. 838 mw P X5.4 ( 80)( 3. )μ 3.3 0.7. 400 β 5 0.8 ( )( ) 83 3.5 μ 3.3 0.8 5.5. X5.5 (a) (b) ( 0)( )μ 3.3 0.7 50 β 4 0. 44 ( 0.44)( 5). 3.3 3.3 0.7 0.7 μ 50 ( sat) 3.3 0. 0.6 5 4 μ 0.

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions X5.6 0 < 0.7, Qn is cutoff, O 9 ( 00)( 0.7)( 4) 0. 9 5. When Q n is biased in saturation, we have 00 So, for 5., O 0. X5.7 ( β ) So 3.3 0.7 3.6 μ 640 β μ 0. 49 ( 8)(.4) ( 80)( 3.6) β 8 ( 0.49) 0. 5 β 80 [ 3.3 ( 3.3) ] ( 0.49)( 0) ( 0.5)(.4) 3. 5 X5.8 Q 3 0.7 8.4 k Ω 0.5 0.7.. 5 β 0 Q β.5 ( 3). k Ω 0.39 ( 0.5) 0. 39 X5.9 5 on ( ) 80 5 0.7 0.9859 4 0.96 (a) 80 6.3.75 6.5 (b) 80 6.3.6657 0.64 (c) 80 6.3.97365 5.94 (d)

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions X5.0 on ( ) 4 0.7 or 3.3 kω ( )( ).0 α 0.99 0.99.0 0.99 or 8 μ ( 0.99)( ) 5 or 4.0 X5. γ ( sat) 5.5 0. (a) 0 Ω 5 5 0.30 50 50 5 0.7 4.3 k Ω 0.3 (b) 0.08 5 5 0.7 0 4 Ω 0.08 X5. (a) 0, ll currents are zero and O 5. (b) 5, 0; 0, 0.7 4.53 0.95 0. 8 0.6 O 0. (c) 5, 4.53 ; 8, / 4, O 0. X5.3 n active region, υ O mυ b m 6.5 t υ 0. 7, υo 5 5 6.5( 0.7) b b 9. 55 Then υ O 6.5υ 9.55 When υo 0. 6.5υ 9.55 υ.438 Q-point.438 0.7 υ Q 0.7.069

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions 5 0. υoq 0..6 Now.069 0.7 Q 4.6μ 80 β 0 4. 6 0. 5535 Q t Q-point υ 5 ( )( )μ OQ.6 5 0.5535 ( ) 34 4. k Ω X5.4 Q Q.8.4.7 k Ω 0. 0. Q 0.80 μ β 50 Q.8 0.7.65 M Ω 0.80 Q X5.5 (a) 85 35 4. 8 k Ω 35 35 85 on β ( ) ( 3.3) 0. 965 (b) Q ( ) ( ) Q so (c) Q 0.965 0.7 ( β ) 4.8 ( 5)( 0.5) ( 50 )( 0.0067) 0. 396 Q β Q β 5 Q β 50 3.3 0.396 4 0.395 0.5. Q Then Q ( 0.396) 0. 395 ( )( ) ( )( ) 53 0.965 0.7 Q 4.8 Q Q 4.8 μ ( 76)( 0.5) ( 75 )( 0.0048) 0. 335 ( 76 )( 0.0048) 0. 377 3.3 ( 0.335)( 4) ( 0.377)( 0.5). 89.67 μ

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions X5.6 ( ) ( ) Q or.5 5 0. which yields Q.08,.08 0.039 β 50 ( 0.)( β ) ( 0.)( 5)( 0.) or 3.0 kω Now so ( 3.0)( 5) ( ) ( ) Q on β Q We can write ( 3.0 )( 5 ) ( 0.039 )( 3.0 ) 0.7 ( 5 )( 0.039 )( 0. ) or We obtain 3 kω and then 3.93 kω X5.7 O β Q β Q 5 0 0.5 0 5 50 ( 0.5) 0. 5033 ( ) Q ( 0.5)( 0) ( 0.5033)( ) 3. 99 0 Now 0.5 Q Q 3.33μ β 50 0. β 0. 5 30. k Ω lso Then ( )( ) ( )( )( ) ( 0) 5 ( )( 0) 5 ( 30.)( 0) 5 Q Q 5 ( 0.00333)( 30.) 0.7 ( 0.5033)( ) 5 3. 93 ( 30.)( 0) 5 3. 93 or 67 k Ω and 67 30. 36. 9 k Ω

