Kaon physics at KLOE. M.Palutan. Frascati for the KLOE collaboration Moriond-EW 2006

Σχετικά έγγραφα
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Hadronic Tau Decays at BaBar

LIGHT UNFLAVORED MESONS (S = C = B = 0)

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Approximation of distance between locations on earth given by latitude and longitude

Σύντομο Βιογραφικό Σημείωμα

ST5224: Advanced Statistical Theory II

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Three coupled amplitudes for the πη, K K and πη channels without data

Study of CP Violation at BABAR

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Physics of CP Violation (III)

Precise measurement of hadronic tau-decays

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solar Neutrinos: Fluxes

6.3 Forecasting ARMA processes

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Presentation Structure

Repeated measures Επαναληπτικές μετρήσεις

Light Hadrons and New Enhancements in J/ψ Decays at BESII

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods

CE 530 Molecular Simulation

the total number of electrons passing through the lamp.

Nuclear Physics 5. Name: Date: 8 (1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

Variational Wavefunction for the Helium Atom

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Probing Anomalous Top-Gluon Couplings at Colliders

Homework 3 Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Abstract Storage Devices

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Αναζητώντας παράξενα σωµατίδια στο ALICE

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval

Math 6 SL Probability Distributions Practice Test Mark Scheme

Section 9.2 Polar Equations and Graphs

Dr. D. Dinev, Department of Structural Mechanics, UACEG

EE512: Error Control Coding

Solutions to Exercise Sheet 5

Supplementary Appendix

Areas and Lengths in Polar Coordinates

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Large β 0 corrections to the energy levels and wave function at N 3 LO

5.4 The Poisson Distribution.

Space-Time Symmetries

Μηχανική Μάθηση Hypothesis Testing

Math221: HW# 1 solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Statistical Inference I Locally most powerful tests

Strain gauge and rosettes

Derivation of Optical-Bloch Equations

What happens when two or more waves overlap in a certain region of space at the same time?

Example Sheet 3 Solutions

The challenges of non-stable predicates

Capacitors - Capacitance, Charge and Potential Difference

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Second Order RLC Filters

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

The Simply Typed Lambda Calculus

Matrices and Determinants

Creative TEchnology Provider

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

is like multiplying by the conversion factor of. Dividing by 2π gives you the

AdS black disk model for small-x DIS

; +302 ; +313; +320,.

Higher Derivative Gravity Theories

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Electronic Supplementary Information:

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Biostatistics for Health Sciences Review Sheet

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Monolithic Crystal Filters (M.C.F.)

Numerical Analysis FMN011

Risk! " #$%&'() *!'+,'''## -. / # $

Sampling Basics (1B) Young Won Lim 9/21/13

ˆˆ ŸŒ ƒ ˆŸ CP- ˆŒŒ ˆˆ

Transcript:

Kaon physics at KLOE M.Palutan Palutan,, INFN/Frascati Frascati for the KLOE collaboration Moriond-EW 2006 1

The DAΦNE e + e collider Collisions at c.m. energy around the φ mass: s ~ 1019.4 MeV Angle between the beams at crossing: α crs 12.5 mrad Residual laboratory momentum of φ: p φ ~ 13 MeV/c Cross section for φ production @ peak: σ φ ~ 3.1 µb Grand total (2001/5): L = 2.5 fb -1 L peak =1.5 10 32 cm -2 s -1 Results presented in this talk from 2001/2 data: L = 450 pb -1 2 KLOE plots: end 2005

K physics at KLOE - tagging The φ decay at rest provides monochromatic and pure beam of kaons pure J PC = 1 state K S, K + φ K L, K BR 1 2 ( K, p K, p K, p K, p ) L S L S φ decay mode K + K 49.1% K S K L 34.1% Tagging: observation of K S,L signals presence of K L,S ; K + signals K K S beam unique!! absolute branching ratio measurement: BR = (N sig /N tag )(1/ε sig ) Kaon momentum is measured with 1 MeV resolution (e.g. p(k L ) = p(φ)- p(k S )) 3 K + K 1.5 10 6 /pb -1 p* = 127 MeV/c λ ± = 95 cm K L K S 10 6 /pb -1 p* = 110 MeV/c λ S = 6 mm; λ L = 3.4 m

