Supporting Information

Σχετικά έγγραφα
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information for Substituent Effects on the Properties of Borafluorenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Electronic Supplementary Information (ESI)

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

Supporting Information

IV. ANHANG 179. Anhang 178

Supporting Information

Supporting Information. for

Supporting Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supplementary Information (ESI)

Supporting Information. for. Rapid pseudo five-component synthesis of. intensively blue luminescent 2,5-di(hetero)arylfurans

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information for

Table of Contents 1 Supplementary Data MCD

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information

Supporting Information. Experimental section

Supporting Information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

The Free Internet Journal for Organic Chemistry

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supplementary information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

multicomponent synthesis of 5-amino-4-

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supplementary!Information!

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Supporting Information

Supporting Information

Supporting information

Supporting Information

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Electronic Supplementary Information

Supporting Information

Supporting Information. Experimental section

Electronic Supplementary Information

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Radical cation and dication of a 4H-dithieno[2,3-b:3',2'-e][1,4]thiazine

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting information

Supporting information for

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Supporting information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of triplet excited states

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Sequentially palladium catalyzed coupling-cyclocondensation-coupling (C 3 ) four-component synthesis of intensively blue luminescent biarylsubstituted pyrazoles Melanie Denißen, 1 Jan Nordmann, 1 Julian Dziambor, 1 Walter Frank, 2 and Thomas J. J. Müller*,1 1 Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine- Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany. 2 Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany. Table of contents General Considerations... 3 One-pot Synthesis of 1-methyl-3,5-diphenyl-1H-pyrazole (9)... 3 Spectra of 5-Biarylsubstituted Pyrazoles 5... 4 1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (5a)... 4 5-([1,1'-Biphenyl]-4-yl)-1-methyl-3-phenyl-1H-pyrazole (5b)... 5 5-(4'-Fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-3-phenyl-1H-pyrazole (5c)... 7 3-(2-Fluorophenyl)-1-methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-1H-pyrazole (5d)... 8 1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-(thiophen-2-yl)-1H-pyrazole (5e)... 10 5-(4'-Methoxy-[1,1'-biphenyl]-4-yl)-1-methyl-3-(thiophen-2-yl)-1H-pyrazole (5f)... 11 5-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (5g)... 13 Spectra of 3-Biarylsubstituted Pyrazoles 6... 14 3-([1,1'-Biphenyl]-4-yl)-1-methyl-5-phenyl-1H-pyrazole (6a)... 14 3-(4'-fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-5-(p-tolyl)-1H-pyrazole (6b)... 16 3-([1,1'-biphenyl]-4-yl)-5-butyl-1-methyl-1H-pyrazole (6c)... 17 4 -(1-methyl-5-phenyl-1H-pyrazol-3-yl)-[1,1 -biphenyl]-4-carbonitrile (6d)... 19 Spectra of the 3,5-Di([1,1'-biphenyl]-4-yl)-1-methyl-1H-pyrazole (7)... 20 Spectra of 1-Biarylsubstituted Pyrazoles 8... 22 1-([1,1'-biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole (8a)... 22 1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole (8b)... 23 1

4'-(3,5-diphenyl-1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-carbonitrile (8c)... 25 1-(4-(5-methylthiophen-2-yl)phenyl)-3,5-diphenyl-1H-pyrazole (8d)... 26 5-(4-methoxyphenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (8e)... 28 5-(2-chlorophenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (8f)... 29 1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-5-(thiophen-2-yl)-1H-pyrazole (8g)... 31 3-butyl-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-5-phenyl-1H-pyrazole (8h)... 32 Spectra of 1-methyl-3,5-diphenylpyrazole (9)... 34 Computed xyz-coordinates of the S 0 State for the Pyrazoles 5c, 5d, 6d, and 8... 37 XYZ-coordinates for 5c... 37 XYZ-coordinates for 5d... 39 XYZ-coordinates for 6d... 42 XYZ-coordinates for 8b... 44 Computed UV/Vis Spectra of TD-DFT Calculated Structures of 5c, 5d, 6d, and 8b... 47 Computed xyz-coordinates of the S 1 State of Pyrazole 5d... 48 Computed xyz-coordinates of the S 1 State of Pyrazole 6d... 51 2