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions X5.8 0.7, 0.7.6 0. 9 O O O O 3.3 0.9 0 k Ω 0. β 6 Q O ( 0.) 0. β 60 Q ( 0.) 0. 6 β 60 0 ( 3.3) 3.3 0.7 0.6 0.6 k Ω X5.9 50 00 33.3 kω 50 ( 0) 5.67 50 00.67 0.7 5. μ 33.3 0 ( ) ( )( ).,.3 ( )( ) 5.3 5.74 3.5 0.5 Now 0.5 0.7...90 8.8 μ.88. 0.088.0 0.5 4.08 kω.0.5 ( )..5.9.9 5.97 kω.88 X5.0 We find 40 0.05 Then 0.5 0.7.7 kω 3 ( )( ).7 3 34 kω 0.05 lso 0.5 4 0.7 5.7 ( )( ) Δ 5.7.7 4 4 so 80 kω 0.05

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions and 40 80 34 6 kω 4 4 9 9 Then 6 kω 0.5 Test Your Understanding Solutions TYU5. β 60 (a) α 0. 9836 β 6 50 α 0.9934 5 α 0.98 (b) β 54. 6 α 0.98 0.995 β 3.3 0.995 TYU5. 0.60 0.005 0.65 0.60 β 4 0.005 β 4 α 0.99 β 5 TYU5.3 α ( 0.995)(.0). 9 α 0.995 β 6.6 α 0.995.0 0. μ β 7.6 TYU5.4 (a) r ( 5 )( 0.8) 80 o 80 (b) (i) ro. 5 M Ω 0.08 80 (ii) ro. 5 k Ω 8

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions TYU5.5 O t, O O 0.9868 (a) 75, 75 Then, at 0 0 ( 0.9868). 75 O O 0.9934 (b) 50, 50 0 ( 0.9934).06 m t 0, 50 TYU5.6 O O n β 3 O 00 ( 30) 39 so TYU5.7 0. < 0, (a) O 5 and P 0 3.6 0.7 4.53 (c) 3.6, 0.64 transistor is driven into saturation, so ( sat) 0. 0.9 0.440 and 0.9.4 < β 4.53 Note that which shows that the transistor is indeed driven into saturation. Now, P ( sat) ( 4.53)( 0.7) ( 0.9)( 0.) 5.35 mw TYU5.8 0 O 0.7 0.7 9.77 9.77 0.95 Then 0.44 β 50 and ( 0.95)( 0.64) 0.7 Now or 0.85 lso P ( 0.95)( 0.7) ( 9.77)( 0.7) 6.98 mw

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions TYU5.9 3.3 3.3.7 0.575 4 ( 3.3) 3.3 0.7 0.60 0 0.60 0.575.5μ 0.575 β 03 0.005 β 03 α 0.99038 β 04 TYU5.0 5 5 0.7 0.5375 8 β 85 ( 0.5375) 0. 53 β 86 0.5375 6.5μ β 86 0 ( 0.53)( 4) ( 0.5375)( 8) 3. 575 TYU5. ( ) ( ) on β or 0.7 ( β ) 0 ( 76)( ) Then or 5. μ ( 75)( 5. μ ).3 ( 76)( 5. μ ).5 lso and Now 8 (.3)(.5) (.5)( ) 6.03 TYU5. 5 5..8 5 0.7.8 0.5 0 ( β ) ( )( 0.5) 8. 5.8 0.54 k Ω 8.5

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions TYU5.3. (a)., 0. 039 β 9 on ( ) (.)( ) 0.7 ( 0.039)( 50). 56 (b) β 90 (.). 87 β 9 5 5 (.)( ) 3. 8 TYU5.4 (a) v 0, i i 0, vo, P 0 v 0.7 i 47. (b) v, 0.4 ( sat) 0. i.38 5 vo 0. and P i i ( sat) ( 0.047)( 0.7) (.38)( 0.) 0.7 W TYU5.5 5 Q 5.5 (a). 5.5 Q Q 0.4 μ β 0 5 5 0.7 43 k Ω Q 0.004 (b) Q 0.4 μ β 80 0. 8336 β 60. 667 Now Q 5 ( ) β 80 Q 5 ( 0.8336)( ) 3. 33 β 60 Q 5 (.667)( ). 67 So.67 Q 3.33

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions TYU5.6 0.7 Q 0.005375 800 β 75, βq ( 75)( 0.005375) 0.403 Or β 50, ( 50)( 0.005375 ) 0.806 Or Smallest Q Largest β 50, 4.96 kω 0.806 4 β 75,.48 kω 0.403.5 0.604 Q.5, 4.4 kω a nominal and 0.604 0.403, Q 5 ( 0.403)( 4.4) 3.33 Now for 0.806, Q 5 ( 0.806)( 4.4).66.66 So, for 4.4 kω, Q 3.33 TYU5.7 (a) 440 30 5 k Ω (b) 30 () 5. 76 440 30 on Q 3.364 μ β Q ( ).76 0.7 ( ) 5 ( 5)( ) β 0.5046 ; ( β ) 0. 508 Q Q Q Q Q ( 0.5046)( 4) ( 0.508)( ). 47 5 (c) 5 k Ω ;. 76.76 0.7 Q 4. μ Q 5 ( 9)( ) β Q 0.378 ; Q ( ) Q 0. 38 5 ( 0.378)( 4) ( 0.38)( ) 3. Q β TYU5.8 0. β 0. 5 5. k Ω (a) ( )( ) ( )( )( ) β 0.4 50 Q Q β Q β 5 50.667 μ ( 0.4) 0. 407

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions Q Q.7 5 0.4 0.407 ( ) ( )( ) 4. 74 Now Q on k Ω ( ) ( ) Q ( 5.)( 5) ( 0.00667)( 5.) 0.7 ( 0.407)( ) yields 66 k Ω ; 66 5. 9. 6 (b).43 ; 5. k Ω Q.43 0.7 ( β ) 5. ( 9)( ) Q k Ω 4.75μ β 0.376 ; ( β ) 0. 380 Q Q Q Q ( 0.376)( 4.74) ( 0.380)( ). 84 5 TYU5.9 ( ) 0 ( 4.5 0.5) 5 0 β 0 Q Q 8.33μ β Q (). 008 β 0 0. β 0. 0.5 6. k Ω ( )( ) ( )( )( ) 05 Q Q (.008)( 0.5) 0.7 ( 0.00833)( 6.05) 3. 746 5 So ( 0) 5 ( )( 0) 5 ( 6.05)( 0) 5 3.746 6. 9 k Ω 6.9 6.05 48. k Ω TYU5.0 β β 0 (a) ( 0.5) 0. 479 or Q S e T 0.479 0 3 0 3 ln T 4 S Q 0.479 Q β 0 0.00066 75 0. ( )( ) 55 ( 0.06) ln 0. 5937.066 μ 0.55 0.5937 0.7487

Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions ( 0.479)( 4). 508 ( 0.7487). 6.5.508 Q 60 6 (b) ( 0.5) 0. 459 Q Q 3 0.459 0 0 4 3 0 0.459 Q 4.098 μ β 60 0.004098 75 0. (.06) ln 0. 5935 ( )( ) 307 0.307 0.5935 0.90 ( 0.459)( 4). 56 ( 0.90). 4.5.56