The KLOE detector Large cylindrical drift chamber 4m, 3.75m length, carbon-fiber He/IsoC4H10 90/10 σp/p = 0.4 % (tracks with θ > 45 ) σxhit = 150 µm (xy), 2 mm (z) σxvertex ~1 mm Lead/scintillating-fiber calorimeter σe/e = 5.7% / E(GeV) σt = 54 ps / E(GeV) 50 ps σl(γγ) ~ 2 cm (π0 from KL π+π π0) Superconducting coil: 0.52 T field 4

Outline CPT test in semileptonic K S -K L decays Measurement of K S πeν charge asymmetry A S CP/CPT test from unitarity UL on BR(K S π 0 π 0 π 0 ) A S BR(K L π + π ) preliminary V us and CKM unitarity BR(K S πeν) and form factor slope BR(K L πlν) and τ L K L e3 form factor slopes BR(K ± π 0 l ± ν) and τ ± BR(K + µ + ν) preliminary 5

K S πeν: CPT test Sensitivity to CPT violating effects through charge asymmetry _ Γ(K S,L π - e + ν) Γ(K S,L π + e - ν) A S,L = _ Γ(K S,L π - e + ν) + Γ(K S,L π + e - ν) A S = 2(Re ε + Re δ Re y + Re x ) A L = 2(Re ε Re δ Re y Re x ) CP CPT in mixing CPT in decay ΔS ΔQ and CPT A S A L 0 implies CPT δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 6 A L = (3.322 ± 0.058 ± 0.047) 10-3, KTeV 2002

K S πeν: BR and A S TOF e/π ID, fit to E miss p miss spectrum Normalize to π + π counts Branching ratio BR(πeν) = (7.046±0.077±0.049 ) 10 4 signal fractional error: 1.3% = 1.1% stat 0.7% syst Charge asymmetry A S = ( 1.5 ± 9.6 ± 2.9 ) 10 3 bkg first measurement δa S ~ 3 10-3 with 2.5 fb -1 K Se3 form factor slope λ + = ( 33.9 ± 4.1 ) 10 3 first meas., compatible with K L 7 hep-ex/0601026, accepted by PLB

K S πeν: CPT test 1) Re x : CPT viol. and ΔS ΔQ A S A L = 4 ( Re x + Re δ ) A L KTeV σ=0.75 10 4 Re δ CPLEAR σ= 3.4 10 4 Re Re x = (( 0.8 ± 2.5) 10 3 3 Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, σ= 1.3 10 2 ) 2) Re y: CPT viol. and ΔS=ΔQ A S +A L = 4 (Re ε Re y) Comparable Re Re y = (( 0.4 0.4 ± 2.5) 10 3 3 Re ε from PDG not assuming CPT with best result (CPLEAR from unitarity, σ= 3.1 10 3 ) 8

CPT test: the Bell-Steinberger relation Measurements of K S K L observables can be used for the CPT test from unitarity : 1 (1 + i tan φ SW ) [Re ε i Im δ] = A*(K S f ) A(K L f ) Σ Γ f S = Σ f α f α kl3 = 2τ S /τ L B(K L l3) [Re ε Re y i( Im δ + Im x + )] = 2τ S /τ L B(K L l3) [(A S +A L )/4 i( Im δ + Im x + )] α + = η + Β(K S π + π ) α 00 = η 00 Β(K S π 0 π 0 ) α + γ = η + Β(K S π + π γ) α + 0 = τ S /τ L η + 0 Β(K L π + π π 0 ) α 000 = τ S /τ L η 000 Β(K L π 0 π 0 π 0 ) 9 (more details from M.Testa)

CPT test: result Im δ Im δ Re ε KLOE preliminary: Re ε = (160.2 ± 1.3) 10 5 Im δ =(1.2 ± 1.9) 10 5 CPLEAR: Re ε = (164.9 ± 2.5) 10 5 Im δ =(2.4 ± 5.0) 10 5 10 - Uncertainty on Imδ is now dominated by φ + and φ 00 - Semileptonic sector contributes by ~ 10%

