Artificial Intelligence. 8. Inductive Logic Programming

Σχετικά έγγραφα
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #



Lecture 2. Soundness and completeness of propositional logic

The Simply Typed Lambda Calculus

Matrices and Determinants

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

C.S. 430 Assignment 6, Sample Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fractional Colorings and Zykov Products of graphs

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Finite Field Problems: Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Other Test Constructions: Likelihood Ratio & Bayes Tests

Les gouttes enrobées

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Homework 3 Solutions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Numerical Analysis FMN011

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Approximation of distance between locations on earth given by latitude and longitude

Statistical Inference I Locally most powerful tests

derivation of the Laplacian from rectangular to spherical coordinates

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Homework 8 Model Solution Section

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The challenges of non-stable predicates

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Démographie spatiale/spatial Demography

Every set of first-order formulas is equivalent to an independent set

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Editorís Talk. Advisor. Editorial team. Thank

EE512: Error Control Coding

Example Sheet 3 Solutions

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

tel , version 1-21 Mar 2013

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία

PARTIAL NOTES for 6.1 Trigonometric Identities

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ZZ (*) 4l. H γ γ. Covered by LEP GeV

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

CRASH COURSE IN PRECALCULUS

Galatia SIL Keyboard Information

Proving with Computer Assistance Lecture 2. Herman Geuvers

If we restrict the domain of y = sin x to [ π 2, π 2

Elements of Information Theory

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 7.6 Double and Half Angle Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

From the finite to the transfinite: Λµ-terms and streams

( y) Partial Differential Equations

TMA4115 Matematikk 3

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Reminders: linear functions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Right Rear Door. Let's now finish the door hinge saga with the right rear door

"!$#&%('*),+.- /,0 +/.1),032 #4)5/ /.0 )80/ 9,: A B C <ED<8;=F >.<,G H I JD<8KA C B <=L&F8>.< >.: M <8G H I

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 3: Ordinal Numbers

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Congruence Classes of Invertible Matrices of Order 3 over F 2

Solutions to Exercise Sheet 5

Tridiagonal matrices. Gérard MEURANT. October, 2008

Second Order Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

About these lecture notes. Simply Typed λ-calculus. Types

Abstract Storage Devices

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

An Inventory of Continuous Distributions

1) Formulation of the Problem as a Linear Programming Model

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Transcript:

Artificial Intelligence Artificial Intelligence 8. Inductive Logic Programming Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de Course on Artificial Intelligence, summer term 2007 1/11 Artificial Intelligence 1. Inductive Logic Programming 2. FOIL 3. Inverse Resolution Course on Artificial Intelligence, summer term 2007 1/11

Artificial Intelligence / 1. Inductive Logic Programming Inductive Logic Programming (ILP) Given some positive examples for a target predicate P, say daughter(mary, ann) daughter(eve, tom) and some negative examples daughter(tom, ann) daughter(eve, ann) as well as some descriptive predicates Q of the entities envolved female(ann) female(eve) parent(ann, mary) parent(tom, eve) find a hypothesis definition / rule of P in terms of Q that 1. covers all the positive examples, 2. does not cover any negative example, and 3. is sufficient general. Course on Artificial Intelligence, summer term 2007 1/11 Artificial Intelligence / 1. Inductive Logic Programming Trivial Solutions daughter(x, Y ) covers all positive examples, but unfortunately also all negative examples. false covers no negative example, but unfortunately also no positive example. (X = mary Y = ann) (X = eve Y = tom) daughter(x, Y ) covers all positive examples, covers no negative example, but unfortunately does not generalize (new examples will fail). Course on Artificial Intelligence, summer term 2007 2/11

Artificial Intelligence / 1. Inductive Logic Programming Two principal approaches: top-down: generalization of decision trees (FOIL). inverse deduction (inverse resolution). Course on Artificial Intelligence, summer term 2007 3/11 Artificial Intelligence 1. Inductive Logic Programming 2. FOIL 3. Inverse Resolution Course on Artificial Intelligence, summer term 2007 4/11

