ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου 2011
|
|
- Αθάμας Λόντος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου Διδάσκοντες: Κ. Ευσταθίου Γρ. Καλύβας Τετάρτη 6// ΘΕΜΑ Ο () Στο σχήμα δίνεται αναστροφέας με φορτίο Depletion MOSFET, και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOS- FETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTD=-V ΘΕΜΑ Ο () Στο σχήμα δίνεται Pseudo CMOS αναστροφέας και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOSFETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTP=-V ΘΕΜΑ Ο () Στο σχήμα δίνεται CMOS αναστροφέας και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOSFETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTP=-V ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ 6 Νοεμβρίου
2 ΘΕΜΑ Ο () Θεωρώντας ιδανικούς τους CMOS αναστροφείς που τροφοδοτούνται με τάση VDD=V και έχουν τάση m=(=vo)=vdd/, βρείτε την χαρακτηριστική μεταφοράς του κυκλώματος για R=kΩ και R=kΩ. ΘΕΜΑ Ο () Στο σχήμα δίδεται το ΝMOS network μίας σύνθετης πύλης CMOS.. Να βρείτε τη λογική έκφραση της εξόδου Υ.. Να σχεδιάσετε το PMOS network. ΤΥΠΟΛΟΓΙΟ ' W W Kn, p = Kn, p = µ n, pcox L L ( ) I, = K V V για V V V DS SAT GS T DS GS T ( ) I, = K ( V V ) V V για V V V DS TRIODE GS T DS DS DS GS T Σημείωση: Οι εξισώσεις για το PMOS είναι ίδιες με τη διαφορά ότι αναστρέφονται οι δείκτες των συμβόλων. Πχ: ISD αντί για IDS και VSD, VSG αντί για VDS,VGS. Καλή Επιτυχία ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ 6 Νοεμβρίου
3 Nov A Vdd := Vtd := Vtn := n := := :=,... Vnsat( ) := Vtn Vdsat( ) := Vdd + Vtd Vnsat( ) Vdsat( ),, Vtn, n ( ) ( Vtd) ( Vdd ) ( Vdd ) = Kr ( n Vtn) Solving for Kr we get: Kr := ( Vtd Vdd Vtd + Vdd Vdd + ) ( n + Vtn) Kr = 9 Obviously, Point is this one the Enhanced MosFet is p := Vtn Vop := Vdd p = Vop = Obviously, Point is the given n, p := n Vop := p = Vop = Finally at Point is the given n and is p := n Vop := n Vtn p = Vop =
4 Vnsat( ) Vdsat( ) Vop Vop Vop,, Vtn, n, p, p, p
5 Nov A Vdd := Vtp := Vtn := n := := :=,... Vnsat( ) := Vtn Vpsat( ) := Vtp Vnsat( ) Vpsat( ),, Vtn, n ( Vdd + Vtp) ( Vdd ) ( Vdd ) = Kr ( n Vtn) Solving for Kr we get ( Vdd + Vtp Vdd Vtp ) Kr := ( n + Vtn) Kr = Obviously, Point is this one the NMOSFET goes on p := Vtn Vop := Vdd p = Vop =
6 At Point NMOS goes from Sat to lin whereas PMOS is Lin Given Vo= Vtn ( Vdd + Vtp) ( Vdd Vo) ( Vdd Vo) = Kr ( Vtn) Find(, Vo) = p 6 6 := + Vop 6 6 := + p =. Vop =. At Point PMOS goes from Lin to Sat whereas NMOS is Lin Vop := Vtp ( Vdd + Vtp) = Kr ( Vtn) Vo Vo p := ( Vdd + Vtp Vdd + Vtp + Kr Vtn Vop + Kr Vop ) Kr Vop p =. Vop = Vnsat( ) Vpsat( ) Vop Vop Vop,, Vtn, n, p, p, p
7 Nov A Vdd := Vtp := Vtn := n := := :=,... Vnsat( ) := Vtn Vpsat( ) := Vtp Vnsat( ) Vpsat( ),, Vtn, Vdd+ Vtp, n ( Vdd n + Vtp) = Kr ( n Vtn) Solving for Kr we get ( Vdd + n Vtp) Kr := Kr = ( n + Vtn) Obviously, Point is this one the NMOSFET goes on p := Vtn Vop := Vdd Obviously Point is at the given point n, whereas is p = Vop = p := n Vop := n Vtp p = Vop = Obviously for Point is at the given point n, whereas is p := n Vop := n Vtn p = Vop = and finally, Point is this one the PMOSFET goes off p := Vdd + Vtp Vop := p = Vop =
8 Vnsat( ) Vpsat( ) Vop Vop Vop Vop,, Vtn, Vdd+ Vtp, n, p, p, p, p
9 Nov A Vdd := V R := kω R := kω When =Low and in order the input of the first inverter to become Vdd/, is calculated Vdd R = Low R + R Vdd Low := ( R + R) Low = V R When =High and in order the input of the first inverter to become Vdd/, is calculated Vdd R = Hi R + R R + Vdd R + R Hi Vdd ( R R) := Hi = V R Output Voltage Input Voltage
10 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Περίοδος Σεπτεμβρίου Διδάσκοντες: Κ. Ευσταθίου Γρ. Καλύβας Τετάρτη 6// ΘΕΜΑ Ο () Στο σχήμα δίνεται αναστροφέας με φορτίο Depletion MOSFET, και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =.V Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOS- FETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTD=-V ΘΕΜΑ Ο () Στο σχήμα δίνεται Pseudo CMOS αναστροφέας και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =,V Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOSFETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTP=-V ΘΕΜΑ Ο () Στο σχήμα δίνεται CMOS αναστροφέας και ζητείται:. Να σχεδιάσετε την χαρακτηριστική μεταφοράς θεωρώντας ότι περνά από το σημείο =V Vo=.V και δείχνοντας τις περιοχές λειτουργίας των MOSFETs και βρείτε τη συνθήκη που πρέπει να ισχύει ώστε να συμβαίνει αυτό.. Λαμβάνοντας υπ όψη τα αποτελέσματα του (), βρείτε τα ζεύγη τιμών (, Vo) όπου ένα τουλάχιστον από τα δύο MOSFETS αλλάζει περιοχή λειτουργίας. Δίδεται: VDD=V VTN=V VTP=-V ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ 6 Νοεμβρίου
11 ΘΕΜΑ Ο () Θεωρώντας ιδανικούς τους CMOS αναστροφείς που τροφοδοτούνται με τάση VDD=V και έχουν τάση m=(=vo)=vdd/, βρείτε την χαρακτηριστική μεταφοράς του κυκλώματος για R=kΩ και R=kΩ. ΘΕΜΑ Ο () Στο σχήμα δίδεται το ΝMOS network μίας σύνθετης πύλης CMOS.. Να βρείτε τη λογική έκφραση της εξόδου Υ.. Να σχεδιάσετε το PMOS network. ΤΥΠΟΛΟΓΙΟ ' W W Kn, p = Kn, p = µ n, pcox L L ( ) I, = K V V για V V V DS SAT GS T DS GS T ( ) I, = K ( V V ) V V για V V V DS TRIODE GS T DS DS DS GS T Σημείωση: Οι εξισώσεις για το PMOS είναι ίδιες με τη διαφορά ότι αναστρέφονται οι δείκτες των συμβόλων. Πχ: ISD αντί για IDS και VSD, VSG αντί για VDS,VGS. Καλή Επιτυχία ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ 6 Νοεμβρίου
12 Nov B Vdd := Vtd := Vtn := n := := :=,... Vnsat( ) := Vtn Vdsat( ) := Vdd + Vtd Vnsat( ) Vdsat( ),, Vtn, n ( ) ( Vtd) ( Vdd ) ( Vdd ) = Kr ( n Vtn) Solving for Kr we get: Kr := ( Vtd Vdd Vtd + Vdd Vdd + ) ( n + Vtn) Kr = Obviously, Point is this one the Enhanced MosFet is p := Vtn Vop := Vdd p = Vop =
13 Point Deplition in Lin and Enhanced in Sat Given Vo= Vtn ( ) ( Vtd) ( Vdd Vo) ( Vdd Vo) = Kr ( Vtn) Find(, Vo) = p := + 9 Vop := + 9 p =. Vop =. Point : Deplition in Sat, Enhanced in Lin Given Find(, Vo) p := 8 Vo= Vdd + Vtd ( Vtd) = Kr ( Vtn) Vo Vo 8 =. Vop := p =. Vop = Vnsat( ) Vdsat( ) Vop Vop Vop,, Vtn, n, p, p, p
14 Nov B Vdd := Vtp := Vtn := n :=. := :=,... Vnsat( ) := Vtn Vpsat( ) := Vtp Vnsat( ) Vpsat( ),, Vtn, n ( Vdd + Vtp) = Kr ( n Vtn) Solving for Kr we get Kr := ( Vdd + Vtp) ( n + Vtn) Kr = 6 Obviously, Point is this one the NMOSFET goes on p := Vtn Vop := Vdd p = Vop = Obviously Point is the given point n, p := n Vop := p =. Vop = and Obviously for Point is the given n and Vo is p := n Vop := n Vtn p =. Vop =.
