Homework 8 Model Solution Section

Σχετικά έγγραφα
Spherical Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Answer sheet: Third Midterm for Math 2339

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Solution to Review Problems for Midterm III

Areas and Lengths in Polar Coordinates

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( y) Partial Differential Equations

D Alembert s Solution to the Wave Equation

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CRASH COURSE IN PRECALCULUS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Inverse trigonometric functions & General Solution of Trigonometric Equations

Parametrized Surfaces

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Rectangular Polar Parametric

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 String with massive end-points

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and Determinants

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Homework 3 Solutions

Trigonometric Formula Sheet

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometry 1.TRIGONOMETRIC RATIOS

Section 8.2 Graphs of Polar Equations

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Example Sheet 3 Solutions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2 Composition. Invertible Mappings

ADVANCED STRUCTURAL MECHANICS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Approximation of distance between locations on earth given by latitude and longitude

ST5224: Advanced Statistical Theory II

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

EE512: Error Control Coding

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The Simply Typed Lambda Calculus

Reminders: linear functions

Math221: HW# 1 solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Differential equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Differentiation exercise show differential equation

Quadratic Expressions

derivation of the Laplacian from rectangular to spherical coordinates

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Section 9.2 Polar Equations and Graphs

Geodesic Equations for the Wormhole Metric

Section 7.6 Double and Half Angle Formulas

Tutorial Note - Week 09 - Solution

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solution Series 9. i=1 x i and i=1 x i.

10.7 Performance of Second-Order System (Unit Step Response)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Strain gauge and rosettes

Srednicki Chapter 55

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Other Test Constructions: Likelihood Ratio & Bayes Tests

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Numerical Analysis FMN011

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

11.4 Graphing in Polar Coordinates Polar Symmetries

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π 2, π 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Math 6 SL Probability Distributions Practice Test Mark Scheme

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Every set of first-order formulas is equivalent to an independent set

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Problem Set 3: Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Statistical Inference I Locally most powerful tests

Transcript:

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx + 4y) 0t + 4t ) sin 5t 4 + 4 ) t 14.5.5 Use the Chain Rule to find dw where w xe y/z, x t, y 1 t, z 1 + t. dw w dx + w dy y + w dz e y/z t + x z ey/z 1) + xy ) z e y/z t x z xy ) ) z e y/z t t 1 + t t 1 t) 1 + t) e 1 t)/1+t) t1 + t) t 1 + t) t ) 1 t) 1 + t) e 1 t)/1+t) t + 5t + 8t ) 1 + t) e 1 t)1+t) 14.5.10 Use the Chain Rule to find and s t where z e x+y, x s t, y t s. 1

MATH 004 Homework Solution s s + y y s e x+y 1 t + ex+y 1 t t ) s e s t + t s t ) 1 s t t ) s e x+y t t + y y t e x+y s ) t + e x+y 1 s t + ) e s t + t s s s s t + ) e x+y s 14.5.11 Use the Chain Rule to find and s t where z e r cos θ, r st, θ s + t. s r r s + θ θ s e r cos θ t + e r s sin θ) t s + t cos θ t cos ) s + t s ) s + t sin s + t ) s s + t sin θ ) e r e st t r r t + θ θ t e r cos θ s + e r t sin θ) s s + t cos θ s cos ) s + t t ) s + t sin s + t ) t s + t sin θ ) e r e st 14.5. Use the Chain Rule to find w r, w θ where when r, θ π. w xy + yz + zx, x r cos θ, y r sin θ, z rθ, w r w r + w y y r + w r y + z) cos θ + x + z) sin θ + y + x)θ

MATH 004 Homework Solution r, θ π x cos π 0, y sin π, z π π w + π) cos π r + 0 + π) sin π + + 0)π π w r r,θ π w θ r,θ π w θ + w y y θ + w θ y + z) r sin θ) + x + z)r cos θ + y + x)r + π) sin π ) + 0 + π) cos π + + 0) π 14.5.6 Use the Chain Rule to find α, β, γ where when α 1, β, γ 1. u xe ty, x α β, y β γ, t γ α, α α + y y α + t t α e ty αβ + xte ty 0 + xye ty γ αβ + xyγ )e ty α 1, β, γ 1 x 1), y 1 4, t 1 1) 1 α 1) + 4 1 )e 1 4 4e 4 α 1,β,γ1 β β + y y β + t t β e ty α + xte ty βγ + xye ty 0 α + xtβγ)e ty β 1) + 1) 1)e 1 4 7e 4 α 1,β,γ1 γ γ + y y γ + t t γ e ty 0 + xte ty β + xye ty γα xtβ + xyγα)e ty γ 1) + 4 1 1))e 1 4 4e 4 α 1,β,γ1 14.5.9 The length l, wih w, and height h of a box change with time. At a certain instant the dimensions are l 1 m and w h m, and l and w are increasing at a rate of m/s while h is decreasing at a rate of m/s. At that instant find the rates at which the following quantities are changing.

