Fundamental Equations of Fluid Mechanics

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fundamental Equations of Fluid Mechanics"

Transcript

1 Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates s = s i s i s i z. 1 Clindical pola coodinates s = s i 1 s i s i z. 2 Spheical pola coodinates 1.2 Gadient of a vecto u s = s i 1 s i 1 s sin i. 3 The gadient of a vecto u is a tenso quantit. The diffeential foms of the gadient of a vecto ae povided below in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: Clindical pola coodinates u = u i i u i i u i zi u i i u i i u i zi i i z i i z i zi z. 4 The vecto is given b u = u i u i u z i z so u is given b: u = u i i u i i i i z 1 1 u 1 u 1 u u i i u i zi i i u i zi i i z i zi z. 5 1

2 Spheical pola coodinates The vecto is given b u = u i u i u i so u is given b: u = u i i u i i 1 1 u u u 1 i i u i i u i i 1 u i i 1.3 Divegence of a vecto u sin 1 u sin 1 u sin u u u cot cot u i i u i i i i. 6 The divegence of a vecto u is a scala quantit. The diffeential foms of the divegence depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: Clindical pola coodinates u = u u. 7 The vecto is given b u = u i u i u z i z so u is given b: Spheical pola coodinates u = 1 u 1 u. 8 The vecto is given b u = u i u i u i so u is given b: u = u 1.4 Divegence of a tenso T 1 sin u 1 u sin sin. 9 The divegence of a tenso T is a vecto quantit. The diffeential foms of the divegence depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The tenso is given b T = T i i T i i T z i i z T i i T i i T z i i z T z i z i T z i z i T zz i z i z so T is given b: 2

3 T = T T Tz T T T z T z T z T zz i i i z. 10 Clindical pola coodinates The tenso is given b T = T i i T i i T z i i z T i i T i i T z i i z T z i z i T z i z i T zz i z i z so T is given b: T = 1 T 1 T T z 1 2 T 2 1 T 1 T z 1 T z T zz T i T z 1 T T i i z. 11 Spheical pola coodinates The tenso is given b T = T i i T i i T i i T i i T i i T i i T i i T i i T i i so T is given b: T = 1 2 T 2 1 sin T 1 T sin sin 1 T T i 1 3 T 3 1 sin T 1 T sin sin 1 cot T T T i 1 3 T 3 1 sin T 1 T sin sin 1 cot T T T i Cul of a vecto u The cul of a vecto is also a vecto quantit. Once again the diffeential foms of the culs depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: u = uz u u i u z u i u i z. 13 3

4 Clindical pola coodinates The vecto is given b u = u i u i u z i z so u is given b: u = 1 u u i u z i Spheical pola coodinates 1 u 1 The vecto is given b u = u i u i u i so u is given b: u = 1 sin u 1 sin sin 1.6 Laplacian of a scala 2 s u 1 u i sin 1 u i z. 14 u i The Laplacian is fomed fom the divegence of a gadient opeato: = 2. The Laplacian of of a scala is a scala quantit. The foms of the diffeential Laplacian opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates Clindical pola coodinates 2 s = 1 Spheical pola coodinates 2 s = s 2 s = 2 s 2 2 s 2 2 s s 1 2 s s sin 1.7 Laplacian of a vecto u sin s 1 2 sin The Laplacian of a vecto is a vecto quantit. The foms of the diffeential Laplacian opeato depend on the paticula geomet of inteest. Below these foms ae povided in ectangula clindical pola and spheical pola coodinates. Rectangula coodinates The vecto is given b u = u i u i u z i z so u is given b: 1 u 1 15 u i. 4

5 u = 2 u 2 2 u 2 2 u z 2 2 u 2 2 u 2 2 u z 2 2 u 2 i 2 u 2 2 u z 2 i i z. 19 Clindical pola coodinates The vecto is given b u = u i u i u z i z so u is given b: u = [ ] 1 u [ ] 1 u u u u z u z 2 2 u 2 2 u 2 2 u 2 2 u 2 i i i z. 20 Spheical pola coodinates The vecto is given b u = u i u i u i so u is given b: u = u 1 2 sin u sin 2 2 u 2 u 2 2cot 2 u 2 u 2 i sin u 1 2 sin u sin 2 u sin 2 u 2 cos u 2 sin 2 i u 1 2 sin u sin 2 u 2 sin 2 cos u 2 sin sin sin 2 2 u 2 i 2 u 2 i 1 2 u 2 sin sin 2 u i i. 21 5