General Considerations 1 H, 13 C, DEPT and NOESY NMR spectra were recorded in CDCl 3, CDCl 2 or acetone (d 6 ) on a 300 MHz (Bruker AVIII) or 600 MHz (Bruker Avance III-600) NMR spectrometer. The assignments of C quat, CH, CH 2 and CH 3 were based on DEPT spectra. Absorption spectra were recorded in CH 2 Cl 2 or cyclohexane UVASOL at T = 293 K on a Perkin Elmer UV/VIS/NIR Spectrometer Lambda 19. Emission spectra were recorded in CH 2 Cl 2 or cyclohexane UVASOLat T = 293 K on a Perkin Elmer LS55 spectrometer. One-pot Synthesis of 1-methyl-3,5-diphenyl-1H-pyrazole (9) 1 In a 10 ml microwave tube PdCl 2 (PPh 3 ) 2 (14.6 mg, 0.02 mmol) and CuI (8.37 mg, 0.04 mmol) were dissolved in THF (4.00 ml) under nitrogen. To the yellow solution acid chloride (1a) (141 mg, 1.00 mmol) and alkyne (2b) (103 mg, 1.00 mmol) were added. Finally triethylamine (107 mg, 1.05 mmol) was added. The reaction mixture turned from yellow to light brown and was stirred at room temperature for 2 h. Then methyl hydrazine (3a) (52.8 mg, 1.14 mmol), 0.5 ml methanol and 0.5 ml concentrated acetic acid were added and the reaction mixture was stirred under continuous microwave irradiation at 150 C for 10 min. After cooling to room temperature the reaction mixture was extracted with dichloromethane (3 x 20 ml) and then washed with a saturated aqueous solution of ammonium chloride and brine. The combined organic layers were dried with anhydrous magnesium sulfate. The crude product was purified by flash chromatography (n-hexane/ethyl acetate 4:1, v/v) to give 151 mg (66%) of pyrazole 9 as a yellow to orange solid; Mp 55 C. 1 H NMR (300 MHz, CDCl 3 ) = 3.94 (s, 3 H), 6.62 (s, 1 H), 7.28-7.35 (m, 1 H), 7.38-7.42 (m, 2 H), 7.43-7.51 (m, 5 H), 7.84 (dd, J = 8.3, 1.3 Hz, 2H), 13 C NMR (75 MHz, CDCl 3 ) = 37.6 (CH 3 ), 103.3 (CH), 125.54 (2 CH), 128.58, 128.63, 128.7 (2 CH), 128.8 (2 CH), 130.6 (C quat ), 133.3 (C quat ), 145.1 (C quat ), 150.5 (C quat ), IR (ATR): [cm -1 ] 3026 (w), 2962 (w), 1603 (w), 1551 (w), 1485 (m), 1460 (m), 1439 (m), 1362 (w), 1260 (m), 1088 (m), 1074 (m), 1026 (m), 1007 (m), 959 (m), 916 (w), 792 (s), 762 (s), 745 (s), 729 (s), 692 (s), 671 (m). GC-MS (m/z (%)): 235 (18), 234 (100), 233 (24), 191 (4), 189 (5), 131 (3), 130 (8), 128 (3), 118 (8), 117 (6), 116 (4), 104 (8), 103 (9), 102 (4), 95 (3), 91 (8), 89 (4), 77 (15), 76 (3), 63 (3), 51 (5). UV/Vis (CH 2 Cl 2 ): max [nm] ( [Lcm -1 mol -1 ]) = 254.0 (28800). Emission (CH 2 Cl 2 ): max [nm] ( f ) = 338.5 (0.40). Stokes shift [cm -1 ] = 9800. 1 B. Willy and T. J. J. Müller, Eur. J. Org. Chem., 2008, 4157. 3

Spectra of 5-Biarylsubstituted Pyrazoles 5 1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (5a) 300 MHz 1 H NMR spectrum of compound 5a recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 5a recorded in CDCl 3 at T = 298 K (δ in ppm). 4

Normalized absorption and emission spectra of compound 5a recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 5-([1,1'-Biphenyl]-4-yl)-1-methyl-3-phenyl-1H-pyrazole (5b) 1.93 7.71 1.92 7.67 1.99 7.65 1.91 7.56 2.06 7.55 2.86 7.51 1.02 7.49 7.48 7.44 7.43 1.00 7.42 6.67 7.87 7.86 7.72 3.08 3.99 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 5b recorded inn CDCl 3 at T = 298 K (δ in ppm). 5

150.70 144.87 141.51 140.39 133.54 129.63 129.23 129.05 128.77 127.86 127.77 127.53 127.22 125.67 103.42 37.85 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 5b recorded inn CDCl 3 at T = 298 K (δ in ppm) ). Normalized absorption and emission spectra of compound 5b recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 6

5-(4'-Fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-3-phenyl-1H-pyrazole (5c) 300 MHz 1 H NMR spectrum of compound 5crecorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 5c recorded in CDCl 3 at T = 298 K (δ in ppm). 7

Normalized absorption and emission spectra of compound 5c recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 3-(2-Fluorophenyl) -1-methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-1H-pyrazole (5d) 1.09 2.09 4.23 2.94 2.19 1.00 8.06 8.04 8.03 8.01 8.01 7.71 7.68 7.56 7.54 7.30 7.28 7.20 6.82 6.80 3.25 4.00 3.23 2.42 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 5d recorded inn CDCl 3 at T = 298 K (δ in ppm). 8

161.88 158.57 145.24 144.63 141.47 137.74 137.52 129.79 129.25 128.42 128.37 127.32 127.07 124.41 124.36 116.34 116.05 106.91 106.78 37.91 21.29 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 5d recorded inn CDCl 3 at T = 298 K (δ in ppm) ). Normalized absorption and emission spectra of compound 5d recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 9

1-Methyl-5-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-(thiophen-2-yl)-1H-pyrazole (5e) 600 MHz 1 H NMR spectrum of compound 5e recorded in CDCl 3 at T = 298 K (δ in ppm). 125 MHz 13 C NMR spectrum of compound 5e recorded in CDCl 3 at T = 298 K (δ in ppm). 10