MATH 004 Homework Solution a) The volume: From the conditions above, dv Volume V lwh l0) 1, w0), h0), dl dw, dh,. dv V dl l + V dw w + V h wh dl +lh dw b) The surface area: dh whdl + lhdw dh + lw +lw dh +1 +1 ) 6 m /s) Surface area A lw + lh + wh da A dl l + A dw w + A dh w + h)dl + l + h)dw + l + w)dh h da w + h) dl + l + h) dw + l + w) dh + ) + 1 + ) + 1 + ) ) 10 m /s) c) The length of a diagonal: dd Diagonal D l + w + h dd D dl l + D w dw + D dh h l dl l + w + h + w dw l + w + h + h dh l + w + h l dl w dw l + w + h + h dh l + w + h + l + w + h 1 1 + + + 1 + + + ) 0 m/s) 1 + + 14.5.4 One side of a triangle is increasing at a rate of cm/s and a second side is decreasing at a rate of cm/s. If the area of the triangle remains constant, at what rate does the angle between the sides change when the first side is 0 cm long, the second side is 0 cm, and the angle is π 6? Let x be the length of the first side, y be the length of the second side, and let θ be the angle between them. then from the assumption, x0) 0, y0) 0, θ0) π 6, dx dy,. The area of the triangle is A : 1 xy sin θ. 4

MATH 004 Homework Solution Because the area is constant, da 0. By the Chain Rule, 0 da A dx + A dy y + A dθ y dx sin θ + x dy sin θ + 1 dθ xy cos θ 0 sin π 6 + 0 sin π 6 ) + 1 0 0 cos π dθ 6 5 + 150 dθ dθ 5 00 1 1 rad/s) 14.5.45 If z fx, y), where x r cos θ and y r sin θ, a) find and r θ. r r + y y r cos θ + y sin θ b) Show that θ θ + y y ) + θ ) y ) cos θ + y sin θ + 1 r ) cos θ + y + 1 ) r r sin θ ) cos θ + sin θ ) + r sin θ) + y r cos θ ) + 1 r r ). θ r sin θ) + ) y r cos θ ) sin θ cos θ sin θ + y ) y r sin θ cos θ + r cos θ) y ) cos θ sin θ cos θ sin θ)+ sin θ + cos θ ) y y ) ) + y 14.6.6 Find the directional derivative of fx, y) e x cos y at 0, 0) in the direction indicated by the angle θ π 4. Direction vector u: cos π 4, sin π 4 1 1, f f x, f y e x cos y, e x sin y 5

MATH 004 Homework Solution f0, 0) e 0 cos 0, e 0 sin 0 1, 0 D u f0, 0) f0, 0) u 1, 0 1 1, 1 14.6.8 a) Find the gradient of fx, y) y x. b) Evaluate the gradient at P 1, ). f f x, f y y x, y x f1, ) 1, 4, 4 1 c) Find the rate of change of f at P in the direction of the vector u 1 i+ 5j). D u f1, ) f1, ) u 4, 4 5, 8 + 4 5 14.6.15 Find the directional derivative of fx, y, z) xe y + ye z + ze x at the given point 0, 0, 0) in the direction of v 5, 1,. The unit vector to the direction of v: v 5 + 1 + ) 0 u v v 5 1,, 0 0 0 f f x, f y, f z e y + ze x, xe y + e z, ye z + e x f0, 0, 0) e 0 + 0e 0, 0e 0 + e 0, 0e 0 + e 0 1, 1, 1 D u f0, 0, 0) f0, 0, 0) u 1, 1, 1 5 1,, 4 0 0 0 0 14.6.4 Find the maximum rate of change of fx, y, z) x + y z direction in which it occurs. at 1, 1, 1) and the f f x, f y, f z 1 z, 1 z, x + y z f1, 1, 1) 1 1, 1 1. 1 + 1 1, 1, 1) The maximum rate of change occurs to the direction of f1, 1, 1) 1, 1,. The unit vector in this direction is 1, 1,.) In this case, the maxi- 6 6 6 mum rate of change is f1, 1, 1) 1) + 1) + ) 6. 6