Unitarity test of CKM matrix: V us, V us /V ud Unitarity test from 1 st row: V ud 2 + V us 2 + V ub 2 ~ V ud 2 + V us 2 1 Δ Can test if Δ = 0 at 10-3 level: from super-allowed nuclear β-decays: 2 V ud δv ud = 0.0005 from semileptonic kaon decays: 2 V us δv us = 0.0009 Extract V us from K l3 decays Γ(K πlν(γ)) V us f + (0) 2 I(λ t ) S EW (1 + δ ΕΜ + δ SU(2) ) theory uncertainty: 0.8% on f + (0) Extract V us / V ud from Γ(K ± µν(γ))/γ(π ± µν(γ)) Γ(π µν(γ)) V ud 2 f π 2 1 + αc π Γ(K µν(γ) V us 2 f K 2 1 + αc K theory uncertainty: 1.3% on f K /f π 11 KLOE can measure all experimental inputs: BR, τ, λ

BR(K L πlν) and τ L K L πeν, πµν: K L vertex reconstructed in DC Fit to p miss E miss spectrum (7% of the sample) Absolute BR: (N sig /N tag ) 1/ε sig the error on geometric acceptance is dominated by τ L Using the constraint BR(K L ) = 1: min(p miss E miss ) in πµ or µπ hyp. BR(K L πeν) = 0.4007 ± 0.0006 stat ± 0.0014 syst BR(K L πµν) = 0.2698 ± 0.0006 stat ± 0.0014 syst τ L = (50.72 ± 0.17 stat ± 0.33 syst ) ns 3.8 10 3 5.6 10 3 7.3 10 3 precision 12 PLB 632 (2006)

τ L from K L π 0 π 0 π 0 Excellent lever arm for lifetime measurement (P K = 110 MeV) K L momentum known from tag Uniform reconstruction efficiency with respect to L K 10 2 Events/0.3 ns 6-24.8 ns 40-165 cm 0.37 λ L τ L = 50.92 ± 0.17 stat ± 0.25 syst ns PLB 626 (2005) σ rel ~ 5.9 10 3 L/βγc (ns) 13 Average with result from K L BR s: τ L = 50.84 ± 0.23 ns σ rel ~ 4.5 10 3 Vosburg, 72 τ L = 51.54 ± 0.44 ns

K Le3 form factor slopes Momentum transfer t= (p K p π ) 2 is measured Fit to t-spectrum with different hypothesis on t- dependence of the form factor hep-ex/0601038 accepted by PLB Linear: 1 + λ + t λ + = (28.6 ± 0.5 ± 0.4) 10 3 Quadratic: 1 + λ + t/m π+ + 1/2 λ + (t/m π+ ) 2 λ + = (25.5 ± 1.5 ± 1.0) 10 3 λ + = ( 1.4 ± 0.7 ± 0.4) 10 3 ρ(λ +, λ + ) = 0.95 Pole model: M V2 /(M V2 t), Taylor exp. λ + =(m π /M V ) 2, λ + =2 λ 2 + m V = (870 ± 7) MeV Quadratic (*) ISTRA+ m π± /m π0 correction 14 Phase space integral I(λ) depends on the parameterization: I Pole - I Quad KLOE 0.5 10 3 KTeV 6.0 10 3 Pole model

K ± lifetime Tag events with K ± µ ± ν decay Identify a kaon decay vertex on the opposite side 1 st method: obtain τ ± from the K decay length Measure the kaon decay length taking into account the energy loss: τ K = i ΔL i /(β i γ i c) Tag(Kµ2) τ ± = 12.367 ± 0.044 stat ± 0.065 syst ns preliminary 2 nd method: obtain τ ± from the K decay time Use only K ± π ± π 0 decays Measure the kaon decay time: τ K = (t γ R γ /c)/γ K, using the π 0 clusters 15

