Stationary ARMA Processes

Σχετικά έγγραφα
Stationary ARMA Processes

2. ARMA 1. 1 This part is based on H and BD.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Module 5. February 14, h 0min

Introduction to the ML Estimation of ARMA processes

Stationary Univariate Time Series Models 1

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

6.3 Forecasting ARMA processes

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Example Sheet 3 Solutions

EE512: Error Control Coding

Lecture 2: ARMA Models

5. Partial Autocorrelation Function of MA(1) Process:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

Homework 3 Solutions

ARMA Models: I VIII 1

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Approximation of distance between locations on earth given by latitude and longitude

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Concrete Mathematics Exercises from 30 September 2016

Solution Series 9. i=1 x i and i=1 x i.

Durbin-Levinson recursive method

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm

Quadratic Expressions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The Simply Typed Lambda Calculus

Numerical Analysis FMN011

Section 9.2 Polar Equations and Graphs

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Second Order RLC Filters

Section 7.6 Double and Half Angle Formulas

Lecture 15 - Root System Axiomatics

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

Introduction to Time Series Analysis. Lecture 16.

ST5224: Advanced Statistical Theory II

Mean-Variance Analysis

Probability and Random Processes (Part II)

w o = R 1 p. (1) R = p =. = 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Srednicki Chapter 55

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Other Test Constructions: Likelihood Ratio & Bayes Tests

Second Order Partial Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

PARTIAL NOTES for 6.1 Trigonometric Identities

Every set of first-order formulas is equivalent to an independent set

Uniform Convergence of Fourier Series Michael Taylor

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

( y) Partial Differential Equations

Risk! " #$%&'() *!'+,'''## -. / # $

Lecture 34 Bootstrap confidence intervals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SOLVING CUBICS AND QUARTICS BY RADICALS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Μηχανική Μάθηση Hypothesis Testing

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Lecture 21: Properties and robustness of LSE

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CRASH COURSE IN PRECALCULUS

Asymptotic distribution of MLE

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

TMA4115 Matematikk 3

Homework 8 Model Solution Section

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Assalamu `alaikum wr. wb.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

D Alembert s Solution to the Wave Equation

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Finite difference method for 2-D heat equation

Reminders: linear functions

The challenges of non-stable predicates

Transcript:

Stationary ARMA Processes Eduardo Rossi University of Pavia October 2013 Rossi Stationary ARMA Financial Econometrics - 2013 1 / 45

Moving Average of order 1 (MA(1)) Y t = µ + ɛ t + θɛ t 1 t = 1,..., T ɛ t WN(0, σ 2 ) E(ɛ t ) = 0 E(ɛ 2 t ) = σ 2 E(ɛ t ɛ t j ) = 0 j 0 E(Y t ) = E(µ + ɛ t + θɛ t 1 ) E(Y t ) = µ + E(ɛ t ) + θe(ɛ t 1 ) E(Y t ) = µ E(Y t µ) 2 = E(ɛ t + θɛ t 1 ) 2 = E(ɛ 2 t + θ 2 ɛ 2 t 1 + 2θɛ t 1 ɛ t ) = σ 2 + θ 2 σ 2 + 0 = (1 + θ 2 )σ 2 Rossi Stationary ARMA Financial Econometrics - 2013 2 / 45

Moving Average of order 1 (MA(1)) First Autocovariance γ(1) = E(Y t µ)(y t 1 µ) = E(ɛ + θɛ t 1 )(ɛ t 1 + θɛ t 2 ) = E(ɛ t ɛ t 1 + θɛ 2 t 1 + θɛ t ɛ t 2 + θ 2 ɛ t 1 ɛ t 2 ) = 0 + θσ 2 + 0 + 0 = θσ 2 Higher Autocovariances are all zero γ(j) = E[(Y t µ)(y t j µ)] = 0 Rossi Stationary ARMA Financial Econometrics - 2013 3 / 45

Moving Average of order 1 (MA(1)) MA(1) is covariance stationary regardless the value of θ. γ(j) = (1 + θ 2 )σ 2 + θσ 2 < j=0 If ɛ t is a Gaussian White Noise, then MA(1) is ergodic for all moments. Autocorrelation function ρ(j) γ(j) γ(0) ρ(j) 1 θσ 2 ρ(1) = (1 + θ 2 )σ 2 = θ 1 + θ 2 ρ(j) = 0 j > 0 Rossi Stationary ARMA Financial Econometrics - 2013 4 / 45