Normalized absorption and emission spectra of compound 5e recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 5-(4'-Methoxy-[1,1' '-biphenyl]-4-yl)-1-methyl-3-(thiophen-2-yl)-1h-pyrazole (5f) 2.14 2.34 2.19 1.01 1.22 1.05 2.07 7.00 0.96 6.55 7.67 7.64 7.60 7.57 7.51 7.48 7.35 7.34 7.26 7.26 7.25 7.08 7.07 7.03 3.01 3.30 3.94 3.87 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 5f recorded inn CDCl 3 at T = 298 K (δ in ppm). 11

159.65 145.97 144.98 141.24 136.81 132.79 129.20 128.66 128.26 127.57 127.04 124.43 123.58 114.50 103.28 55.51 37.76 170 160 150 140 130 120 110 100 80 90 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 5f recorded in CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 5f recorded in CH 2 Cl 2 UVASOL at T = 293 K ( exc = 290 nm). 12

5-(4'-Methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (5g) 300 MHz 1 H NMR spectrum of compound 5g recorded in d 6 -acetone at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 5g recorded in d 6 -acetone at T = 298 K (δ in ppm). 13

Normalized absorption and emission spectra of compound 5g recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n Spectra of 3-Biarylsubstituted Pyrazoles 6 3-([1,1'-Biphenyl]-4-yl)-1-methyl-5-phenyl-1H-pyrazole (6a) 7.93 7.90 7.68 7.65 2.11 7.50 4.02 7.50 8.26 7.49 7.47 7.46 7.44 7.43 7.38 7.38 1.00 7.35 6.66 2.93 3.96 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 6a recorded inn CDCl 3 at T = 298 K (δ in ppm) ). 14

150.27 145.27 140.99 140.42 132.58 130.80 128.90 128.87 128.71 127.46 127.37 127.11 126.02 103.44 37.77 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 6a recorded inn CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 6a recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 15

3-(4'-fluoro-2'-methyl-[1,1'-biphenyl]-4-yl)-1-methyl-5-(p-tolyl)-1H-pyrazole (6b) 300 MHz 1 H NMR spectrum of compound 6b recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 6b recorded in CDCl 3 at T = 298 K (δ in ppm). 16

Normalized absorption and emission spectra of compound 6b recorded in CH 2 Cl 2 UVASOL at T = 2933 K (λ exc = 290 nm). 3-([1,1'-biphenyl]-4-yl)-5-butyl-1-methyl-1H-pyrazolee (6c) 1.84 3.94 2.30 0.98 7.87 7.84 7.66 7.65 7.64 7.63 7.63 7.61 7.51 7.47 7.47 7.44 7.42 7.36 7.34 7.31 0.89 6.37 2.78 3.85 2.65 2.06 2.63 2.60 2.11 2.16 3.08 1.74 1.71 1.69 1.66 1.64 1 1.49 1.47 1.44 1.42 1.40 1.01 0.99 0.96 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 6c recorded inn CDCl 3 at T = 298 K (δ in ppm). 17

149.65 144.83 141.03 140.15 132.79 128.86 127.36 127.29 127.07 125.90 101.64 36.33 30.70 25.55 22.50 13.98 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 6c recorded inn CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 6c recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 18

4 -(1-methyl-5-phenyl-1H-pyrazol-3-yl)-[1,1 -biphenyl]-4-carbonitrile (6d) 300 MHz 1 H NMR spectrum of compound 6d recorded in CD 2 Cl 2 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 6d recorded in CD 2 Cl 2 at T = 298 K (δ in ppm). 19

Normalized absorption and emission spectra of compound 6d recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n Spectra of the 3,5-Di([1,1'-biphenyl]-4-yl)-1-methyl-1H-pyrazole (7) 7.94 7.91 7.74 7.71 2.01 7.69 2.17 7.68 6.07 7.67 2.03 7.66 6.16 7.65 7.58 7.55 7.49 7.46 7.43 1.00 6.70 3.07 4.01 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 7 recorded in CDCl 3 at T = 298 K (δ in ppm). 20

150.36 144.97 141.57 140.99 140.46 140.40 132.55 129.61 129.26 129.08 128.91 127.88 127.56 127.48 127.38 127.25 127.11 126.05 103.50 37.90 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 7 recorded in CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 7 recorded in CH 2 Cl 2 UVASOL at T = 293 K ( exc = 290 nm). 21

Spectra of 1-Biarylsubstituted Pyrazoles 8 1-([1,1'-biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole (8a) 300 MHz 1 H NMR spectrum of compound 8a recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 8a recorded in CDCl 3 at T = 298 K (δ in ppm). 22

Normalized absorption and emission spectra of compound 8a recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). 1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3,5-diphenyl-1H-pyrazole (8b) 7.97 2.03 7.95 1.98 2.25 3.55 5.73 2.29 1.00 6.86 7.59 7.56 7.49 7.45 7.43 7.42 7.36 6 86 2.82 2.41 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 4.5 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 MHz 1 H NMR spectrum of compoundd 8b recorded inn CDCl 3 at T = 298 K (δ in ppm). 23