6 1.8 Vecto identities The elationships below ae valid fo an coodinate sstem and fo an scala s vecto fields u u 1 and u 2 and tenso T. s = 0 22 u = 0 23 u = u u 24 su = s u s u 25 st = s T s T 26 T u = T : u u T 27 si : u = s u 28 u 1 u 2 = u 1 u 2 u 2 u 1 29 u 1 u 2 = u 2 u 1 u 1 u 2 u 2 u 1 u 1 u Gauss divegence theoem The following elationships ae valid fo an vecto u and an tenso T. udv = n uds 31 V V TdV = S S n TdS 32 whee n is the oute unit nomal to an element ds of the suface S of a volume V. 6

7 2 Mass consevation continuit equations fo an incompessible fluid 2.1 Vecto fom whee u is the velocit vecto. 2.2 Catesian coodinates u = 0 33 Fo velocit vecto u = u i u i u z i z u is given b u u 2.3 Clindical pola coodinates Fo velocit vecto u = u i u i u z i z u is given b 1 u 1 u 2.4 Spheical pola coodinates Fo velocit vecto u = u i u i u i u is given b 1 2 u 2 1 u sin 1 u sin sin = = =

8 3 Momentum consevation equations fo an incompessible fluid 3.1 Vecto fom u t u u = g σ 37 whee t is time u is the velocit vecto σ is the stess tenso is the densit and g is the gavitational acceleation vecto. 3.2 Catesian coodinates Fo the following quantities: Velocit vecto u = u i u i u z i z ; Gavitational acceleation vecto g = g i g i g z i z ; Total stess tenso σ = σ i i σ i i σ z i i z σ i i σ i i σ z i i z σ z i z i σ z i z i σ zz i z i z the momentum consevation equations ae given b u t u u u u u z u t u u u u u z uz t u u u z u = g σ σ σ z 38 u = g σ σ σ z 39 = g z σ z σ z σ zz Clindical pola coodinates Fo the following quantities: Velocit vecto u = u i u i u z i z ; Gavitational acceleation vecto g = g i g i g z i z ; Total stess tenso σ = σ i i σ i i σ z i i z σ i i σ i i σ z i i z σ z i z i σ z i z i σ zz i z i z 8

9 the momentum consevation equations ae given b u t u u 1 u u 1 u 2 u u z = g 1 u t u u 1 u u 1 u u u u z uz t u 1 u u z = g z 1 σ 1 σ = g 1 2 σ 2 1 σ σ σ z 41 σ z 42 σ z 1 σ z σ zz Spheical pola coodinates Fo the following quantities: Velocit vecto u = u i u i u i ; Gavitational acceleation vecto g = g i g i g i ; Total stess tenso σ = σ i i σ i i σ i i σ i i σ i i σ i i σ i i σ i i σ i i the momentum consevation equations ae given b u t u u 1 u u 1 sin u u φ φ σ 1 sin σ sin 1 sin u 2 u φ 2 = g σ φ φ σ σ φφ 44 u t u u 1 u u 1 sin u u φ φ 1 u u cot u φ 2 = g σ 1 σ sin 1 σ φ sin sin φ σ cot σ φφ 45 uφ t u u φ 1 u u φ 1 sin u u φ φ φ 1 u φu cot u u φ = g φ σ φ 1 σ φ 1 σ φφ sin φ σ φ 2 cot σ φ. 46 9

10 4 Stess ate of stain voticit and the constitutive elation fo Newtonian fluids 4.1 Rate of stain The ate of stain tenso e fo an incompessible fluid is given b e = 1 2 Note that e is a smmetic tenso Catesian coodinates u u T. 47 The Catesian components of e fo velocit components u u u z in z diections ae e e e z e = e e e z. 48 e z e z e zz These component ae given b e = e = 1 2 e = u u u e z = e z = 1 2 e = u e z = e z = 1 2 e zz = 49 u 50 u u z. 51 Note that e = e e z = e z and e z = e z since e is smmetic Clindical pola coodinates The e components fo velocit components u u u z in diections z ae These component ae given b e z = e z = 1 2 e = u e = 1 u e = e = 1 2 e e e z e e e z e z e z e zz u u e = 1 e z = e z = 1 2 u e zz = 53 u u z u Note that e z = e z e = e and e z = e z since e is smmetic. 10