MATH 004 Homework Solution 14.6.5 Let f be a function of two variables that has continuous partial derivatives and consider the points A1, ), B, ), C1, 7), and D6, 15). The directional derivative of f at A in the direction of the vector AB is and the directional derivative at A in the direction of AC is 6. Find the directional derivative of f at A in the direction of the vector AD. AB, 1,, 0 The unit vector u to the direction of AB is i. AC 1, 7 1, 0, 4 The unit vector v to the direction of AC is j. If f1, ) a, b, D u f1, ) f1, ) u a, b i a 6 D v f1, ) f1, ) u a, b j b f1, ), 6 AD 6, 15 1, 5, 1 AD 5 + 1 169 1 The unit vector w to the direction of AD is 5 1, 1 1. D w f1, ) f1, ) w, 6 5 1, 1 1 7 1 14.6.4 a) Find an equation of the tangent plane to xyz 6 at,, 1). A point on the tangent plane:,, 1) fx, y, z) xyz f f x, f y, f z yz, xz, xyz f,, 1) 1, 1, 1,, 1 A normal vector:,, 1 An equation of the tangent plane: x ) + y ) + 1z 1) 0 or x + y + 1z 4 7

MATH 004 Homework Solution b) Find equations of the normal line to xyz 6 at,, 1). A point on the normal line:,, 1) A direction vector: f,, 1),, 1 Symmetric equations of the normal line: x y z 1 1 14.6.51 Show that the equation of the tangent plane to the ellipsoid x a + y b + z c 1 at the point x 0, y 0, z 0 ) can be written as A point on the plane: x 0, y 0, z 0 ) xx 0 a + yy 0 b + zz 0 c 1. fx, y, z) x a + y b + z c f f x, f y, f z x a, y b, z c fx 0, y 0, z 0 ) x 0 a, y 0 b, z 0 c A normal vector: fx 0, y 0, z 0 ) x 0 a, y 0 b, z 0 c or x 0 a, y 0 b, z 0 c An equation of the tangent plane: x 0 a x x 0) + y 0 b y y 0) + z 0 c z z 0) 0 x 0 x a x 0 a + y 0y b y 0 b + z 0z c z 0 c 0 xx 0 a + yy 0 b + zz 0 c x 0 a + y 0 b + z 0 c Because x 0, y 0, z 0 ) is on the ellipsoid, xx 0 a + yy 0 b + zz 0 c 1. 14.6.55 Are there any points on the hyperboloid x y z 1 where the tangent plane is parallel to the plane z x + y? The tangent plane at x 0, y 0, z 0 ) is parallel to the plane z x + y when the normal vector fx 0, y 0, z 0 ) is parallel to 1, 1, 1, or equivalently, fx 0, y 0, z 0 ) c 1, 1, 1 for some constant c. fx, y, z) x y z f f x, f y, f z x, y, z fx 0, y 0, z 0 ) x 0, y 0, z 0 c 1, 1, 1 8

MATH 004 Homework Solution x 0 c, y 0 c, z 0 c x 0 c, y 0 c, z 0 c Because x 0, y 0, z 0 ) is on the hyperboloid, 1 x 0 y 0 z 0 c ) c ) c ) c 4 The right hand side is always non-positive. Therefore there is no solution and there is no such point. 14.6.59 Where does the normal line to the paraboloid z x + y at the point 1, 1, ) intersect the paraboloid a second time? fx, y, z) x + y z 0 f x, y, 1 f1, 1, ),, 1 A direction vector:,, 1 A point on the line: 1, 1, ) A parametric equation of the normal line: rt) 1, 1, + t,, 1 1 + t, 1 + t, t frt)) 1 + t) + 1 + t) t) 0 1 + 4t + 4t ) + t 0 8t + 9t 0 t 0, 9 8 Another intersection point: r 9 8 ) 5 4, 5 4, 5 8 14.6.6 Show that the pyramids cut off from the first octant by any tangent planes to the surface xyz 1 at points in the first octant must all have the same volume. fx, y, z) xyz f yz, xz, xy fx 0, y 0, z 0 ) y 0 z 0, x 0 z 0, x 0 y 0 The tangent plane at x 0, y 0, z 0 ): y 0 z 0 x x 0 ) + x 0 z 0 y y 0 ) + x 0 y 0 z z 0 ) 0 xy 0 z 0 x 0 y 0 z 0 + yx 0 z 0 x 0 y 0 z 0 + zx 0 y 0 x 0 y 0 z 0 0 xy 0 z 0 + yx 0 z 0 + zx 0 y 0 9

MATH 004 Homework Solution because x 0 y 0 z 0 1. The intersection of tangent plane and x-axis: The intersection with y-axis: y z 0 x y 0 z 0 x z 0 y x 0 z 0 The intersection with z-axis: x y 0 z x 0 y 0 The area of the base of the pyramid: 1 y 0 z 0 x 0 z 0 9 x 0 y 0 z 0 9 z 0 The height of the pyramid: The volume of the pyramid: x 0 y 0 1 area of the base height 1 9 z 0 x 0 y 0 9 x 0 y 0 z 0 9 Therefore it is independent from the choice of a point x 0, y 0, z 0 ) on the surface. 10