152.13 144.48 140.21 139.19 137.54 137.35 133.19 130.77 129.70 128.93 128.78 128.67 128.47 128.13 127.42 127.00 125.95 125.51 105.44 21.25 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 8b recorded inn CDCl 3 at T = 298 K (δ in ppm) ). Normalized absorption and emission spectra of compound 8b recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 24

4'-(3,5-diphenyl-1H-pyrazol-1-yl)-[1,1'-biphenyl]-4-carbonitrile (8c) 300 MHz 1 H NMR spectrum of compound 8c recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 8c recorded in CDCl 3 at T = 298 K (δ in ppm). 25

Normalized absorption and emission spectra of compound 8c recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 1-(4-(5-methylthiophen-2-yl)phenyl)-3,5-diphenyl-1H-pyrazole ( 8d) 1.90 7.95 7.94 1.90 2.19 8.31 0.90 0.94 0.84 7.53 7.52 7.45 7.37 7.35 7.34 6.84 6.74 6.73 2.81 2.51 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 600 MHz 1 H NMR spectrum of compoundd 8d recorded inn CDCl 3 at T = 298 K (δ in ppm). 26

152.14 144.44 140.98 140.20 138.90 133.86 133.14 130.71 128.91 128.78 128.69 128.49 128.15 126.48 125.95 125.84 125.57 123.49 105.47 15.62 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 125 MHz 13 C NMR spectrum of compound 8d recorded in CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 8d recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 27

5-(4-methoxyphenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (8e) 600 MHz 1 H NMR spectrum of compound 8e recorded in CDCl 3 at T = 298 K (δ in ppm). 125 MHz 13 C NMR spectrum of compound 8e recorded in CDCl 3 at T = 298 K (δ in ppm). 28

Normalized absorption and emission spectra of compound 8e recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 5-(2-chlorophenyl)-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-1H-pyrazole (8f) 8.03 8.02 1.83 8.00 7.98 2.25 4.47 7.52 1.86 7.47 3.55 7.46 1.04 7.41 1.84 7.38 0.83 7.37 6.89 2.91 2.41 8.5 8..0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 600 MHz 1 H NMR spectrum of compoundd 8f recorded inn CDCl 3 at T = 298 K (δ in ppm). 29

151.87 141.12 139.88 139.19 137.45 137.31 134.18 132.25 130.51 130.37 37 130.16 129.65 128.79 128.16 127.32 126.94 125.96 124.27 109.28 107.01 21.24 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 125 MHz 13 C NMR spectrum of compound 8f recorded inn CDCl 3 at T = 298 K (δ in ppm). Normalized absorption and emission spectra of compound 8f recorded in CH 2 Cl 2 UVASOL at T = 293 K ( exc = 290 nm). 30

1-(4'-methyl-[1,1'-biphenyl]-4-yl)-3-phenyl-5-(thiophen-2-yl)-1H-pyrazole (8g) 300 MHz 1 H NMR spectrum of compound 8g recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compound 8g recorded in CDCl 3 at T = 298 K (δ in ppm). 31

Normalized absorption and emission spectra of compound 8g recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 3-butyl-1-(4'-methyl-[1,1'-biphenyl]-4-yl)-5-phenyl-1H-pyrazole (8h)( 2.34 1.90 6.70 2.35 1.08 2.13 3.14 1.96 2.22 3.24 7.56 7.53 7.51 7.48 7.37 7.34 7.33 7.32 7.32 7.27 7.25 6.59 6.36 2.79 2.77 2.74 2.44 2.41 1.82 1.79 1.77 1.74 1.72 1.54 1.51 1.49 1.46 1.03 1.00 0.98 0.96 0.94 0.92 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.03 2.5 2.0 1.5 1.01 0.5 300 MHz 1 H NMR spectrum of compoundd 8h recorded inn CDCl 3 at T = 298 K (δ in ppm). 32

154.49 143.54 139.76 139.28 137.41 131.07 129.74 129.65 128.83 128.68 128.55 128.16 127.67 127.32 127.09 126.95 125.35 106.97 102.97 32.00 28.19 22.77 21.23 14.11 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0 75 MHz 13 C NMR spectrum of compoundd 8h recorded inn CDCl 3 at T = 298 K (δ in ppm) ). Normalized absorption and emission spectra of compound 8h recorded in CH 2 Cl 2 UVASOL at T = 2933 K ( exc = 290 nm). n 33

Spectra of 1-methyl-3,5-diphenylpyrazole (9) 300 MHz 1 H NMR spectrum of compoundd 9 recorded in CDCl 3 at T = 298 K (δ in ppm). 75 MHz 13 C NMR spectrum of compoundd 9 recorded in CDCl 3 at T = 298 K (δ in ppm). 34

Normalized absorption and emission spectra of compound 9 recorded in CH 2 Cl 2 UVASOL at T = 293 K ( exc = 290 nm). 35

Crystal Data and Structure Refinement for Pyrazole 8b Empirical formula C 28 H 22 N 2 Formula weight 386.48 Temperature Wavelength Crystal system 291(2) K 0.71073 Å orthorhombic Space group Pca2 1 Unit cell dimensions a = 9.1521(4) Å α= 90. b = 11.4375(4) Å β= 90. c = 19.7882(6) Å γ= 90. Volume 2071.37(13) Å3 Z 4 Density (calculated) 1.239 Mg/m 3 Absorption coefficient 0.072 mm -1 F(000) 816 Crystal size 0.5 x 0.5 x 0.5 mm 3 Theta range for data collection 2.72 to 24.99. Index ranges -10<=h<=10, -13<=k<=13, -23<=l<=20 Reflections collected 14730 Independent reflections 3321 [R(int) = 0.0452] Completeness to theta = 24.99 99.7 % Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 3321 / 1 / 272 Goodness-of-fit on F2 1.052 Final R indices [I>2sigma(I)] R1 = 0.0324, wr2 = 0.0913 R indices (all data) R1 = 0.0338, wr2 = 0.0925 Absolute structure parameter 0(3) Largest diff. peak and hole 0.112 and -0.093 e.å-3 36

ORTEP plot of thex-ray structur of compound 8b. Computed xyz-coordinates of the S 0 State for the Pyrazoles 5c, 5d, 6d, and 8 The ground state geometries of the pyrazoles weree optimized in a DFT calculation with the B3LYP functional and the 6-311G(d,p) basis set in the program packagee Gaussian09. The minima structures were confirmed by analytical frequency analysis. Computational details of the calculated pyrazoles: XYZ-coordinates for 5c C 1.629035 0.581032-0.048339- C 2.590881-0.418251-0.038930- C 3.835553 0.250604-0.026770- N 3.650604 1.576498-0.038312- N 2.318087 1.764126-0.050762- C 1.808956 3.127450-0.115560- C 0.163227 0.454881-0.043522- C 5.192260-0.322129 C -0.651711 1.227875 0.000615 0.795974 37

C -2.032174 1.058353 0.801519 C -2.650398 0.105163-0.019229 C -1.832352-0.670749-0.852487 C -0.453666-0.498679-0.867389 C 6.318519 0.509694 0.105054 C 7.600538-0.028863 0.130738 C 7.787785-1.409602 0.054585 C 6.677297-2.245651-0.049160 C 5.392901-1.708080-0.076585 C -4.134461-0.038326-0.023747 C -4.912993 1.099809-0.280638 C -6.302861 1.050519-0.309145 C -6.907864-0.170046-0.066594 C -6.177710-1.313922 0.205669 C -4.779761-1.269242 0.231761 F -8.262662-0.251043-0.086592 C -4.023094-2.535674 0.561316 H 2.399034-1.477986-0.011231 H 2.509894 3.718471-0.701767 H 0.834329 3.132396-0.599467 H 1.720855 3.561943 0.882985 H -0.206018 1.946728 1.472698 H -2.638163 1.659201 1.470182 H -2.280793-1.399067-1.517528 H 0.153543-1.095597-1.537815 38

H 6.174835 1.581125 0.166763 H 8.457312 0.630961 0.212340 H 8.787490-1.828279 0.076076 H 6.809634-3.320165-0.110171 H 4.542237-2.374060-0.162470 H -4.416391 2.042567-0.478719 H -6.901992 1.928192-0.515906 H -6.704866-2.238494 0.409916 H -4.663931-3.231566 1.105370 H -3.680510-3.046894-0.343549 H -3.140823-2.331455 1.170317 SCF Done: E(RB3LYP) = -1097.51323242 A.U. after 12 cycles Sum of electronic and zero-point Energies= -1097.153731 Sum of electronic and thermal Energies= -1097.131831 Sum of electronic and thermal Enthalpies= -1097.130887 Sum of electronic and thermal Free Energies= -1097.207530 XYZ-coordinates for 5d C -7.263859-1.657429 0.408842 C -7.090781-0.299524 0.629079 C -5.841666 0.260279 0.447371 C -4.734583-0.480364 0.044125 C -4.940231-1.846388-0.166307 39

C -6.182786-2.433033 0.012382 C -3.396209 0.103025-0.140299 N -3.213051 1.340613-0.586468 N -1.886949 1.512581-0.646151 C -1.203958 0.407200-0.243572 C -2.159671-0.531452 0.086207 C 0.261159 0.299804-0.180666 C 1.054942 1.299332 0.382509 C 2.430034 1.152941 0.459064 C 3.061485 0.002088-0.015188 C 2.262125-0.999565-0.569533 C 0.888209-0.853724-0.653018 C 4.533634-0.154460 0.070360 C 5.253422-0.768060-0.955716 C 6.629699-0.911662 0.874793 C 7.339453-0.452780 0.232349 C 6.620857 0.162053 1.254965 C 5.244813 0.309333 1.177899 C 8.829374-0.637867 0.332007 C -1.373339 2.775014-1.145576 F -5.709304 1.577598 0.696544 H -8.240288-2.104400 0.547366 H -7.906838 0.336768 0.946713 H -4.102889-2.451984-0.490498 H -6.307793-3.493833-0.164476 40

H -1.980498-1.518989 0.477516 H 0.596471 2.196339 0.779565 H 3.022619 1.952516 0.886463 H 2.719710-1.913267-0.928717 H 0.290147-1.642963-1.092096 H 4.734669-1.117367-1.840621 H 7.163974-1.382001-1.693168 H 7.146230 0.528429 2.130286 H 4.714436 0.776051 1.999487 H 9.295302-0.643113-0.654483 H 9.289049 0.154856 0.924064 H 9.071786-1.589456 0.813861 H -0.396228 2.620882-1.596983 H -2.067661 3.142739-1.896890 H -1.291213 3.509506-0.342903 SCF Done: E(RB3LYP) = -1096.927637 A.U. after cycles Sum of electronic and zero-point Energies= -1096.563666 Sum of electronic and thermal Energies= -1096.541901 Sum of electronic and thermal Enthalpies= -1096.540956 Sum of electronic and thermal Free Energies= -1096.617934 1 singlet a excitation Total energy: -1096.927637 Excitation energy: 0.17787862 41

Excitation energy / ev: 4.840325569 Excitation energy / nm: 256.1485941 Excitation energy / cm^(-1): 39039.83949 XYZ-coordinates for 6d C -3.768107 0.172803-0.026095 C -2.556188-0.500263-0.042432 C -1.562761 0.504865-0.027606 N -2.128705 1.718580-0.013184 N -3.456317 1.506117-0.012044 C -4.345056 2.660176-0.044751 C -5.134106-0.377485-0.013582 C -0.100154 0.356634-0.021728 C -6.112545 0.086865 0.878524 C -7.385366-0.477869 0.890380 C -7.700222-1.519553 0.019387 C -6.732656-1.995546-0.864743 C -5.461498-1.429114-0.883145 C 0.737780 1.481214 0.040828 C 2.118172 1.344405 0.045888 C 2.723764 0.078064-0.003741 C 1.884640-1.044649-0.064222 C 0.502466-0.908354-0.076305 C 4.197780-0.068117 0.008965 42

C 5.022820 0.860916-0.647678 C 6.403135 0.729245-0.639154 C 6.998820-0.348040 0.033760 C 6.190201-1.284857 0.694589 C 4.811306-1.140470 0.678988 C 8.420184-0.490184 0.046005 N 9.570551-0.605640 0.055958 H -2.429242-1.570085-0.035696 H -3.875504 3.429324-0.655079 H -5.297732 2.375361-0.486174 H -4.513295 3.052680 0.960695 H -5.872087 0.873704 1.583392 H -8.128126-0.109767 1.588877 H -8.691018-1.958877 0.031320 H -6.969382-2.804851-1.545992 H -4.716815-1.791709-1.582038 H 0.292091 2.466300 0.094008 H 2.734580 2.233041 0.117861 H 2.315998-2.036748-0.129388 H -0.111175-1.799160-0.137252 H 4.577677 1.684666-1.191793 H 7.022798 1.449968-1.157814 H 6.645796-2.113002 1.222857 H 4.202288-1.858371 1.214318 43

SCF Done: E(RB3LYP) = -1051.19477297 A.U. after 13 cycles Sum of electronic and zero-point Energies= -1050.855532 Sum of electronic and thermal Energies= -1050.834426 Sum of electronic and thermal Enthalpies= -1050.833482 Sum of electronic and thermal Free Energies= -1050.908409 XYZ-coordinates for 8b C 4.982028-0.815130-1.272503 C 4.268418-0.812964-0.064595 C 4.988591-1.044203 1.116545 C 6.362061-1.265234 1.088807 C 7.073754-1.264671-0.115649 C 6.354933-1.038186-1.294833 C 2.802615-0.579981-0.037328 C 1.974797-1.276207 0.857800 C 0.603833-1.055317 0.894431 C 0.026264-0.132632 0.021987 C 0.824881 0.558619-0.888688 C 2.197552 0.339380-0.907573 N -1.386357 0.066951 0.051945 C -2.105377 1.240010 0.006022 C -3.434711 0.865048-0.046655 C -3.440572-0.550869-0.016905 N -2.193360-1.021673 0.039861 44

C -1.539869 2.598137 0.089417 C -0.563564 2.933655 1.039255 C -0.086024 4.237532 1.129992 C -0.577122 5.227952 0.279622 C -1.552643 4.906359-0.662602 C -2.030335 3.601923-0.758364 C -4.593865-1.466892-0.040854 C -4.409859-2.853642 0.077580 C -5.498306-3.718773 0.052890 C -6.793655-3.219260-0.089116 C -6.988373-1.844293-0.207817 C -5.899688-0.976303-0.184576 H -4.276206 1.537737-0.051686 H -0.187738 2.176462 1.716568 H 0.665893 4.481807 1.871629 H -0.203508 6.242827 0.352894 H -1.939312 5.669700-1.328131 H -2.779642 3.352785-1.500769 H -3.405416-3.242570 0.188011 H -5.336016-4.786935 0.145520 H -7.641225-3.894851-0.107645 H -7.989995-1.444583-0.320201 H -6.070332 0.089284-0.282786 H -0.026381-1.601286 1.584183 H 2.405635-2.012732 1.525426 45

H 2.807469 0.900692-1.605121 H 0.377704 1.263902-1.577064 H 4.473710-1.032634 2.070604 H 6.890495-1.436303 2.021235 C 8.567735-1.476049-0.140811 H 6.875151-1.046927-2.247394 H 4.454715-0.668228-2.208301 H 8.883518-1.975397-1.059609 H 9.099449-0.519411-0.090736 H 8.899065-2.078364 0.707847 SCF Done: E(RB3LYP) = -1190.03297607 A.U. after 6 cycles Sum of electronic and zero-point Energies= -1189.613259 Sum of electronic and thermal Energies= -1189.588929 Sum of electronic and thermal Enthalpies= -1189.587985 Sum of electronic and thermal Free Energies= -1189.672006 46

Computed UV/Vis Spectra of TD-DFT Calculated Structures of 5c, 5d, 6d, and 8b The optimized structures were used in a TD-DFT calculation using the hybrid exchangecorrelation functional CAM-B3LYP. First four dominant transitions of the first excited state for 5c regarding to the oscillatory strength: 1) 256 nm, oscillator strength: 1.6126, orbitals involved: HOMO-1 LUMO, HOMO LUMO, HOMO LUMO+1 2) 248 nm, oscillator strength: 0.4607, orbitals involved: HOMO-1 LUMO+1, HOMO LUMO, HOMO LUMO+1 3) 218 nm, oscillator strength: 0.0335, orbitals involved: HOMO-4 LUMO, HOMO-4 LUMO+2, HOMO-3 LUMO, HOMO-2 LUMO, HOMO-1 LUMO+1, HOMO-1 LUMO+5, HOMO LUMO+5 4) 203 nm, oscillator strength: 0.3949, orbitals involved: HOMO-5 LUMO, HOMO-4 LUMO, HOMO-1 LUMO+2, HOMO-1 LUMO+3, HOMO LUMO+2, HOMO-1 LUMO+3 First four dominant transitions of the first excited state for 5d regarding to the oscillatory strength: 1) 258 nm, oscillator strength: 1.2547, orbitals involved: HOMO-2 LUMO+4, HOMO-1 LUMO, HOMO LUMO 2) 244 nm, oscillator strength: 0.0006, orbitals involved: HOMO-6 LUMO+2, HOMO-5 LUMO, HOMO-2 LUMO+2, HOMO LUMO+2 3) 237 nm, oscillator strength: 0.0007, orbitals involved: HOMO-5 LUMO, HOMO-4 LUMO, HOMO-4 LUMO+4, HOMO-2 LUMO+2, HOMO-2 LUMO+3, HOMO- 1 LUMO+3, HOMO LUMO+3 4) 236 nm, oscillator strength: 0.0807, orbitals involved: HOMO-7 LUMO+4, HOMO-6 LUMO+2, HOMO-3 LUMO+1, HOMO-1 LUMO+1, HOMO-1 LUMO+4, HOMO LUMO+1, HOMO LUMO+4 First four dominant transitions of the first excited state for 6d regarding to the oscillatory strength: 5) 298 nm, oscillator strength: 1.6697, orbitals involved: HOMO-1 LUMO, HOMO LUMO, HOMO LUMO+3 47

6) 237 nm, oscillator strength: 0.5622, orbitals involved: HOMO-1 LUMO, HOMO-1 LUMO+1, HOMO LUMO+1 7) 213 nm, oscillator strength: 0.0740, orbitals involved: HOMO-5 LUMO, HOMO-4 LUMO, HOMO-3 LUMO, HOMO-1 LUMO,HOMO-1 LUMO+1,HOMO-1 LUMO+3,HOMO LUMO+1,HOMO LUMO+2 8) 210 nm, oscillator strength: 0.0784, orbitals involved: HOMO-7 LUMO, HOMO-4 LUMO, HOMO-3 LUMO, HOMO-2 LUMO, HOMO LUMO, HOMO LUMO+3 First four dominant transitions of the first excited state for 8b regarding to the oscillatory strength: 1) 278 nm, oscillator strength: 1.4044, orbitals involved: HOMO-2 LUMO+2, HOMO-1 LUMO+1, HOMO LUMO 2) 248 nm, oscillator strength: 0.1371, orbitals involved: HOMO-7 LUMO+3, HOMO-6 LUMO, HOMO-6 LUMO+1, HOMO-5 LUMO, HOMO-2 LUMO, HOMO-1 LUMO+3, HOMO-1 LUMO+4, HOMO LUMO+2, HOMO LUMO+3, HOMO LUMO+4, HOMO LUMO+5 3) 245 nm, oscillator strength: 0.4253, orbitals involved: HOMO-2 LUMO, HOMO-2 LUMO+2, HOMO-1 LUMO, HOMO-1 LUMO+1, HOMO-1 LUMO+2, HOMO LUMO+1, HOMO LUMO+2, HOMO LUMO+3 4) 242 nm, oscillator strength: 0.5791, orbitals involved: HOMO-3 LUMO, HOMO-3 LUMO+2, HOMO-2 LUMO, HOMO-2 LUMO+1, HOMO-2 LUMO+6, HOMO-1 LUMO, HOMO-1 LUMO+1, HOMO-1 LUMO+2, HOMO-1 LUMO+6, HOMO LUMO+1, HOMO LUMO+6 Computed xyz-coordinates of the S 1 State of Pyrazole 5d The excited state geometry of the pyrazole 5d was optimized in a DFT calculation with the B3LYP functional and the 6-311G(d,p) basis set in the program package Gaussian09. XYZ-coordinates of the S 1 state for 5d: C -7.191916-1.799506 0.122896 C -7.062221-0.487260 0.551563 C -5.830716 0.131157 0.469150 48

C -4.699625-0.505457-0.034246 C -4.861505-1.828540-0.455280 C -6.085922-2.471963-0.379791 C -3.380093 0.137923-0.114369 N -3.243238 1.447440-0.348074 N -1.931025 1.690634-0.376809 C -1.178350 0.548012-0.168572 C -2.136000-0.476955-0.004100 C 0.231792 0.436683-0.114880 C 1.149847 1.531282 0.016225 C 2.492071 1.338800 0.077886 C 3.094255 0.025240 0.008912 C 2.161095-1.070692-0.095805 C 0.821238-0.877619-0.147440 C 4.494164-0.168783 0.046728 C 5.089657-1.473466 0.006399 C 6.448682-1.648105 0.045583 C 7.334911-0.560707 0.126403 C 6.774697 0.725064 0.158681 C 5.417583 0.926188 0.122187 C 8.814938-0.771737 0.203244 C -1.508743 3.037209-0.712820 F -5.739787 1.397155 0.919376 H -8.154464-2.291746 0.182370 H -7.898802 0.067430 0.956612 49

H -4.004838-2.350389-0.863598 H -6.177842-3.495701-0.719831 H -1.937723-1.508558 0.229383 H 0.779208 2.540442 0.105558 H 3.120636 2.208599 0.202287 H 2.529386-2.085292-0.144492 H 0.174170-1.738686-0.247396 H 4.462718-2.351362-0.057240 H 6.852459-2.654542 0.011779 H 7.433729 1.585180 0.211928 H 5.050308 1.942121 0.143287 H 9.128478-1.624105-0.403633 H 9.362397 0.111351-0.130105 H 9.130042-0.980409 1.232736 H -0.746240 3.015238-1.490185 H -2.387673 3.555870-1.084539 H -1.128232 3.566098 0.162542 1 singlet a excitation Total energy after PCM correction: -1096.907757 Excitation energy: 0.13392489 Excitation energy / ev: 3.644283216 Excitation energy / nm: 340.2157615 Excitation energy / cm^(-1): 29393.11205 50

Computed xyz-coordinates of the S 1 State of Pyrazole 6d The excited state structure of pyrazole 6d was optimized in a DFT calculation in the gasphase with the B3LYP functional and the def-tzvp basis set in the program package turbomole. The minimum structure was confirmed by a numerical frequency analysis. XYZ-coordinates of the S 1 state for 6d: C -3.758800 0.146900-0.017100 C -2.558200-0.521200 0.005200 C -1.545700 0.478500-0.058400 N -2.128900 1.710600-0.131900 N -3.435400 1.497700-0.103600 C -4.326600 2.639900-0.231200 C -5.125300-0.380000 0.023400 C -0.121300 0.339000-0.042300 C -6.112600 0.171500 0.852800 C -7.387200-0.379400 0.895700 C -7.697700-1.491500 0.118100 C -6.723100-2.053200-0.702600 C -5.448900-1.503900-0.750900 C 0.727800 1.481100-0.059000 C 2.091900 1.353500-0.038600 C 2.733400 0.074500-0.002000 C 1.864000-1.066600 0.013800 C 0.499700-0.936500-0.005600 C 4.169900-0.061300 0.016200 C 5.034800 1.036400-0.282700 51

C 6.401100 0.906300-0.276700 C 7.010500-0.335200 0.046700 C 6.169600-1.436200 0.355500 C 4.803500-1.303800 0.331700 C 8.415900-0.470700 0.060700 N 9.572300-0.581900 0.072600 H -2.429800-1.585500 0.099600 H -3.834900 3.374800-0.864400 H -5.264800 2.324100-0.680400 H -4.522200 3.086500 0.746600 H -5.876000 1.012700 1.492000 H -8.136200 0.053100 1.547800 H -8.691800-1.920000 0.154400 H -6.957900-2.917600-1.311600 H -4.698300-1.932300-1.403600 H 0.273900 2.462900-0.079800 H 2.693900 2.250900-0.023700 H 2.290300-2.059300 0.010700 H -0.112600-1.830100-0.003100 H 4.615900 1.994800-0.558000 H 7.028100 1.753600-0.524000 H 6.618200-2.386800 0.614700 H 4.204300-2.164100 0.598000 ENERGY = -1050.4850749196 a.u.; # of cycles = 32 52

The emission spectrum of compound 6d was computed after the numerical frequency analysis using the implementation egrad in the program package turbomole. 1 singlet a excitation Total energy: -1050.485076059829 Excitation energy: 0.12196734 Excitation energy / ev: 3.3189 Excitation energy / nm: 373.57 Excitation energy / cm^(-1): 26768.7372 Oscillator strength: velocity representation: 1.256849456584993 length representation: 1.313413816131701 mixed representation: 1.284818722329036 Dominant contributions: occ. orbital energy / ev virt. orbital energy / ev coeff. ^2*100 88 a -5.73 89 a -2.20 97.5 53