FOIL First Order Inductive Learner (FOIL; Quinlan 1990). Idea: iteratively build rules that cover some positive examples, % U U «ŒŽ ƒ ˆ<S Œ@ kœ< 4 s b tš < IR} t kœžœ@ k Š ¹ŝ < Ž i ±Ÿ ŒsŸ O ŒŽ kœ ŒŽ s ŒŽ Lˆ@ k Š,H ŒŽ ±Ÿ ~% Œ> ª ŝ k, Hƒ ŝ k qŝ Œ/ ˆ-,HŒ)ŝ Œ/ ŒŽ ŒŽ k /Œ,H k R qŝ E ªiöŝ k, t k,9 ŒŽ < %MŸ'&Ÿ'&Ÿ4} g Ž k g s b kœžœ ƒ ŝ k Ë ŒŽ Ž kœ R k ŽŒŽ k k s O ŝ Œ0/ ˆ-,H ŒŽ Ž b J s ŒŽ k H Ž kš < ŝ R J s ŒŽ k O J R k ŽŒŽ k k Ÿ ŒŽ ˆ «Œ)Œ0/ ˆ-,H ŒŽ.ŝ kœ) s ŒŽ ŽŒŽ k ŝ k «ŒŽ > ª Ÿ'~% Œ<, ˆq ƒjœg ŒŽ ŒŽ ˆ ŒŽ ) A kœ R k ŽŒŽ k k ƒ ŝ kœž ) A Œg Ž kœž IR} U k /ŝ k kš,h M \Ÿ O J s ŒŽ k L Ž kš < ) $> ª ƒ ŝ k qŝ Œ ˆ-,HŒ4ŝ O Œ ƾºs¼<Á,»³ ; s 2L k, %MŸ'&ŸË R k ŽŒŽ k k A s ' Œ@ Š ŽŒŽ J s ŒŽ k g ˆ t?,t s ' kœž Š ŽŒŽ ŒŽ k k kš σ k Œ 8,HŒŽ ŒŽ ŒŽ < %MŸ'&Ÿ'& ŝ ŒŽ k Ž k ƒjœž / A k,hœ,h kœ> Œ< Æŝ \ ) ŒŽ < BMŸ % ŝ BMŸ ž Ÿ ~% Œ/ ƾºs¼<Á,»³ ) s Œ > ª ŝ k, 2L k, ž Ÿ š ŝ k kš,hœž but no negative ones. Once a rule has been found, remove the positive examples covered and proceed. to build a rule: add literals to the body until no negative example is covered if literals introduce new variables, extend example tuples by all possible constants. Course on Artificial Intelligence, summer term 2007 4/11 Œ> «ŒŽ kœ R k ŽŒŽ k kœž U kœ< % s Ï ŝ Œ0/ ˆ-,H ŒŽ U Œ> ŝ Š ŝ Œƒ ŝ s i tš < IR} t kœžœ> k ˆ-, Ž ŝš kœž Ž M ŒŒ0/ ŒŽ k ŝ \ƒ ŝ Æ k Š / O R ŒŽ Œ L iŝ L UŒŽ Eŝ L ŒË kœqŝ k Æ FOIL / Algorithm ŒŽŠ k Ž ŝ ; Œ@ ŒŽŠ k Ž LŠ kœž (1/2) ŝ > Œ Ž k ŒŽ k ˆMŸ 7#9 J"= : H J 8 I 9 7#9 J"= `, K `,.0/12/34 (;E=?U @ >( * `!, ) &% 24.% &24 4 $SV 7Q N( *, @ `, Z R? <(;? #$E=< @N?? =A?U b N@, 7 7 N N@ - N X b `, 56#$E= =M;: #$! 6(;E=? 7W 'D? # N@, N X?U @$ ` 240 ( + @ ` `, YZIV4 B\[?- (;<7 @$(;?U 6=< Ä 7), ^ Y_4E1Y_4ba F, [Lavrac/Dzeroski 1994] Course on Artificial Intelligence, summer term 2007 5/11