Moving Average of order 1 (MA(1)) The largest possible value for ρ(1) is 0.5. This occurs if θ = 1. The smallest is 0.5, θ = 1. For 0.5 < ρ(1) < 0.5 there are two different values of θ that could produce that autocorrelation. θ 1+θ 2 is unchanged if θ is replaced by 1/θ. Rossi Stationary ARMA Financial Econometrics - 2013 5 / 45

Invertibility MA(1): Y t = µ + ɛ t + θ 1 ɛ t 1 Autocorrelation function: Y t = µ + (1 + θ 1 L)ɛ t ρ(1) γ(1) γ(0) = θ 1 + θ 2 Replacing θ by 1/θ and assuming that the (unobserved) shock process has a variance of θ 2 σ 2 instead of σ 2 yields a process with the same autocovariance structure as the original process. Rossi Stationary ARMA Financial Econometrics - 2013 6 / 45

Invertibility The invertibility of (1 + θ 1 z) depends on the roots of 1 + θ 1 z = 0 invertibility requires θ < 1; if θ 1 the infinite sequence (1 θl + θ 2 L 2 θ 3 L 3 +...) would not be well defined. For a MA(q) there are 2 q representations of the process having the same correlogram. Identification problem. To overcome this problem we impose the invertibility condition. AR( ) representation: θ(l) 1 Y t = θ(1) 1 µ + ɛ t Rossi Stationary ARMA Financial Econometrics - 2013 7 / 45

Moving average of order q (MA(q)) Y t = µ + θ(l)ɛ t t = 1,..., T ɛ t WN(0, σ 2 ) θ(l) = 1 + θ 1 L +... + θ q L q E(Y t ) = µ E[(Y t µ) 2 ] = E[(θ(L)ɛ t ) 2 ] = E(ɛ 2 t + θ 2 1ɛ 2 t 1 +... + θ 2 qɛ 2 t q) = (1 + θ 2 1 +... + θ 2 q)σ 2 Rossi Stationary ARMA Financial Econometrics - 2013 8 / 45

Moving average of order q (MA(q)) because E(θ i θ j ɛ t i ɛ t j ) = 0 i j i, j = 0,..., q θ 0 = 1 The autocovariance function γ(j) = E[(θ(L)ɛ t )(θ(l)ɛ t j )] = E[(ɛ t +... + θ j ɛ t j +... + θ q ɛ t q )(ɛ t j + θ 1 ɛ t j 1 +... + θ q ɛ t q j )] = E(θ j ɛ 2 t j + θ 1 θ j+1 ɛ 2 t j 1 +... + θ q θ q j ɛ 2 t q) = (θ j + θ 1 θ j+1 +... + θ q θ q j )σ 2 j = 1,..., q γ(j) = 0 j > q Rossi Stationary ARMA Financial Econometrics - 2013 9 / 45

Example: MA(2) Y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 γ(0) = (1 + θ 2 1 + θ 2 2)σ 2 γ(1) = E[(ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 )(ɛ t 1 + θ 1 ɛ t 2 + θ 2 ɛ t 3 )] = θ 1 E(ɛ 2 t 1) + θ 1 θ 2 E(ɛ 2 t 2) = (θ 1 + θ 1 θ 2 )σ 2 γ(j) = 0 j = 3, 4,... Rossi Stationary ARMA Financial Econometrics - 2013 10 / 45

The Infinite-Order Moving Average Process Y t = µ + ψ j ɛ t j j=0 ɛ t WN(0, σ 2 ) The infinite sequence generates a c.s. process provided that square summability holds < j=0 a slightly stronger condition is the absolute summability ψ 2 j ψ j < j=0 Rossi Stationary ARMA Financial Econometrics - 2013 11 / 45

The Infinite-Order Moving Average Process E(Y t ) = µ γ(0) = E(Y t µ) 2 = lim T E(ψ 0ɛ t + ψɛ t 1 +... + ψ T ɛ t T ) = lim T (ψ2 0 + ψ 2 1 +... + ψ 2 T )σ 2 γ(j) = E[(Y t µ)(y t j µ)] = σ 2 (ψ j ψ 0 + ψ j+1 ψ 1 +...) Rossi Stationary ARMA Financial Econometrics - 2013 12 / 45

The Infinite-Order Moving Average Process An MA( ) with absolutely summable coefficients has absolutely summable covariances γ(j) < An MA( ) absolutely summable is ergodic for the mean. If ɛ t i.i.d.n(0, σ 2 ) then the process is ergodic for all moments. j=0 Rossi Stationary ARMA Financial Econometrics - 2013 13 / 45

The Autoregressive process of order 1 (AR(1)) Y t is c.s. if φ < 1. Y t = c + φy t 1 + ɛ t ɛ t WN(0, σ 2 ) T 1 T 1 Y t = c φ j + φ T Y t T + φ j ɛ t j j=0 j=0 Rossi Stationary ARMA Financial Econometrics - 2013 14 / 45

The Autoregressive process of order 1 (AR(1)) First Order Difference Equation If φ < 1 then backward solution: If φ > 1 forward solution based on (1 φl)y t = w t y t = w t + φw t 1 +... (1 φl) 1 = φ 1 L 1 1 φ 1 L 1 = φ 1 L 1 [1 + φ 1 L 1 + φ 2 L 2 +...] (1 φl)(1 φl) 1 = 1 when it is applied to a bounded sequence {w t } t= the result is another bounded sequence. Applying (1 φl) 1 we are implicitly imposing a boundedness assumption. Rossi Stationary ARMA Financial Econometrics - 2013 15 / 45

The Autoregressive process of order 1 (AR(1)) Premultiplying by [1 + φ 1 L 1 +... + φ (T 1) L (T 1) ][ φ 1 L 1 ] the limit of this operator exists and is (1 φl) 1 when φ > 1 (1 φl) 1 = [ φ 1 L 1 ][1 + φ 1 L 1 +...] Applying this operator amounts to solving the difference equation forward. Rossi Stationary ARMA Financial Econometrics - 2013 16 / 45

The Autoregressive process of order 1 (AR(1)) For a AR(1) process with φ > 1: Y t = (1 φl) 1 ɛ t = [ φ 1 L 1 ][1 + φ 1 L 1 +...]ɛ t Y t = [ φ 1 L 1 ][ɛ t + φ 1 ɛ t+1 +...] = φ j ɛ t+j this is the unique stationary solution. This is regarded as unnatural since Y t is correlated with {ɛ s, s > t} a property not shared by the solution obtained when φ < 1. It is customary when modelling stationary time series to restrict attention to AR(1) processes with φ < 1 for which Y t has the representation in terms of {ɛ s, s t}. If φ = 1 there is no stationary solution. j=1 Rossi Stationary ARMA Financial Econometrics - 2013 17 / 45

Stationary solution AR(p) Stationary solution A (unique) stationary solution to φ(l)y t = ɛ t exists if and only the roots of φ(z) avoid the unit circle: z = 1 φ(z) = 1 φ 1 z... φ p z p 0 Causal AR(p) This AR(p) process is causal if and only if the roots of φ(z) are outside the unit circle: z 1 φ(z) = 1 φ 1 z... φ p z p 0 Rossi Stationary ARMA Financial Econometrics - 2013 18 / 45

The Autoregressive process of order 1 (AR(1)) When Y t is c.s. we can write: Y t = (c + ɛ t ) + φ(c + ɛ t 1 ) + φ 2 (c + ɛ t 2 ) +... = c + cφ + cφ 2 +... + ɛ t + φɛ t 1 +... c = 1 φ + ɛ t + φɛ t 1 + φ 2 ɛ 2 t 2 +... }{{} MA( ) ψj =φ j when φ < 1 ψ j = φ j 1 = 1 φ j=0 j=0 this ensures that the MA( ) representation exists. The AR(1) process is ergodic for the mean. Rossi Stationary ARMA Financial Econometrics - 2013 19 / 45

The Autoregressive process of order 1 (AR(1)) µ E(Y t ) = c 1 φ γ(0) = E[(Y t µ) 2 ] = E[(ɛ t + φɛ t 1 + φɛ t 2 +...) 2 ] = (1 + φ 2 + φ 4 +...)σ 2 = σ 2 /(1 φ 2 ) γ(j) = E[(Y t µ)(y t j µ)] = E[(ɛ t + φɛ t 1 + φ 2 ɛ t 2 +...)(ɛ t j + φɛ t j 1 + φ 2 ɛ t j 2 +...)] = (φ j + φ j+2 + φ j+4 +...)σ 2 = φ j (1 + φ 2 + φ 4 +...)σ 2 = σ 2 (φ j /(1 φ 2 )) Rossi Stationary ARMA Financial Econometrics - 2013 20 / 45

The Autoregressive process of order 1 (AR(1)) Autocorrelation function geometric decay. solution: ρ(j) = γ(j) γ(0) = φj γ(j) = φγ(j 1) γ(j) = φ j γ(0) Rossi Stationary ARMA Financial Econometrics - 2013 21 / 45

The AR(2) process Y t = c + φ 1 Y t 1 + φ 2 Y t 2 + ɛ t ɛ t WN(0, σ 2 ) (1 φ 1 L φ 2 L 2 )Y t = c + ɛ t The difference equation is stable provided that the roots of 1 φ 1 z φ 2 z 2 = 0 lie outside the unit circle. ψ(l) = (1 φ 1 L φ 2 L 2 ) 1 = ψ 0 + ψ 1 L + ψ 2 L 2 +... Rossi Stationary ARMA Financial Econometrics - 2013 22 / 45

The AR(2) process The autocovariances c µ = 1 φ 1 φ 2 Y t = µ(1 φ 1 φ 2 ) + φ 1 Y t 1 + φ 2 Y t 2 + ɛ t Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ɛ t multiplying both sides by (Y t j µ) and taking expectations produces E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +φ 2 E[(Y t 2 µ)(y t j µ)] + E[ɛ t (Y t j µ)] γ(j) = φ 1 γ(j 1) + φ 2 γ(j 2) j = 1, 2,... Rossi Stationary ARMA Financial Econometrics - 2013 23 / 45

The AR(2) process The autocovariances follow the same the second-order difference equation as does the process for Y t. The autocorrelations ρ(j) = φ 1 ρ(j 1) + φ 2 ρ(j 2) j = 1, 2,... Setting j = 1 For j = 2 The variance of a c.s. AR(2) ρ(1) = φ 1 + φ 2 ρ(1) ρ(1) = φ 1 1 φ 2 ρ(2) = φ 1 ρ(1) + φ 2 E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)]+φ 2 E[(Y t 2 µ)(y t µ)]+e[(ɛ t )(Y t µ)] Rossi Stationary ARMA Financial Econometrics - 2013 24 / 45

The AR(2) process E(ɛ t )(Y t µ) = E(ɛ t )[φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ɛ t ] = φ 1 0 + φ 2 0 + σ 2 γ(0) = φ 1 γ(1) + φ 2 γ(2) + σ 2 γ(0) = φ 1 ρ(1)γ(0) + φ 2 ρ(2)γ(0) + σ 2 Substituting ρ(1) and ρ(2) [ ] φ 2 γ(0) = 1 + φ 2 (φ 1 ρ(1) + φ 2 ) γ(0) + σ 2 1 φ 2 [ φ 2 = 1 + φ 2φ 2 ] 1 + φ 2 2 γ(0) + σ 2 1 φ 2 1 φ 2 Rossi Stationary ARMA Financial Econometrics - 2013 25 / 45

The AR(2) process γ(0) = = = = = [ 1 φ2 1 φ 2φ 2 ] 1 1 φ 2 2 σ 2 1 φ 2 1 φ 2 [ 1 φ2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ ] 1 2) σ 2 1 φ 2 (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 (1 + φ 2 )[(1 φ 2 ) 2 φ 2 1 ] Rossi Stationary ARMA Financial Econometrics - 2013 26 / 45

The AR(p) process provided that the roots of Y t = c + φ 1 Y t 1 + φ 2 Y t 2 +... + φ p Y t p + ɛ t all lie the unit circle. Covariance-stationary representation: ɛ t WN(0, σ 2 ) φ(z) = 1 φ 1 z... φ p z p = 0 Y t = µ + ψ(l)ɛ t = c 1 + 1 φ 1 φ 2... φ p 1 φ 1 L... φ p L p ɛ t Rossi Stationary ARMA Financial Econometrics - 2013 27 / 45

The AR(p) process where and The mean is ψ(z) = (1 φ 1 z... φ p z p ) 1 = φ(z) 1 ψ j < j=0 c µ = E(Y t ) = 1 φ 1... φ p Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) +... + φ p (Y t p µ) + ɛ t Autocovariances are found by multiplying both sides by (Y t j µ) and taking expectations Rossi Stationary ARMA Financial Econometrics - 2013 28 / 45

The AR(p) process The autocovariance function { φ1 γ(j 1) + φ γ(j) = 2 γ(j 2) +... + φ p γ(j p) j = 1, 2,... φ 1 γ(1) +... + φ p γ p + σ 2 j = 0 Rossi Stationary ARMA Financial Econometrics - 2013 29 / 45

The AR(p) process Dividing the autocovariance function by γ 0 we obtain the Yule-Walker equations: ρ j = φ 1 ρ j 1 + φ 2 ρ j 2 +... + φ p ρ j p j = 1, 2,... Thus the autocovariances and autocorrelations follow the same p-th order difference equation as does the process itself. For distinct roots, their solutions take the form γ(j) = g 1 λ j 1 + g 2λ j 2 +... + g pλ j p where the eigenvalues (λ 1,..., λ p ) are the solutions to λ p φ 1 λ p 1... φ p = 0 Rossi Stationary ARMA Financial Econometrics - 2013 30 / 45

The Autoregressive Moving Average process (ARMA(p,q)) Y t = c + φ 1 Y t 1 +... + φ p Y t p + ɛ t + θ 1 ɛ t 1 +... + θ q ɛ t q (1 φ 1 L... φ p L p )Y t = c + (1 + θ 1 +... + θ q L q )ɛ t φ(l)y t = c + θ(l)ɛ t where φ(l) = 1 φ 1 L... φ p L p θ(l) = 1 + θ 1 +... + θ q L q the stationarity depends on the roots of 1 φ 1 z... φ p z p = 0 Rossi Stationary ARMA Financial Econometrics - 2013 31 / 45

Common factors in ARMA(p,q) There is a potential for redundant parameterization with ARMA processes. Consider a simple white noise process Y t = ɛ t Suppose both sides are multiplyied by (1 ρl): (1 ρl)y t = (1 ρl)ɛ t Both are valid representations, thus the latter might be described as an ARMA(1,1) process, with φ 1 = ρ and θ 1 = ρ. Since any value of ρ describes the data equally well, we will get into trouble trying to estimate the parameter ρ by maximum likelihood. Rossi Stationary ARMA Financial Econometrics - 2013 32 / 45

Common factors in ARMA(p,q) A related overparameterization can arise with an ARMA(p,q) model. Consider the factorization of the lag polynomial operators: (1 λ 1 L)(1 λ 2 L)... (1 λ p L)(Y t µ) = (1 η 1 L)... (1 η q L)ɛ t Assume that λ i < 1 for all i, so that the process is c.s.. If φ(l) and θ(l) have any roots in common, λ i = η j for some i and j, then both sides can be divided by (1 λ i L) p q (1 λ k L)(Y t µ) = (1 η k L)ɛ t k=1,k i k=1,k j Rossi Stationary ARMA Financial Econometrics - 2013 33 / 45

Common factors in ARMA(p,q) (1 φ 1L... φ p 1L p 1 )(Y t µ) = (1 + θ 1L +... + θ q 1L q 1 )ɛ t where p (1 φ 1L... φ p 1L p 1 ) (1 λ k L) k=1,k i (1 + θ 1L +... + θ q 1L q 1 ) q k=1,k j (1 η k L) The stationary process ARMA(p,q) process is clearly identical to the stationary ARMA(p-1,q-1) process. Rossi Stationary ARMA Financial Econometrics - 2013 34 / 45

Common factors: example Consider a white noise process ɛ t. We can write Y t = ɛ t Y t Y t 1 + 0.25Y t 2 = ɛ t ɛ t 1 + 0.25ɛ t 2 (1 L + 0.25L 2 )Y t = (1 L + 0.25L 2 )ɛ t This is in the form of an ARMA(2,2) process, with But φ(l) = (1 L + 0.25L 2 ), θ(l) = (1 L + 0.25L 2 ) Y t = θ(l) φ(l) ɛ t = ɛ t Rossi Stationary ARMA Financial Econometrics - 2013 35 / 45

Stationarity of ARMA(p,q) Stationary solution If φ(z) and θ(z) have no common factors, a unique stationary solution to φ(l)y t = c + θ(l)ɛ t exists if and only the roots of φ(z) avoid the unit circle: z = 1 φ(z) = 1 φ 1 z... φ p z p 0 Rossi Stationary ARMA Financial Econometrics - 2013 36 / 45

Causality and invertibility of ARMA(p,q) Causal ARMA(p,q) This ARMA(p,q) process is causal if and only if the roots of φ(z) are outside the unit circle: z 1 φ(z) = 1 φ 1 z... φ p z p 0 invertible if and only if the roots of θ(z) are outside the unit circle: z 1 θ(z) = 1 + θ 1 z +... + θ q z q 0 Rossi Stationary ARMA Financial Econometrics - 2013 37 / 45

Causality and invertibility of ARMA(p,q): example (1 1.5L)Y t = (1 + 0.2L)ɛ t φ(z) = 1 1.5z θ(z) = 1 + 0.2z φ(z) and θ(z) have no common factors, and {Y t } is an ARMA(1,1). The root of φ(z) is hence the process is not causal. φ(z) = 0 z = 2 3 < 1 θ(z) = 0 z = 5 which is outside the unit circle, so {Y t } is invertible. Rossi Stationary ARMA Financial Econometrics - 2013 38 / 45

The Autoregressive Moving Average process (ARMA(p,q)) If the roots are outside the unit circle then the inverse of φ(z) exists, then dividing by φ(l) both sides Y t = µ + ψ(l)ɛ t ψ(l) = θ(l) φ(l) c µ = 1 φ 1... φ p ψ j < j=0 Rossi Stationary ARMA Financial Econometrics - 2013 39 / 45

The Autoregressive Moving Average process (ARMA(p,q)) c = µ(1 φ 1... φ p ) Y t = µ(1 φ 1... φ p ) + φ 1 Y t 1 +... + φ p Y t p + ɛ t +... + θ q ɛ t q Y t µ = φ 1 (Y t 1 µ) +... + φ p (Y t p µ) + ɛ t + θ 1 ɛ t 1 +... + θ q ɛ t q The variance E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)] +... + φ p E[(Y t p µ)(y t µ)] +E[ɛ t (Y t µ)] + θ 1 E[ɛ t 1 (Y t µ)] +... + θ q E[ɛ t q (Y t µ)] E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] +... + φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ 1 +...)] +E[ψ 0 ɛ 2 t ] + θ 1 E[ψ 1 ɛ 2 t 1] +... + θ q E[ψ q ɛ 2 t q] Rossi Stationary ARMA Financial Econometrics - 2013 40 / 45

The Autoregressive Moving Average process (ARMA(p,q)) E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] +... + φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ 1 +...)] +ψ 0 σ 2 + θ 1 ψ 1 σ 2 +... + θ q ψ q σ 2 An ARMA(p,q) process will have more complicated autocovariances for lags 1 through q than would the corresponding AR(p) process γ(j) = E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] +E[ɛ t (Y t j µ)] + θ 1 E[ɛ t 1 (Y t j µ)] +... + θ q E[ɛ t q (Y t j µ)] Rossi Stationary ARMA Financial Econometrics - 2013 41 / 45

For j > q autocovariances are given by E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] +E[ɛ t (Y t j µ)] + θ 1 E[ɛ t 1 (Y t j µ)] +... + θ q E[ɛ t q (Y t j µ)] E[ɛ t q (Y t j µ)] = E[ɛ t q (ψ(l)ɛ t j )] = E[ɛ t q (ψ 0 ɛ t j + ψ 1 ɛ t j 1 +...)] = ψ 0 E[ɛ t q ɛ t j ] + ψ 1 E[ɛ t q ɛ t j 1 ] +... = 0 then E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] Rossi Stationary ARMA Financial Econometrics - 2013 42 / 45

The Autoregressive Moving Average process (ARMA(p,q)) γ(j) = φ 1 γ(j 1) + φ 2 γ(j 2) +... + φ p γ(j p) j = q + 1, q + 2,... Thus after q lags the autocovariance function follow the p-th order difference equation governed by the autoregressive parameters. Rossi Stationary ARMA Financial Econometrics - 2013 43 / 45

ARMA(1,1) Y t = c + φ 1 Y t 1 + ɛ t + θ 1 ɛ t 1 (1 φ 1 L)Y t = c + (1 + θ 1 L)ɛ t φ 1 < 1 ψ(l) = 1 + θ 1L 1 φ 1 L = (1 + θ 1L)(1 + φ 1 L + φ 2 1L 2 +...) ψ 0 + ψ 1 L + ψ 2 L 2 +... = (1 + θ 1 L)(1 + φ 1 L + φ 2 1L 2 +...) Rossi Stationary ARMA Financial Econometrics - 2013 44 / 45

ARMA(1,1) ψ 0 = 1 ψ 1 = θ 1 + ψ 1 ψ 2 = φ 2 1 + φ 1 θ 1... =... γ(0) = φ 1 E[(Y t 1 µ)(y t µ)] + E[ɛ t (Y t µ)] + θ 1 E[ɛ t 1 (Y t µ)] γ(0) = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] + σ 2 + θ 1 ψ 1 σ 2 γ(1) = φ 1 γ(0) + θ 1 σ 2 γ(2) = φ 1 γ(1) Rossi Stationary ARMA Financial Econometrics - 2013 45 / 45