11 4.1.3 Spheical pola coodinates The e components fo velocit components u u u in diections ae These component ae given b e = u e = e = 1 2 e = 1 e = e e e e e e e e e u u e = 1 sin 1 u u u e = e = 1 2 e = e = u u u 1 u sin u cot 57 u 58 1 u 1 u sin u cot. 59 Note that e = e e = e and e = e since e is smmetic. 4.2 Stess The total stess σ is given b whee p is pessue I = stess tenso σ = pi τ 60 is the unit mati and τ is the deviatoic 4.3 Constitutive elation Fo Newtonian incompessible fluids the constitutive elation fo τ is given b the following vecto fom epession τ = 2µe 61 whee µ is the dnamic viscosit and e is the ate of stain tenso see above. 4.4 Components of stess Catesian coodinates The Catesian components of σ ae σ = σ σ σ z σ σ σ z σ z σ z σ zz

12 These components ae given b σ = p τ = p 2µ u σ = p τ = p 2µ u σ zz = p τ zz = p 2µ u σ = σ = τ = τ = µ u u σ z = σ z = τ z = τ z = µ u z uz σ z = σ z = τ z = τ z = µ u Clindical pola coodinates The components of σ in clindical pola coodinates ae σ σ σ z σ = σ σ σ z. 64 σ z σ z σ zz These components ae σ = p τ = p 2µ u 1 σ = p τ = p 2µ u u σ zz = p τ zz = p 2µ σ = σ = τ = τ = µ u 1 u u σ z = σ z = τ z = τ z = µ 1 uz σ z = σ z = τ z = τ z = µ u Spheical pola coodinates. 65 The components of σ in spheical pola coodinates ae σ σ σ σ = σ σ σ. 66 σ σ σ 12

13 These components ae σ = p τ = p 2µ u 1 u σ = p τ = p 2µ u 1 u σ = p τ = p 2µ sin u u cot σ = σ = τ = τ = µ u 1 u sin u σ = σ = τ = τ = µ sin 1 u sin 1 u σ = σ = τ = τ = µ sin u

14 4.5 Voticit Vecto fom The voticit is given b the following vecto fom epession Catesian coodinates ω = u. 68 The ω = ω i ω i ω z i z components in catesian coodinates fo a velocit vecto u = u i u i u z i z ae uz ω = u u ω = u z u ω z = u Clindical pola coodinates The ω = ω i ω i ω z i z components in clindical pola coodinates fo a velocit vecto u = u i u i u z i z ae ω = 1 u ω = u ω z = 1 u 1 u Spheical pola coodinates The ω = ω i ω i ω i components in spheical pola coodinates fo a velocit vecto u = u i u i u i ae ω = 1 sin u sin u ω = 1 u sin 1 u Rotation tenso ω = 1 u 1 u. 72 It is also useful to define the otation tenso Γ which has the following vecto fom epession Γ = 1 u u T It is possible to elate the Γ components to the ω components. We illustate this in Catesian coodinates Γ = Γ = 1 2 ω z Γ z = Γ z = 1 2 ω Γ z = Γ z = 1 2 ω. 74 Note that Γ is not smmetic unlike the ate of stain tenso e. 14

15 5 The Navie-Stokes equations fo an incompessible Newtonian fluid 5.1 Vecto fom u t u u = p g µ 2 u Catesian coodinates u t u u u u u u z u t u u u u u z uz t u u u z 5.3 Clindical coodinates = g p 2 µ u 2 2 u 2 2 u 2 u = g p 2 µ u 2 2 u 2 2 u 2 = g z p 2 µ u z 2 2 u z 2 2 u z u t u u 1 u u 1 u 2 u u z = g p 1 µ u 1 2 u u 2 2 u 2 79 u t u u 1 u u 1 u u u u z = g 1 1 µ u 1 2 u u 2 2 u 2 p 80 uz t u 1 u 1 µ u z 1 2 u z u z 2 = g z p

16 5.4 Spheical coodinates u t u u 1 u u 1 sin u u u u = g p 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin u 2 2 cot 2 u 2 u 2 82 sin u t u u 1 u 1 µ 2 2 u 1 2 u µ 2 sin 2 2 u sin sin u u 1 u u cot sin u 2 2 u 1 2 sin 2 u 2 cos 2 sin 2 u 2 = g 1 p u 83 u t u u 1 u u = g 1 sin µ 1 2 sin 2 p µ 1 sin u u 1 u u cot u u u 1 2 sin u sin 2 u sin 2 u 2 u 2 sin 2 cos 2 sin 2 u

17 6 Renolds-aveaged Navie-Stokes equations 6.1 Catesian coodinates u u u t u u u u u z u u u t u u u u u z u u uz t u u u z u z u u = g p u u u u z u = g p u u u u z = g z p u z u u z u z = µ u 2 2 u 2 2 u µ u 2 2 u 2 2 u µ u z 2 2 u z 2 2 u z

18 6.2 Clindical coodinates 1 u 1 u = 0 89 u t u u 1 u u 1 u 2 u u z = g p 1 µ u 1 2 u u 2 2 u 2 u u u u u z u 1 u u 90 u t u u 1 u u 1 u u u u z = g 1 1 µ u 1 2 u u 2 2 u 2 u u u u u zu p 2 u u 91 uz t u 1 u 1 µ u u z u z 1 2 u z 2 2 u u z = g z p 2 u z 2 u z u z

19 6.3 Spheical coodinates u sin sin u 1 u sin = 0 93 u t u u 1 u u 1 sin u u u u = g p 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin u 2 2 cot 2 u 2 u 2 sin 2 2 u u sin u sin u u sin u 1 u u 1 u u 94 u t u u 1 u u 1 sin u u 1 u u cot 1 µ 2 2 u 1 2 sin u sin 1 2 u µ 2 sin u sin 2 u 2 cos u 2 sin u u sin u sin u u sin u u 2 = g 1 p cot u u 95 u t u u 1 u u = g 1 sin 1 µ 3 sin p µ 2 u 2 sin sin 2 u 3 u u sin 1 sin u u 1 u u cot u u u 1 2 sin u sin 2 u 2 sin sin u u 2 cos 2 sin 2 u u u cot u u

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Chapter 7a. Elements of Elasticity, Thermal Stresses

Chapter 7a. Elements of Elasticity, Thermal Stresses Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

Course Reader for CHEN 7100/7106. Transport Phenomena I

Course Reader for CHEN 7100/7106. Transport Phenomena I Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name: Contents Peface i 0.1 Nomenclatue........................................

Διαβάστε περισσότερα

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x STEADY, INVISCID ( potential flow, iotational) INCOMPRESSIBLE constant Benolli's eqation along a steamline, EQATION MOMENTM constant is a steamline the Steam Fnction is sbsititing into the continit eqation,

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture VI: Tensor calculus

Lecture VI: Tensor calculus Lectue VI: Tenso calculus Chistophe M. Hiata Caltech M/C 350-7, Pasadena CA 925, USA (Dated: Octobe 4, 20) I. OVERVIEW In this lectue, we will begin with some examples fom vecto calculus, and then continue

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how

Διαβάστε περισσότερα

arxiv: v1 [math-ph] 15 Nov 2010

arxiv: v1 [math-ph] 15 Nov 2010 Recuence and diffeential elations fo spheical spinos Rados law Szmytkowski axiv:1011.3433v1 [math-ph] 15 Nov 010 Atomic Physics Division, Depatment of Atomic Physics and Luminescence, Faculty of Applied

Διαβάστε περισσότερα

Time dependent Convection vs. frozen convection approximations. Plan

Time dependent Convection vs. frozen convection approximations. Plan Time epenent onvection vs. fozen convection appoximations A. Gigahcène, M-A. Dupet an. Gaio oto Nov 006 lan Intouction Fozen onvection Appoximations Time Depenent onvection onclusion Intouction etubation

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ Γιουνανλής Παναγιώτης Επιβλέπων: Γ.Βουγιατζής Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Chapter 5 Stress Strain Relation

Chapter 5 Stress Strain Relation Chapter 5 Stress Strain Relation 5.1 General Stress Strain sstem Parallelepiped, cube F 5.1.1 Surface Stress Surface stresses: normal stress shear stress, lim A 0 ( A ) F A lim F lim A 0 A A 0 F A lim

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

1 Full derivation of the Schwarzschild solution

1 Full derivation of the Schwarzschild solution EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα