Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Σχετικά έγγραφα
Tutorial Note - Week 09 - Solution

Curvilinear Systems of Coordinates

Matrix Hartree-Fock Equations for a Closed Shell System

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Laplace s Equation in Spherical Polar Coördinates

r = x 2 + y 2 and h = z y = r sin sin ϕ

Analytical Expression for Hessian

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

4.2 Differential Equations in Polar Coordinates

Solutions Ph 236a Week 2

Fundamental Equations of Fluid Mechanics

Strain and stress tensors in spherical coordinates

Lecture VI: Tensor calculus

ANTENNAS and WAVE PROPAGATION. Solution Manual

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Example 1: THE ELECTRIC DIPOLE

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Instruction Execution Times

derivation of the Laplacian from rectangular to spherical coordinates

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Areas and Lengths in Polar Coordinates

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

1 3D Helmholtz Equation

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

The Laplacian in Spherical Polar Coordinates

Partial Trace and Partial Transpose

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

MathCity.org Merging man and maths

The Neutrix Product of the Distributions r. x λ

1 Full derivation of the Schwarzschild solution

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 7.6 Double and Half Angle Formulas

TMA4115 Matematikk 3

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problems in curvilinear coordinates

Uniform Convergence of Fourier Series Michael Taylor

Exercises to Statistics of Material Fatigue No. 5

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

CRASH COURSE IN PRECALCULUS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

On the Galois Group of Linear Difference-Differential Equations

Parametrized Surfaces

Example Sheet 3 Solutions

Orbital angular momentum and the spherical harmonics

Statistical Inference I Locally most powerful tests

Modbus basic setup notes for IO-Link AL1xxx Master Block

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Notes on the Open Economy

Numerical Analysis FMN011

EU-Profiler: User Profiles in the 2009 European Elections

Section 9.2 Polar Equations and Graphs

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Model NAST (Separable Type)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Μηχανική Μάθηση Hypothesis Testing

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Fractional Colorings and Zykov Products of graphs

Tutorial problem set 6,

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Example of the Baum-Welch Algorithm

Finite Field Problems: Solutions

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

14 Lesson 2: The Omega Verb - Present Tense

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

The Simply Typed Lambda Calculus

Durbin-Levinson recursive method

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Trigonometry 1.TRIGONOMETRIC RATIOS

ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. ιπλωµατική Εργασία. της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Approximation of distance between locations on earth given by latitude and longitude

What happens when two or more waves overlap in a certain region of space at the same time?

Homework for 1/27 Due 2/5

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

The challenges of non-stable predicates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

If we restrict the domain of y = sin x to [ π 2, π 2

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Higher Derivative Gravity Theories

Schwarzschild spacetime

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Transcript:

Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST

This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how to tansfom vectos into covectos. Catesian tenso opeations. R Opeations

How to Build a Tenso in Mathematica 9 Rank One Fo ank one tensos, we can wite them as tangent vectos, TableA9xi=, 8i, 8"", "", ""<<E MatixFom x x x o as covectos Table@xi, 8i, 8"", "", ""<<D 8x, x, x<

4 Rank Two and Highe We can use simila methods to develop ank two tensos, though Mathematica is not able to cope with abstact indices without help fom thid-paty softwae I like xact. TableAΣi j, 8i, 8x, y, z<<, 8j, 8x, y, z<<e MatixFom Σx Σx y Σx y Σx z Σy Σy z Σx z Σy z Σz TableAΣid@88i,j<<,Spacings.D, 8i, 8x, y, z<<, 8j, 8x, y, z<<e MatixFom Σx x Σx y Σx z Σy x Σy y Σy z Σz x Σz y Σz z You can poduce the individual tenso components, Σ@i_, j_, n_d := TableB Η xj viaxje + xi vj@xid - IfBi j, 8k,, n, <F MatixFom xk vk@xkd, F + If@i j, Ξ xk vk@xkd, D,

8Σ@,, D, Σ@,, D, Σ@,, D< TaditionalFom Η v HxL + Ξ v HxL 4 : Η J v HxL Η J v HxL - v HxLN + Ξ v HxL, v HxLN + Ξ v HxL Η Hv HxL + v HxLL Η Hv HxL + v HxLL, Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL > Η Hv HxL + v HxLL You can also wite a table to poduce the entie tenso st@n_d := Table@Σ@i, j, nd, 8i,, n, <, 8j,, n, <D MatixFom st@d TaditionalFom 4 Η v HxL + Ξ v HxL Η J v HxL Η J v HxL - v HxLN + Ξ v HxL v HxLN + Ξ v HxL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η J v HxL - Η J v HxL - 4 v HxLN + Ξ v HxL Η v HxL + Ξ v HxL v HxLN + Ξ v HxL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η Hv HxL + v HxLL Η J v HxL Η J v HxL 4 v HxLN + Ξ v HxL v HxLN + Ξ v HxL Η v HxL + Ξ v HxL 5

6 The Metic Tenso A specific example of a calculation is one whee we tansfom fom a tangent vecto to a covecto using the metic tenso, vi = gij v j () So, given the tangent vecto v j = H, cos Θ, - ΦL, and assuming we ae in spheical coodinates, we can find the metic. tv = 8, Cos@ΘD, - Φ<; met = CoodinateChatData@"Spheical", "Metic", 8, Θ, Φ<D TaditionalFom sinhθl We can even find the invese metic, im = CoodinateChatData@"Spheical", "InveseMetic", 8, Θ, Φ<D TaditionalFom cschθl

We take the poduct of the invese metic with the tangent vecto, tv. CoodinateChatData@"Spheical", "InveseMetic", 8, Θ, Φ<D TaditionalFom giving us the covecto :, coshθl, Φ csc HΘL > 7

8 The Catesian Tenso We ceate a new tenso, newtenso = TableAxid@88i<<D yid@88j<<d zid@88k<<d, 8i,, <, 8j,, <, 8k,, <E; newtenso MatixFom TaditionalFom x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z We can see if its a tenso, AayQ@newtensoD Tue We can find its ank TensoRank@newtensoD

9 We can pefom a contaction contens = TableBâ newtenso@@i, a, add, 8i,, <F MatixFom TaditionalFom a= x y z + x y z + x y z x y z + x y z + x y z x y z + x y z + x y z We have the inne poduct in = Inne@Times, newtenso, newtenso, PlusD FullSimplify MatixFom x y z Ix z + x z + x z M x y z Ix z + x z + x z M x y z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y + z Ix z + x z + x z M x y x y z Ix z + x z + x z M + z Ix z + x z + x z M x y + x z Ix z + x z + x z M x z Ix z + x z + x z M x x y z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x x y + x y z Ix z + x z + x z M x z Ix z + x z + x z M x y x y z Ix z + x z + x z M + z Ix z + x z + x z M x y x y z Ix z + x z + x z M + x y z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x x y z Ix z + x z + x z M x y z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x newtenso. newtenso FullSimplify MatixFom x y z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y z Ix z + x z + x z M x y + x y z Ix z + x z + x z M z Ix z + x z + x z M x y x y z Ix z + x z + x z M + x y z Ix z + x z + x z M z Ix z + x z + x z M x y + x z Ix z + x z + x z M x z Ix z + x z + x z M x x y z Ix z + x z + x z M x x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x y+ z Ix z + x z + x z M x x y + x y z Ix z + x z + x z M x z Ix z + x z + x z M x y + z Ix z + x z + x z M x y +

We can take the diect poduct, in = Oute@Times, newtenso, newtensod FullSimplify MatixFom A vey lage output was geneated. Hee is a sample of it: x y z x y z+ x y z+ H L H L x y+ z x y+ z+ x y z H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L H L Show Less Show Moe Show Full Output Set Size Limit... H L H L H L H L H L H L H L H L H L H L H L

We can take the tace of the tenso, T@newtensoD x y z + x y z + x y z We can tanspose, Tanspose@newtensoD MatixFom TaditionalFom x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z x y z We can take a patial deivative x newtenso MatixFom TaditionalFom x - y z x - y z x - y z x - y z x - y z x - y z x - y z x - y z x - y z x - y z y z x - y z x - y z x - y z x - y z x - y z x - y z x - y z x - y z y z x x - y z x x - x - y z x - y z - x - y z x - - y z y z x - y z

we can detemine the diffeentials Dt@newtensoD MatixFom TaditionalFom â x x - y z + â y x y - z + â z x y z - â x x - y z + â y x y - z + â z x y z - â x x - y z + â y x y - z + â z x y z - â x x - â x x - y z + â y x y - z + â z x y z - â x x - y z + â y x y - z + â z x y z - â x x - y z +ây x y - z + âz x y z â x x - â x x - y z + â y x y - z + â z x y z - â x x - y z + â y x y - z + â z x y z - â x x - âx x y z +ây x y - - z + âz x y z âx x - z + âz x y z â x x - y z + â y x y - z + â z x y z - âx x â x x - y z + â y x y - z + â z x y z - z + âz x y z - y z +ây x y - â x x - - â x x - y z + â y x y - z + â z x y z - â x x - y z + â y x y - z + â z x y z - y z +ây x y - âx x - â x x - - - âx x - â x x â x x - - â x x - y z + â y x y - z + â z x y z - - âx x - y z +ây x y y z +ây x y - z + âz x y z - - z + âz x y z â x x -

We can look fo symmeties, TensoSymmety@newtensoD 8< symten = Symmetize@newtenso, Antisymmetic@8, <DD StuctuedAay@SymmetizedAay, 8,, <, -Stuctued Data-D Nomal@symtenD MatixFom Ix y z - x y z M Ix y z - x y z M Ix y z - x y z M Ix y z - x y z M TensoSymmety@symtenD Antisymmetic@8, <D I- x y z + x y z M I- x y z + x y z M Ix y z - x y z M Ix y z - x y z M I- x y z + x y z M Ix y z - x y z M Ix y z - x y z M Ix y z - x y z M I- x y z + x y z M I- x y z + x y z M I- x y z + x y z M I- x y z + x y z M I- x y z + x y z M I- x y z + x y z M

4 R Opeations The Metic Hee we input the metic In[4]:= Metic@gi_D := Module@ 8n = Length@giD, g, ing<, g = Table@If@Μ ³ Ν, gi@@μ, ΝDD, gi@@ν, ΜDDD, 8Μ, n<, 8Ν, n<d; ing = Simplify@Invese@gDD; 8n, g, ing<d we assign labels to the coodinates In[4]:= Evaluate@Table@x@ΜD, 8Μ, 4<DD = 8t,, Θ, j<; Hee is the Schwazschild metic: In[4]:= MeticA98 - <, 8, - H - L<, 9,, - =, 9,,, - Sin@ΘD==E TaditionalFom - - Out[4]//TaditionalFom= :4, - - -, - - - sinhθl - csc HΘL >

5 Hee we have the Chistoffel Symbols: In[5]:= Chistoffel@8n_, g_, ing_<, OptionsPatten@DD := ModuleA 8, in<, = in = Table@, 8Λ, n<, 8Μ, n<, 8Ν, n<d; Do@ @@Λ, Μ, ΝDD = Simplify@HD@g@@Λ, ΝDD, x@μdd + D@g@@Λ, ΜDD, x@νdd - D@g@@Μ, ΝDD, x@λddl D; If@Μ ¹ Ν, @@Λ, Ν, ΜDD = @@Λ, Μ, ΝDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; Do@in@@Λ, Μ, ΝDD = Simplify@Sum@ing@@Λ, ΡDD @@Ρ, Μ, ΝDD, 8Ρ, n<dd; If@Μ ¹ Ν, in@@λ, Ν, ΜDD = in@@λ, Μ, ΝDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; IfAOptionValue@PintNonZeoD, Do@If@@@Λ, Μ, ΝDD =!=, Pint@""id@88Λ-,Μ-,Ν-<<D, " ", @@Λ, Μ, ΝDDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; DoAIfAin@@Λ, Μ, ΝDD =!=, PintA""id@88Λ-<<D id@88"",μ-,ν-<<d, " ", in@@λ, Μ, ΝDDEE, 8Λ, n<, 8Μ, n<, 8Ν, Μ< EE; In[49]:= 8, in<e Chistoffel@8n_, g_, ing_<, OptionsPatten@DD := Module@ 8, in<, = in = Table@, 8Λ, n<, 8Μ, n<, 8Ν, n<d; Do@ @@Λ, Μ, ΝDD = Simplify@HD@g@@Λ, ΝDD, x@μdd + D@g@@Λ, ΜDD, x@νdd - D@g@@Μ, ΝDD, x@λddl D; If@Μ ¹ Ν, @@Λ, Ν, ΜDD = @@Λ, Μ, ΝDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; Do@in@@Λ, Μ, ΝDD = Simplify@Sum@ing@@Λ, ΡDD * @@Ρ, Μ, ΝDD, 8Ρ, n<dd; If@Μ ¹ Ν, in@@λ, Ν, ΜDD = in@@λ, Μ, ΝDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; Do@If@@@Λ, Μ, ΝDD =!=, Pint@"", Λ -, Μ -, Ν -, " ", @@Λ, Μ, ΝDDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ<D; Do@If@in@@Λ, Μ, ΝDD =!=, Pint@"", Λ -, Μ -, Ν -, " ", in@@λ, Μ, ΝDDDD, 8Λ, n<, 8Μ, n<, 8Ν, Μ< D; 8, in<d Hee we calculate the Chistoffel symbols fo the Schwazschild Metic In[5]:= ChistoffelA MeticA98 - <, 8, - H - L<, 9,, - =, 9,,, - Sin@ΘD==EE;

6 Sin@ΘD - Cos@ΘD Sin@ΘD - Sin@ΘD - Cos@ΘD Sin@ΘD H- + L - + H- + L - - -H- + L Sin@ΘD -Cos@ΘD Sin@ΘD Cot@ΘD

Hee we calculate the components of the Riemann tenso: In[54]:= Riemann@8n_, g_, ing_<, OptionsPatten@DD := Module@ 8, in, R = Table@, 8Α, n<, 8Β, n<, 8Μ, n<, 8Ν, n<d, R = Table@, 8Μ, n<, 8Ν, n<d, R<, 8, in< = Chistoffel@8n, g, ing<d; Do@R@@Α, Β, Μ, ΝDD = R@@Β, Α, Ν, ΜDD = Simplify@Sum@g@@Α, ΛDD HD@in@@Λ, Β, ΝDD, x@μdd - D@in@@Λ, Β, ΜDD, x@νddl + @@Α, Λ, ΜDD in@@λ, Β, ΝDD - @@Α, Λ, ΝDD in@@λ, Β, ΜDD, 8Λ, n<dd; R@@Β, Α, Μ, ΝDD = R@@Α, Β, Ν, ΜDD = - R@@Α, Β, Μ, ΝDD; If@Μ ¹ Α, R@@Μ, Ν, Α, ΒDD = R@@Ν, Μ, Β, ΑDD = R@@Α, Β, Μ, ΝDD; R@@Ν, Μ, Α, ΒDD = R@@Μ, Ν, Β, ΑDD = - R@@Α, Β, Μ, ΝDDD, 8Α,, n<, 8Β, Α - <, 8Μ,, Α<, 8Ν, If@Μ === Α, Β, Μ - D<D; Do@R@@Μ, ΝDD = Simplify@Sum@ing@@Α, ΒDD * R@@Α, Μ, Β, ΝDD, 8Α, n<, 8Β, n<dd; If@Μ ¹ Ν, R@@Ν, ΜDD = R@@Μ, ΝDDD, 8Μ, n<, 8Ν, Μ<D; R = Simplify@Sum@ing@@Μ, ΝDD R@@Μ, ΝDD If@Μ ¹ Ν,, D, 8Μ, n<, 8Ν, Μ<DD; Do@If@R@@Α, Β, Μ, ΝDD =!=, Pint@"R"id@88Α-,Β-,Μ-,Ν-<<D, " ", R@@Α, Β, Μ, ΝDDDD, 8Α,, n<, 8Β, Α - <, 8Μ,, Α<, 8Ν, If@Μ === Α, Β, Μ - D<D; Do@If@R@@Μ, ΝDD =!=, Pint@"R"id@88Μ-,Ν-<<D, " ", R@@Μ, ΝDDDD, 8Μ, n<, 8Ν, Μ<D; If@R =!=, Pint@"R ", RDD; 8R, R, R<D 7

8 Hee is the output fo the Schwazschild metic, assuming S = : In[55]:= Riemann@Metic@88 - <, 8, - H - L<, 8,, - ^ <, 8,,, - ^ Sin@ΘD ^ <<DD; Sin@ΘD - Cos@ΘD Sin@ΘD - Sin@ΘD - Cos@ΘD Sin@ΘD H- + L - + H- + L - - -H- + L Sin@ΘD -Cos@ΘD Sin@ΘD Cot@ΘD R - + R R H- + L R - H- + L Sin@ΘD Sin@ΘD R - + R - Sin@ΘD

Thank You! eoge E. Habovsky MAST www.madscitech.og geoge@madscitech.og 9