15 Vnsat( ) Vpsat( ) Vop Vop Vop,, Vtn, n, p, p, p
16 Nov B Vdd := Vtp := Vtn := n := := :=,... Vnsat( ) := Vtn Vpsat( ) := Vtp Vnsat( ) Vpsat( ),, Vtn, Vdd+ Vtp, n ( Vdd + Vtp) = Kr ( n Vtn) Solving for Kr we get ( Vdd + n Vtp) Kr := Kr = ( n + Vtn) Obviously, Point is this one the NMOSFET goes on p := Vtn Vop := Vdd p = Vop = Obviously Point is at the given point n, whereas is p := n Vop := n Vtp p = Vop = Obviously Point is at the given point n, whereas is p := n Vop := n Vtn p = Vop = and finally, Point is this one the PMOSFET goes off p := Vdd + Vtp Vop := p = Vop =
17 Vnsat( ) Vpsat( ) Vop Vop Vop Vop,, Vtn, Vdd+ Vtp, n, p, p, p, p
18 Nov B Vdd := V R := kω R := kω When =Low and in order the input of the first inverter to become Vdd/, is calculated Vdd R = Low R + R Vdd Low := ( R + R) Low =. V R When =High and in order the input of the first inverter to become Vdd/, is calculated Vdd R = Hi R + R R + Vdd R + R Hi Vdd ( R R) := Hi =. V R Output Voltage Input Voltage
Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές
Αναστροφέας με φορτίο Depletion MOSFET Ένας ακόμη αναστροφέας NMOS τεχνολογίας είναι ο αναστροφέας με φορτίο (ML) Depletion NMOS. Ο αναστροφέας αυτός έχει καλύτερη χαρακτηριστική μεταφοράς σε σύγκριση
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή
ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Διδάσκοντες:
Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία
Λογικά Κυκλώματα CMOS. Διάλεξη 5
Λογικά Κυκλώματα CMOS Διάλεξη 5 Δομή της διάλεξης Εισαγωγή Η τεχνολογία αντιστροφέων CMOS Λειτουργία του κυκλώματος Χαρακτηριστική μεταφοράς τάσης Περιθώρια θορύβου Κατανάλωση ισχύος Οι πύλες CMOS NOR
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) Διεργασίες Μικροηλεκτρονικής Τεχνολογίας, Οξείδωση, Διάχυση, Φωτολιθογραφία, Επιμετάλλωση, Εμφύτευση, Περιγραφή CMOS
Πολυσύνθετες πύλες. Διάλεξη 11
Πολυσύνθετες πύλες NMOS και CMOS Διάλεξη 11 Δομή της διάλεξης Εισαγωγή ΗσύνθετηλογικήNMOS ΗσύνθετηλογικήCMOS Η πύλη μετάδοσης CMOS Ασκήσεις 2 Πολυσύνθετες πύλες NMOS και CMOS Εισαγωγή 3 Εισαγωγή Στη λογική
Κεφάλαιο 3. Λογικές Πύλες
Κεφάλαιο 3 Λογικές Πύλες 3.1 Βασικές λογικές πύλες Τα ηλεκτρονικά κυκλώματα που εκτελούν τις βασικές πράξεις της Άλγεβρας Boole καλούνται λογικές πύλες.κάθε τέτοια πύλη δέχεται στην είσοδό της σήματα με
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) Τα μοντέρνα ψηφιακά κυκλώματα (λογικές πύλες, μνήμες, επεξεργαστές και άλλα σύνθετα κυκλώματα) υλοποιούνται σήμερα
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τύποι Αναλύσεων (1 από2) Για την μελέτη της συμπεριφοράς των κυκλωμάτων
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Ερωτήσεις θεωρίας Σημειώσεις στο τρανζίστορ MOSFET
Ερωτήσεις θεωρίας Σημειώσεις στο τρανζίστορ MOSFET 1. Nα σχεδιάσετε τη δομή (διατομή) και το κυκλωματικό σύμβολο ενός τρανζίστορ MOSFET πύκνωσης (ή εμπλουτισμού) καναλιού τύπου n. 2. Να αναπτύξετε τις
Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές
Αναστροφέας με φορτίο Enhancement OSFE Η απλούστερη υλοποίηση OSFE αναστροφέα με ενεργό φορτίο χρησιμοποιεί δύο N-OSFES. Στην ανάλυση που ακολουθεί θα διαπιστώσουμε ότι η χαρακτηριστική μεταφοράς απέχει