U S FOIL / Algorithm (2/2) % U U 7#9 J"= P4 H J 8F;@ I #7: # 7#9 J"= M <( )?U @ `, M(*?? 6( * `, `, G B\[ /?!"# $&% c 7 " 6?U (' 7 7Q N "<7N'!*) 78(;?U* (; S `!*) ',?U# N X <( )?U @ S 6 N 6';:< b' > *! 6 Ä - Ä 'D+', @ ` S-, (;? #$, /<I % G B\[ / ^ Y_4E1Y_4 *, Ž «ŒŽ k ; Œ kœ< s @ Š ŒŽ }Ÿ ~% Œ ŒŽ ŝ @ )ŒŽ ŒŽ ;ŝ ˆ, s Œ t?, / @SG1U G l l l4g > k@>+ 4ŸA,HŒ s U Œ «sŝ k R ŝƒ ŒŽ @SG1U G l l l4g 4ƒJŒŽ A Œ m«sŝ k ŝƒ ŒŽ gŝ kœqŝ M Ž ŽŠ k k / 3} 5/.cSG l l l4g-.10(2 34 O Œ% k,hœoŝ kœ Œ< 1/4cSG l l l4g-415 #6 ±Ÿ ŒsŸ IR k Š ŽŒŽ ƒ Œ ŒŽ ŝ ŸE~% Œ kœ< 1 s m Š ŒŽ SE Ž «ŒŽ kœž ƒ H Ž ŝš kœ.3 S O Œ4 kœ< > s k Š.&h : 496 R} Š ŒŽ Æŝ ˆ % s D7.cSG l l l4g.10(2 3 G84cSG l l l4g-415 #6dI FOIL g t 4 O Æ Œ ƒj M / Example SGbU+G l l l4g SG% kš ŒsŸ/ k Š Ž )ˆ/ Œ< G ŝ / kœ< Sgŝ ˈ/ kœ< Ë s 1Œ0/ ŒŽ k Ë s 1 Œ Š ŒŽ ˆ R ˆ» qŝ 4ƒJŒbŒ0/M kœž k kœž g Œ' kœž ˆ ŝ ŝ ŒŽƒ ˆ1 ŒŽ R,H s ƒ ˆq @ ˆ SU U Œ ˆ Š ŝ k s % U Ï O. Œg kœž U ˆ Ž k kœž k J @ H ŒŽ ŝ }Ÿ 1N$NO6!L3h ~Rŝƒ Œž Ÿ šg Š ˆ ŒŽ U Œ> ca+6&3 S1 E:* 580[M 6 N ª G k JŒŽ Ž ŝ ˆ ŝ k, A Œ ¹ˆ-, R ; kœž!s =? N!G c ˆ g k ƒ Œ,T t k, ŒŽ < š Ÿ ž Ÿ.~% ŒH kœqŝ k Æ Æŝ g O S C& 3 S šhl ** Ž ŝš kœ 3 S :* 580[M 6 B6HG >'= 6 N G 7ŸL~% Œ@ ŝ \ qŝ Ï ŝ H kœ<!so Ž Æŝ >ŝ S C& ŝ Œ0/ ˆ-,H ŒŽ Ž >'=WG c U s m O Æ S c6 =?*h ŝ kœo J k «Œ 6 S C& Eŝ U 4 ŒŽ ˆ «Œ S 6 B6HG c &,Ÿ 2U k A ŒŽ ŝ 47 S S c6 =?*h *Ml Bsž 6 > «ŒŽ g k kœë Œ@ Œ< G R C& qŝ \ ŝ @ kœ< 1N$NO6!L3h ca+6&3u E:* 580[M 0U s R Š ŒŽ O Ž «ŒŽ kœž ;ƒ?3u O Æ/ Ž Æŝ % 6 N G c6 =?*h 6 U J k «Œ 0U U =? N!G c & Lŝ Œ@ ŒŽ ˆ «ŒË Š Œ U š,ÿ U 2L. Œ@ kœž Ž C& 3Ü *Ml'/-B ŒŽ ŝ bu ga1 NO6! 6 B6HG >'= 2G %. ŒËƒJ M ) s b Ž ŝš kœ 3U k Š ŽŒŽ Ž U š ŝš kœ 3 > O ˆ qŝ ŝ kœ< 6 B6HG c 1 Ž Æŝ J k «ŒO Š ŒŽ ŽŸ ~%Š Ž ˆ Ž k ŒŽ bu a1 NO6! 2G 47 bu šhl š+1 C& 1N$NO6!L3h ca+6&3 E:* 580[M 6 N G c6 =?*h 6 G7a1 NO6! 2G =? N!G c C& 3 *Ml ** 6 B6HG >'= [Lavrac/Dzeroski 1994] Course on Artificial Intelligence, summer term 2007 6/11 * ~Rŝƒ Œgž Ÿ š > ª ŝ ŽŒ t 1 Œ ¹ˆ-,H H kœž ˆ k ƒ Œ,/Ÿ Ž ŝš kœ#3 O Æ/ Ž «ŒŽ k H ŒŽ ˆ «Œ> Š ŒŽ 1 % ŒŽ ŒŽ ˆ ŒŽ \Ÿ } ˆ/ J k «ŒH ŒŽ ŝ E O Œ< Œ0/M ŒŽ ŝ OŠ ŝ S ŒŽ «sŝ k ŝƒ ŒŽ g ŝ ŒŽ / Œ.ƒJ M s % Œ Ž ŝš kœs E Œ k Œ ŝ k g s 1 Œ Š ŒŽ 4 Œ [Lavrac/Dzeroski 1994] Course on Artificial Intelligence, summer term 2007 7/11

Ÿ S ž ž FOIL / Example % U U 1N$NO6!L3h ca+6&3 S1 E:* 580[M 6 N G!S =? N!G c S & 6 B6HG >'= S & >'=WG c S ]a1 NO6! 2G 6 B6HG c C& 1N$NO6!L3h ca+6&3u E:* 580[M 6 N G a1 NO6! 2G 0U =? N!G cegt=? N U =? N!G ceg >'= 6 B6HG >'=WG6 B6 6 B6HG >'=WG 4< >'=WG cegt=? N U >'=WG ceg >'= 6 B6HG cegt=? N 6 B6HG ceg >'= ~Rŝƒ Œ ž Ÿ'& ~% ŒAŒ Š ŒŽ O > ª Ÿ ŒŽ < H s Œ< «sŝ k ŝƒ ŒŽ Ë Œ ŽŠ k kœž ŝ ; kœ< s [Lavrac/Dzeroski 1994] ŒŽ S } S ŝ S ŸH UŒ<«ŒŽ Ž R U Œ< «sŝ k ŝƒ ŒŽ ŝ kœ. k Š ŽŒŽ \ Ë qŝ ŝ JŒŽ ˆ S I ŝ &) & S I Ÿ } s > Œ) J k «ŒA Š ŒŽ >ŝ kœ) kœž kœž kœž ŒŽ ƒ Œ).,H kœa ŠIR ŒŽ A S, L Œ M t?, Literal ˆ ŝ ŒŽ Selection ƒ kœž ŒŽ < ŒŽ ŝ 4ˆ-,H Š 47 3 SG3 3 3 S,Ÿ ~% Œ/ ŒŽ ŝ O Œ/ ŒŽ H ŝ kœž ŒŽ < ŒŽ ˆ HŒqŝ Æ ŒŽ \Ÿ 3 SG3 Ë Æŝ t ' UŒŽ ŒŽ M t?, ˆ @ ŝ \ ±Ÿ ŒsŸ ŒË»³ "q¾á,ãhâs ¹ ±¾³ Âs»³ 3 3 S!U¼< Ç ¼ ƒ. Œ ¹ŝ < \ ŒbŒ0/ ˆ-,H Œs Š ˆ ŒŽ > g~rŝƒ Œbž Ÿ š! 3 S h >+8OU U U U šhl **M 3Ü h >+8OU U U S *Ml'/-BM mŝ 3 h >+8OU U U *Ml **MŸ 2L ` S n U & \ UŒ ˆq«Œ 47 S & 3 S i I(c i ) := log 3Ü & *Ml ž& *Ml Bsž ŝ / k P,H ŝ k 47 bu & *Ml'/-B 2 nšhl š+1mÿ i + n i ~% Œ. ŒŽŠ k.ŝ O g t 4Œ('H Ž ŒŽ @ kš R O Æ kœž k J k ƒ ŒH t Œ/Œ('H Ž ŒŽ < s > ª ŸbªÏŒ< LƒJŒ/ˆ J k «Œ ŒŽ ŝ U O 47 3 3 S,Ÿ, ˆq Ž Æŝ Œ< «sŝ k ŝƒ ŒŽ ŝ ŒŽ @ kœ R ŝ ŽŒ,HŒŽ O «sŝ k ŝƒ ŒŽ > qŝ Œ<«ŒŽ Ž kœqŝ kœ Ÿ / kœž «ŒŽ Ž kš Æ kœž ŝ ŽŒ,HŒŽ qŝ ˆ ƒjœž k Š ŽŒ  kœ< S> Ž Æŝ A Š ŒŽ Ž Course on Artificial Intelligence, summer term 2007 8/11 Let n i be the number of positive examples in step i, n i be the number of negative examples in step i. information: If the new literal does not introduce new variables, n i+1 n i and n i+1 n i. But if new variables are introduced, this may not hold anymore. Denote by n i at least one tuple in E i+1. weighted information gain: the number of positive tuples in E i represented by WIG(L i, c i ) := WIG(c i+1, c i ) := n i (I(c i ) I(c i+1 )) Select the literal with the highest weighted information gain. Course on Artificial Intelligence, summer term 2007 9/11

Artificial Intelligence 1. Inductive Logic Programming 2. FOIL 3. Inverse Resolution Course on Artificial Intelligence, summer term 2007 10/11 Artificial Intelligence / 3. Inverse Resolution Resolution: Given clauses C 1 and C 2, infer resolvent C. C 1 := C 1 {R}, C 2 := C 2 { R }, Rθ = R θ C := C 1θ C 2θ Inverse resolution: Given resolvent C and clause C 1, infer clause C 2. C 1 := {R} C 2 := { R } C, R θ = Rθ, C θ = Cθ Parent(x,z) > Parent(z,y) > Grandparent(x,y) Parent(George,Elizabeth) {x/george, z/elizabeth} Parent(Elizabeth,y) > Grandparent(George,y) Parent(Elizabeth,Anne) {y/anne} Grandparent(George,Anne) Grandparent(George,Anne) Course on Artificial Intelligence, summer term 2007 10/11

Artificial Intelligence / 3. Inverse Resolution Inverse resolution is a search, as there may be many pairs of clauses leading to resolvent C: Parent(Elizabeth, Anne) Grandparent(George, Anne) Parent(z, Anne) Grandparent(George, Anne) Parent(z, y) Grandparent(George, y)... Many techniques available for narrowing search space: eliminate redundancies, e.g., by generating only the most specific hypothesis. restrict proof strategy, e.g., to linear proofs. restrict representation language, e.g., to Horn clauses. use different inference method, e.g., model checking or ground propositional clauses. Course on Artificial Intelligence, summer term 2007 11/11