BR(K ± π 0 l ± v) K + π 0 l + ν decays are tagged by K µ ν and K π π 0 (and viceversa) K ± π 0 e ± ν and K ± π 0 µ ± ν are separated by fitting the lepton mass spectrum, obtained from TOF: t decay K = t lept -L lept /β(m lept )c = t γ -L γ /c Ev/(14MeV) 2 K ± e3 K ± µ3 K nucl.int. Kππ 0 π 0 Kππ 0 Preliminary results: BR(K ± e3 ) = (5.047 ± 0.019 stat ± 0.039 syst-stat ± 0.004 syst ) 10-2 BR(K ± µ3 ) = (3.310 ± 0.016 stat ± 0.045 syst-stat ± 0.003 syst ) 10-2 σ syst under evaluation 16

V us f + (0) from KLOE results BR τ K Le3 K Lµ3 0.4007(15) 0.2698(15) 50.84(23) ns K Se3 7.046(91)_10-4 89.58(6) ps K ± e3 K ± µ3 0.05047(46) 0.03310(40) 12.384(24) ns Slopes λ + = 0.02534(30) λ + = 0.00128(3) (Pole model: KLOE, KTeV, and NA48 ) λ 0 = 0.01587(95) (KTeV, Istra+) Unitarity band: V us f + (0) = 0.2187(22) f + (0)=0.961(8) Leutwyler and Roos 1984 V ud =0.97377(27) Marciano and Sirlin 2006 17 CKM unitarity test Δ = 0.001±0.001 χ 2 /dof = 1.9/4

BR(K + µ + ν(γ)) Tag from K µ ν Subtraction of π + π 0, π 0 l + ν background Count events in (225,400) MeV window of the momentum distribution in K rest frame BR(K + µ + ν(γ)) = 0.6366 ± 0.0009 stat. ± 0.0015 syst. 18 PLB 632 (2006)

The V us V ud plane Using f K /f π =1.198(3)( +16 5 ) MILC Coll. 2005 we get V us /V ud = 0.2294 ± 0.0026 V us = 0.2254 ± 0.0019 K l3 KLOE, using f + (0)=0.961(8) V ud = 0.97377 ± 0.00027 Marciano and Sirlin Phys.Rev.Lett.96 032002,2006 unitarity Fit of the above results: V us = 0.2246 ± 0.0016 V ud = 0.97377 ± 0.00027 P(χ 2 ) = 0.66 Fit assuming unitarity: V us = 0.2264 ± 0.0009 P(χ 2 ) = 0.23 19

Conclusions 1) KLOE impact on kaon decays made a considerable step during 2005: a) we published: UL on BR(K S π 0 π 0 π 0 ), τ L, BR(K L ), BR(K Se3 ) and A S, BR(K + µ2), K Le3 ff b) we have final results on: BR(K L π + π ), Γ(K S π + π )/Γ(K S π 0 π 0 ) c) we have preliminary results on: BR(K ± π 0 l ± ν), τ(k ± ) 2) Results on K Se3 allow to improve the present limits on CPT violation in semileptonic kaon decays 3) We improved the present limit on CPT violation through the Bell-Steinberger relation by a factor of 2.5 4) CKM matrix unitarity is tested through determination of V us from semileptonic kaon decays (5 different channels) V us /V ud from K + leptonic decay 5) KLOE data taking will stop on March 16th: L TOT ~ 2.7 fb 1 20

21 Spares slides

Tagged K L and K S beams K L crash β= = 0.22 (TOF) K S π + π K L 2π 0 K S π e + ν 22 K L tagged by K S π + π vertex at IP Efficiency ~ 70% (mainly geometrical) K L angular resolution: ~ 1 K L momentum resolution: ~ 1 MeV ~ 2 10 8 tagged K L K S tagged by K L interaction in EmC Efficiency ~ 30% (largely geometrical) K S angular resolution: ~ 1 K S momentum resolution: ~ 1 MeV ~1.5 10 8 tagged K S

K S πeν: CPT test K S πeν amplitudes π + e υ H W K 0 = a + b π e + υ H W K 0 = a * b * π e + υ H W K 0 = c + d π + e υ H W K 0 = c * d * b=d=0 if CPT holds c=d=0 if ΔS=ΔQ holds Sensitivity to CPT violating effects through charge asymmetry A S = 2(Re ε + Re δ Re y + Re x ) A L = 2(Re ε Re δ Re y Re x ) CP CPT in mixing CPT in decay ΔS ΔQ and CPT 23 δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 Re y = Re b/a Re x = Re d * /a

ΔS ΔQ ΔS = ΔQ CPT holds = Re(c /a) = Re(x + ) = K S πeν: test of ΔS=ΔQ 1 2 Γ(K S πeν) Γ(K L πeν) Γ(K S πeν) + Γ(K L πeν) SM expectation: x ~ 2-7 10-7, no ΔS ΔQ transitions at first order Re(x + ) + ) = ((-0.5 ± 3.6) 10 3 3 Factor 2 improvement w.r.t. current most precise measurement (CPLEAR, σ= 6.1 10 3 ) BR(K Le3 ) BR(K S πeν) KLOE τ(k S ) PDG τ(k L ) KLOE BR(K L πeν) KLOE 0.40 KTeV 04 KLOE 05 from KLOE BR(K S πeν) assuming ΔS = ΔQ 0.39 PDG 04 24

Γ(K S π + π (γ))/γ(k S π 0 π 0 ) Statistical abundance allows to perform 17 independent measurements with few per mill accuracy R ππ vs. running period 2.2555 ± 0.0012 stat ± 0.0021 syst-stat ± 0.0050 syst 2.5 10 3 accuracy 3 improvement respect to KLOE 2002 (2.236 ± 0.003 stat ± 0.007 statsyst ± 0.013 syst ) χ 2 /dof = 0.86 [P(χ 2 )=0.62] KLOE average: 2.2549 ± 0.0054 25 hep-ex/0601025

CPT test: inputs Im x + = (0.8 ± 0.7) 10-2 from a combined fit of KLOE-KTeV (A S A L ) and CPLEAR (A δ ) data: accur. 3 Β(K S π + π )/Β(K S π 0 π 0 )=2.2549±0.0054 Β(K S π + π γ)<9 10 5 Β(K S π + π π 0 )=(3.2±1.2) 10 7 Β(K S π 0 π 0 π 0 )<1.2 10 7 Β(K L πlν)=0.6705±0.0022 Β(K L π + π π 0 )=0.1263±0.0012 Β(K L π + π )=(1.963 ± 0.021 ) 10 3 Β(K L π + π γ)=(29±1) 10 6 Β(K L π 0 π 0 )=(8.65 ±0.10) 10 4 τ S = 0.08958 ± 0.00006 ns τ L = 50.84 ± 0.23ns A L =(3.32±0.06) 10 3 A S =(1.5±10.0) 10 3 φ SW = (0.759±0.001) φ + =0.757 ± 0.012 φ 00 = 0.763 ± 0.014 φ 000 = φ + 0 = φ + γ =[0,2π] 26 (KLOE measurements)

K S π 0 π 0 π 0 : direct search Observation of K S 3π 0 signals CP violation in mixing and/or in decay: SM prediction: Γ S = Γ L ε +ε 000 2, => BR(K S 3π 0 ) ~ 2 10 9 Previous results: BR(K S 3π 0 ) < 1.4 10 5 (direct search, SND, 99) BR(K S 3π 0 ) < 7.4 10 7 (interference, NA48, 04) γ counting kinematic fit in the 2π 0 and 3π 0 hypothesis ζ 2 2π ζ 2 3π PLB 619 (2005) BR( K S 3π 3π 00 )) < 1.2 10 7 7 90% CL η 000 < 0.018 at 90% CL 27

BR(K L π + π ) PID using decay kinematics Normalize to K L πµν events preliminary BR = (1.963±0.012±0.017) 10-3 σ rel : 1.1% = 0.6% stat 0.9% syst in agreement with KTeV 2004 BR = (1.975 ± 0.012) 10 3 it confirms the 4 σ discrepancy with PDG04 = (2.080 ± 0.025) 10-3 we get: η + = (2.216 ± 0.013) 10-3 [ BR(K S ππ) and τ L from KLOE, τ S from PDG04] PDG04: ε = (2.280 ±0.013) 10-3 28 2 E ( ππ ) + 2 miss p miss (MeV)

CPT test: accuracy on α i We get the following accuracies on each term of the sum: 10-4 α + = η + Β(K S π + π ) Im 2τ S /τ L B(K L l3) [ (A S +A L )/4 i Im x + ] α 00 = η 00 Β(K S π 0 π 0 ) Re α + 0 = τ S /τ L η + 0 Β(K L π + π π 0 ) α + γ = η + Β(K S π + π γ) α 000 = τ S /τ L η 000 Β(K L π 0 π 0 π 0 ) 29

CPT test: m(k)-m(k) 10 15 GeV 10 15 GeV CPLEAR KLOE Γ(K)-Γ(K) Γ(K)-Γ(K) m(k)-m(k) m(k)-m(k) 10 15 GeV 10 15 GeV δ = 1 2 M 11 M 22 i(γ 11 Γ 22 )/2 m S m L i(γ S Γ L )/2 σ(δm) ~ 2 10 18 GeV σ(δγ) ~ 4 10 18 GeV 30

Dominant K L BR s and τ L K L πeν, πµν, π + π - π 0 : K L vertex reconstructed in DC Fit to p miss E miss spectrum K L π 0 π 0 π 0 : Photon vertex reconstructed by TOF (7% of the sample) Absolute BR: (N sig /N tag ) 1/ε sig ε geo dominated by error on τ L Using the constraint BR(K L ) = 1: min(p miss E miss ) in πµ or µπ hyp. 31 BR(K L πeν) = 0.4007 ± 0.0006 stat ± 0.0014 syst BR(K L πµν) = 0.2698 ± 0.0006 stat ± 0.0014 syst BR(K L 3π 0 ) = 0.1997 ± 0.0005 stat ± 0.0019 syst BR(K L π + π π 0 ) = 0.1263 ± 0.0005 stat ± 0.0011 syst τ L = (50.72 ± 0.17 stat ± 0.33 syst ) ns 3.8 10 3 5.6 10 3 9.8 10 3 9.6 10 3 7.3 10 3 precision

K Le3 form factor slopes: fit Divide data into 20 bins ( 3 < t < +7) N i = N 0 Σ 20 j =1 A ij ε j ρ j (λ +, λ + ) F j FSR A ij ε j ρ j F FSR j Smearing matrix (MC) Reconstruction efficiency Bare K e3 decay density FSR correction λ + Obtained from MC generator, affect mainly at low t Data divided into 14 periods Good stability of results Good agreement for e + π, π e + bare ρ(t) MC K e3 γ λ + = 0.03 λ + = 0 t 32

Linear fit: λ + 10 3 K Le3 form factor slopes: result χ 2 /dof e + π 28.7 ± 0.7 156/181 π + e 28.5 ± 0.6 174/181 All 28.6 ± 0.5 330/363 λ + = (28.6 ± 0.5 ± 0.4) 10 3 Quadratic fit: λ + 10 3 λ + 10 3 χ 2 /dof e + π 24.6 ± 2.1 1.9 ± 1.0 152/180 π + e 26.4 ± 2.1 1.0 ± 1.0 173/180 All 25.5 ± 1.5 1.4 ± 0.7 325/362 λ + = (25.5 ± 1.5 ± 1.0) 10 3 λ + = ( 1.4 ± 0.7 ± 0.4) 10 3 Correlation: ρ(λ +, λ + ) = 0.95 Pole model: m V = 870(7) MeV Pole model versus Quadratic parameterization: 0.5 per mil difference in phase space integral, I e. 33 (*) ISTRA+ m π± /m π0 correction

K S πµν: first observation Measurement never done before More difficult than K Se3 : 1) Lower BR: expect 4 10 4 2) Background events from K S ππ, π µν: same PIDs of the signal Event counting from the fit to E miss (πµ) P miss distribution: 3% stat error Efficiency estimate from K Lµ3 early decays and from MC + data control samples. 2002 Data K S µ π + ν + ππγ + ππ -40-20 0 20 40 E miss (πµ) P miss (MeV) 34