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ενισχυτής
ΗΛΕΚΤΡΟΝΙΚΗ Ι ΤΡΑΝΖΙΣΤΟΡ ΕΠΙΔΡΑΣΗΣ ΠΕΔΙΟΥ. Eλεγχος εσωτερικού ηλεκτρικού πεδίου με την εφαρμογή εξωτερικού δυναμικού στην πύλη (gate, G).
ΗΛΕΚΤΡΟΝΙΚΗ Ι 1. Ημιαγωγική δίοδος Ένωση pn 2. Τρανζίστορ FET 3. Πόλωση των FET - Ισοδύναμα κυκλώματα 4. Ενισχυτές με FET 5. Διπολικό τρανζίστορ (BJT) 6. Πόλωση των BJT - Ισοδύναμα κυκλώματα 7. Ενισχυτές
4 η ΕΝΟΤΗΤΑ. Το MOSFET
4 η ΕΝΟΤΗΤΑ Το MOSFET Άσκηση 12η. Ενισχυτής κοινής πηγής με MOSFET, DC λειτουργία. 1. Υλοποιείστε το κύκλωμα του ενισχυτή κοινής πηγής με MOSFET (2Ν7000) του Σχ. 1. V DD = 12 V C by R g = 50 C i R A 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ
6/0 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΙΟΥΝΙΟΥ 00 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ
Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Ψηφιακή Σχεδίαση με CAD II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ß -ß ßß Τμήμα Μηχανικών - Η/Υ, Τηλεπικοινωνιών και Δικτύων Ψηφιακή Σχεδίαση με CAD II ONOMA: ΔΙΑΜΑΝΤΑΚΗ ΜΑΡΙΑ ΑΕΜ : 1434 ΕΤΟΣ : 3 ο - ß # nmos - TSMC 0.35μm - 3.3V - 27 o C *nmos
Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών The MOS Transistor Polysilicon Aluminum 2 N-MOS Τρανζίστορ Διάταξη τριών
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Δίοδοι, BJT και MOSFET ως Διακόπτες 2
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Δίοδοι, BJT και MOSFET ως Διακόπτες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ιδανικός διακόπτης ΙΔΑΝΙΚΟΣ ΔΙΑΚΟΠΤΗΣ ΠΡΑΓΜΑΤΙΚΟΣ ΔΙΑΚΟΠΤΗΣ
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)
Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET) Χρησιµοποιούνται σε κλίµακα υψηλής ολοκλήρωσης VLSI Χρησιµοποιούνται και σε αναλογικούς ενισχυτές καθώς και στο στάδιο εξόδου ενισχυτών Ισχύος-
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Γιάννης Λιαπέρδος 2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΛΕΞΗΣ Άλγεβρα Διακοπτών Κυκλωματική Υλοποίηση Λογικών Πυλών με Ηλεκτρονικά
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :
Δυναμική συμπεριφορά των λογικών κυκλωμάτων MOS. Διάλεξη 10
Δυναμική συμπεριφορά ων λογικών κυκλωμάων MOS Διάλεξη 10 Δομή ης διάλεξης Εισαγωγή Ανισροφέας NMOS με φορίο ύπου αραίωσης Ανισροφέας CMOS Διάφορα ζηήμαα Ασκήσεις Δυναμική συμπεριφορά ων λογικών κυκλωμάων
Ψηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Βασικές αρχές ηµιαγωγών και τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική
Βασικές αρχές ηµιαγωγών και τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Ηµιαγώγιµα υλικά και πυρίτιο Η κατασκευή ενός ολοκληρωµένου κυκλώµατος γίνεται µε βάση ένα υλικό ηµιαγωγού (semiconductor), το οποίο
ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 3
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 3: Τρανζίστορ FET Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Λογικά Κυκλώματα NMOS. Διάλεξη 4
Λογικά Κυκλώματα NMOS Διάλεξη 4 Δομή της διάλεξης Η Σχεδίαση του Αντιστροφέα NMOS με Ωμικό Φόρτο Η Στατική Σχεδίαση του Αντιστροφέα NMOS με Κορεσμένο Φόρτο ΟΑντιστροφέαςΝMOS με Γραμμικό Φόρτο ΟΑντιστροφέαςΝMOS
Η αντιστοιχία των παραπάνω επαφών με αυτές του διπολικού τρανζίστορ είναι (προφανώς) η εξής: S E, D C, G B.
3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ
HY121-Ηλεκτρονικά Κυκλώματα
HY121-Ηλεκτρονικά Κυκλώματα Συνοπτική παρουσίαση της δομής και λειτουργίας του MOS τρανζίστορ Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Η δομή του τρανζίστορ Όπως ξέρετε υπάρχουν
Μικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 5: Αντιστροφέας CMOS Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης
Μικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.2: Συνδυαστική Λογική - Σύνθετες Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Εισαγωγή. Στατική Λειτουργία V DD Q P Q N Q N =SAT QP=LIN QN=LIN Q P =SAT. Vi (Volts)
Εισαγωγή Η τεχνολογία COS εφευρέθηκε από τον Δρ. Frank Wanlass (17/5/33) το 1963 και κατοχυρώθηκε με πατέντα το 1967 (Αρ. πατέντας 3,356,5). Η COS τεχνολογία είναι αυτή που έχει κάνει πραγματικότητα την
Μικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 2: Το Τρανζίστορ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ Ι. Ασκήσεις. Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΗΛΕΚΤΡΟΝΙΚΗ Ι Ασκήσεις Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Α.Π.Θ. Θεσσαλονίκη, Σεπτέμβριος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2010 ΑΣΚΗΣΗ 1 Ένας μικροεπεξεργαστής πρέπει να οδηγήσει ένα δίαυλο
HY121 Ηλεκτρικϊ Κυκλώματα
HY Ηλεκτρικϊ Κυκλώματα Διδϊςκων: Χ. Σωτηρύου, Βοηθού: Ε. Βαςιλϊκησ, Δ. Πούλιοσ http://www.csd.uoc.gr/~hy Περιεχόμενα Στατικζσ Πφλεσ CMOS και Μεγζκθ Τρανηίςτορ Λογικι Λόγου Αντίςταςθσ/Μεγεκών (NMOS) Διαφορικι
Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 5ο. Λιούπης Τεχνολογία CMOS Υλοποιεί την πλειοψηφία των µοντέρνων ψηφιακών κυκλωµάτων λογικές πύλες µνήµες επεξεργαστές άλλα σύνθετα κυκλώµατα Συνδυάζει συµπληρωµατικά pmos και
Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων MOS Ψηφιακά Κυκλώματα Κεφάλαιο 1 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Άλγεβρα oole Χάρτης Karnaugh 2. MOS τρανζίστορ 3.
Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε λογικά δίκτυα πολλών σταδίων
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Θεωρία Τρανζίστορ MOS
2 η Θεµατική Ενότητα : Θεωρία Τρανζίστορ MOS Επιµέλεια διαφανειών:. Μπακάλης Θεωρία Τρανζίστορ MOS Ένα τρανζίστορ MOS ορίζεται ως στοιχείο φορέων πλειονότητας (majority - carrier device) του οποίου το
ΕΝΙΣΧΥΤΕΣΜΙΑΣΒΑΘΜΙΔΑΣ ΔΙΑΛΕΞΗ 1
ΕΝΙΣΧΥΤΕΣΜΙΑΣΒΑΘΜΙΔΑΣ ΔΙΑΛΕΞΗ 1 Ενισχυτές ενός τρανζίστορ Ο στόχος αυτής της παρουσίασης είναι 1. Μελέτη των χαρακτηριστικών ενός ενισχυτή 2. Ανάλυση του ενισχυτή χρησιμοποιώντας ωμικά φορτία 2 Χαρακτηριστικά
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 5: Το CMOS transistor και κυκλώµατα CMOS ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Κυκλώµατα
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (11 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (11 η σειρά διαφανειών) Μελέτη των Παρασιτικών Χωρητικοτήτων και της Καθυστέρησης στα Κυκλώματα CMOS Με βάση το εργαλείο σχεδιασμού Microwind
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Ενισχυτής κοινής πηγής (common source amplifier)
Εισαγωγή στην Ηλεκτρονική Βασικά κυκλώµατα ενισχυτών µε transstr MOS Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Transstr ως ενισχυτής Ενισχυτής κοινής πηγής (cmmn surce amplfer (κύκλωµα αντιστροφέα
Ηλεκτρονική ΙΙΙ 6 ο εξάμηνο
ο εξάμηνο Αλκης Χατζόπουλος Καθηγητής Τμήμα Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Α.Π.Θ. Εργαστήριο Ηλεκτρονικής /4 Ηλεκτρονική ΙIΙ Ηλεκτρονική ΙIΙ ο εξάμηνο. Σχεδίαση τελεστικών ενισχυτών. Κυκλώματα
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
4/10/2008. Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης. Πραγματικά τρανζίστορ. Ψηφιακή λειτουργία. Κανόνες ψηφιακής λειτουργίας
2 η διάλεξη 25 Σεπτεμβρίου Πραγματικά τρανζίστορ Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Η τάση στο gate του τρανζίστορ
i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
Συστήματα Αυτομάτου Ελέγχου Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Συστήματα Αυτομάτου Ελέγχου Ι Υπεύθυνοι εργαστηρίου: Σ. Βασιλειάδου, Δ. Δημογιαννόπουλος Χειμερινό
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ ( ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ ) ΒΑΡΝΑΒΙΔΟΥ Β. ΧΡΙΣΤΙΝΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάλυση λειτουργίας βασικών
«Αναθεώρηση των FET Transistor»
ΗΥ335: Προχωρημένη Ηλεκτρονική «Αναθεώρηση των FET Transistor» Φώτης Πλέσσας fplessas@inf.uth.gr ΤΗΜΜΥ Δομή FET Χαρακτηριστικά Λειτουργία Πόλωση Μοντέλα και υλοποιήσεις μικρού σήματος για FET ΤΗΜΜΥ - 2
ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ
Εργαστήριο Τεχνολογίας Υλικού & Αρχιτεκτονικής Υπολογιστών ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ 4.1 MOS Τρανζίστορ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΙV ΤΟ MOS ΤΡΑΝΖΙΣΤΟΡ 4.1.1 Εισαγωγή: Αντικείµενο της εργαστηριακής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Περιεχόμενα Βασικά ηλεκτρικά χαρακτηριστικά
HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα
HY330 Ψηφιακά - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Μανταλωτές θετικής, αρνητικής πολικότητας Σχεδίαση με Μανταλωτές
Κεφάλαια 4 ο και 6 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Τρανζίστορ Επίδρασης Πεδίου ΙΙ 2
ΗΛΕΚΤΡΟΝΙΚΗ Πανεπιστήμιο Ιωαννίνων Τρανζίστορ Επίδρασης Πεδίο (FET FET) Ι Κεφάλαια 4 ο και 6 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Το MOS τρανζίστορ σε ενισχτές. Ενισχτής
ΑΣΚΗΣΗ 7. ΘΕΜΑ 1ο MINORITY A B C. C out
ΑΣΚΗΣΗ 7 ΘΕΜΑ 1ο MINORITY A B C C out S S C out C OUT = MAJ(A,B,C) = Majority(A,B,C) = 1 when at least 2 (majority) of A, B, and C are equal to 1. Opposite Minority MAJ(A,B,C) = AB + BC + AC (PMOS and
Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Εισαγωγή σε Βασική Φυσική Στοιχείων MOS
Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ Εισαγωγή στα Ολο. Κυκλ. Φυσική MOS Ενισχυτές ενός σταδίου Διαφορικοί Ενισχυτές Καθρέφτες Ρεύματος Απόκριση Συχνότητας Ηλεκτρικός Θόρυβος Ανατροφοδότηση Σχεδιασμός
Εργαστήριο Αναλογικών Κυκλωμάτων VLSI Υπεύθυνος καθηγητής Πλέσσας Φώτιος
Εργαστήριο Αναλογικών Κυκλωμάτων VLSI Υπεύθυνος καθηγητής Πλέσσας Φώτιος Αναφορά αποτελεσμάτων εργαστηριακών μετρήσεων και μετρήσεων προσομοίωσης κυκλωμάτων εργαστηρίου Ονόματα φοιτητών ομάδας Μουστάκα
Μνήμες RAM. Διάλεξη 12
Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη
Σχεδίαση Αναλογικών Κυκλωμάτων VLSI
Σχεδίαση Αναλογικών Κυκλωμάτων VLSI «Τρανζίστορ και Απλά Κυκλώματα» (επανάληψη βασικών γνώσεων) Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ 1 Δομή Παρουσίασης MOSFET
Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.
Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions xercise Solutions X5. ( β ).0 β 4. β 40. 0.0085 hapter 5 β 40. α 0.999 β 4..0 0.0085.95 X5. O 00 O n 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ - ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ - ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΑ ΠΡΟΗΓΜΕΝΩΝ ΨΗΦΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ
ΑΣΚΗΣΗ 3 η Ο ΑΝΤΙΣΤΡΟΦΕΑΣ CMOS
ΑΣΚΗΣΗ 3 η Ο ΑΝΤΙΣΤΡΟΦΕΑΣ CMOS ΘΕΩΡΙΑ Οι ασκήσεις 3 και 4 αφορούν τον αντιστροφέα CMOS, ο οποίος είναι η απλούστερη αλ α ταυτόχρονα και σημαντικότερη πύλη για την κατανόηση της λειτουργίας των Ολοκληρωμένων
ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 4
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 4: Πόλωση των FET - Ισοδύναμα κυκλώματα Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών
ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624
ΗΛΕΚΤΡΟΝΙΚΗ 1 - ΕΡΓΑΣΙΑ 2 ΔΗΜΗΤΡΗΣ ΓΡΕΑΣΙΔΗΣ ΑΕΜ: 1624 ΕΤΟΣ: 2ο -12- ΑΣΚΗΣΗ 1 Για τεχνολογία TSMC 0.25μm έχω: Υπολογισμός πλάτους ώστε k n /k p = 1 Υπολογισμός πλάτους ώστε k n /k p = 0.25 Υπολογισμός
7 η διάλεξη Ακολουθιακά Κυκλώματα
7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ A. Πίνακες αληθείας λογικών πυλών. Στη θετική λογική το λογικό 0 παριστάνεται µε ένα χαµηλό δυναµικό, V L, ενώ το λογικό 1
Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών. Γεώργιος Τσιατούχας
Πανεπιστήμιο Ιωαννίνων Η Λ Ε Κ Τ Ρ Ο Ν Ι Κ Η Εργαστηριακές Ασκήσεις Γεώργιος Τσιατούχας Ιωάννινα 2017 VLSI Systems and Computer Architecture Lab ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΕΧΟΜΕΝΑ Ο Τελεστικός
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική
Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 5: Τρανζίστορ Επίδρασης Πεδίου (MOS-FET, J-FET) Δρ. Δημήτριος Γουστουρίδης Τμήμα
Μικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο Κυκλώματα CMOS. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005 Κυκλώματα CMOS Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κυκλώματα CMOS Περίληψη Τρανζίστορ και μοντέλα διακόπτη ίκτυα CMOS
1993 (Saunders College 1991). P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed.
Πανεπιστήμιο Θεσσαλίας ΗΥ430: Εργαστήριο Αναλογικών Κυκλωμάτων Άνοιξη 2005 Εργαστηριακές Ασκήσεις Περιεχόμενα 1 Διπολικό και MOS τρανσίστορ................................... 2 2 Ενισχυτές με διπολικά
ΑΠΑΝΤΗΣΕΙΣ. Σχήμα 1 Σχήμα 2 Σχήμα 3
ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μάθημα: Φυσική Ημιαγωγών και Διατάξεων Εξεταστική Περίοδος: Ιούνιος 017 Καθηγητής: Δ. Τριάντης ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο (+=4 ΜΟΝΑΔΕΣ) Α) Θεωρούμε μια διάταξη MIS (Metal: Al, Isulator:
Καθυστέρηση στατικών πυλών CMOS
Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν
HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://www.csd.uoc.gr/~hy330 1 Περιεχόμενα Συσκευές στο Πυρίτιο Πυρίτιο n και p Δίοδος Θετική, αρνητική
Φροντιστήριο Ψηφιακών Ηλεκτρονικών
Φροντιστήριο Ψηφιακών Ηλεκτρονικών Άσκηση 1 Μία TTL πύλη εγγυάται να τραβάει 10 ma χωρίς να ξεπεράσει το δυναμικό εξόδου VOL(max) = 0.4 Volt και να μπορεί να δώσει 5 ma χωρίς να πέσει το δυναμικό εξόδου
Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου Τα πιο βασικά στοιχεία δομής των ηλεκτρονικών κυκλωμάτων
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Οι λογικές πύλες (ή απλά πύλες) είναι οι θεμελιώδεις δομικές μονάδες των ψηφιακών κυκλωμάτων. Όπως φαίνεται και από την ονομασία
Αποκωδικοποιητές Μνημών
Αποκωδικοποιητές Μνημών Φθινόπωρο 2008 Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος ΗΥ422 1 Η χρήση των αποκωδικοποιητών Η δομή της μνήμης (για λόγους πυκνότητας)
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Στατική ηλεκτρική ανάλυση του αντιστροφέα CMOS. Εισαγωγή στην Ηλεκτρονική
Στατική ηλεκτρική ανάλυση του αντιστροφέα CMO Εισαγωγή στην Ηλεκτρονική Στατική (C) ηλεκτρική ανάλυση του αντιστροφέα CMO Θα εξάγουµε τη χαρακτηριστική τάσης = f( ) (καθώς και τη χαρακτηριστική ρεύµατος
Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative
Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους
3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα 2:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων Κεφάλαιο 1: Οι διατάξεις MOS
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα 2:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων Κεφάλαιο 1: Οι διατάξεις MOS Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Σελίδα 2 1. Σκοποί
6 η διάλεξη Σχεδίαση και Υλοποίηση Συνδυαστικών Κυκλωμάτων σε επίπεδο Τρανζίστορ
6 η διάλεξη Σχεδίαση και Υλοποίηση Συνδυαστικών Κυκλωμάτων σε επίπεδο Τρανζίστορ 1 2 Οποιοδήποτε κύκλωμα εμπεριέχει την έννοια της τρέχουσας κατάστασης είναι ακολουθιακό. Έτσι, κυκλώματα όπως ΜΠΚ, καταχωρητές,
Η αντιστοιχία των παραπάνω επαφών με αυτές του διπολικού τρανζίστορ είναι (προφανώς) η εξής: S E, D C, G B.
3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΗΜΙΑΓΩΓΙΚΗ ΙΟ ΟΣ 1
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΗΜΙΑΓΩΓΙΚΗ ΙΟ ΟΣ 1 1-1 Ενεργειακές Ζώνες 3 1-2 Αµιγείς και µη Αµιγείς Ηµιαγωγοί 5 ότες 6 Αποδέκτες 8 ιπλοί ότες και Αποδέκτες 10 1-3 Γένεση, Παγίδευση και Ανασύνδεση Φορέων 10 1-4 Ένωση pn
Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια
Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. ΠΕΡΙΕΧΟΜΕΝΑ:
Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Επανάληψη μέρος 2 ο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Εισαγωγή στα κυκλώµατα CMOS 2
1 η Θεµατική Ενότητα : Εισαγωγή στα κυκλώµατα CMOS Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Τεχνολογία CMOS = Complementary Metal Oxide Semiconductor Συµπληρωµατικού Ηµιαγωγού Μετάλλου Οξειδίου Αποτελείται
ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 9
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 9: Ενισχυτές με ενεργό φορτίο Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης
Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 1 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Επανάληψη μέρος 1 ο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε