ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
|
|
- Νικολίτα Φωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΟΡΙΘΜΟΙ Άνοιξη 06 - I. ΜΗΛΗΣ P NP και NP-complete προβλήματα (Κλάσεις Πολυπλοκότητας) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
2 Γιατί για πολλά προβλήματα δεν έχουμε πολυωνυμικούς αλγορίθμους? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
3 Γιατί για πολλά προβλήματα δεν έχουμε πολυωνυμικούς αλγορίθμους? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 3
4 Γιατί για πολλά προβλήματα δεν έχουμε πολυωνυμικούς αλγορίθμους? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 4
5 Κλάση πολυπλοκότητας P Όλα τα προβλήματα για τα οποία υπάρχει αλγόριθμος με O(poly Ι ) πολυπλοκότητα χειρότερης περίπτωσης όπου Ι το μέγεθος της κωδικοποιημένης εισόδου του προβλήματος Προβλήματα P: EXP GCD FIBONACCI SORTING SHORTEST PATHS MST PRIMES: O (log n) [00] και πάρα πολλά άλλα Προβλήματα χωρίς O(poly Ι ) αλγόριθμο 0- KNAPSACK SUBSET SUM: O(nW) SAT: O( n ) CLIQUE LONGEST PATH TSP και πάρα πολλά άλλα επίσης ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 5
6 Decision s. Optimiation problems Προβλήματα ΑΠΟΦΑΣΗΣ (decision) : Προβλήματα με απάντηση ΝΑΙ/ΟΧΙ Π.χ. PRIMES SUBSET SUM SAT SEARCH Προβλήματα βελτιστοποίησης (optimiation) : Μεγιστοποίηση/Ελαχιστοποίηση μιας συνάρτησης κόστους Π.χ. TSP (Traeling Salesman Problem) I: Complete weighted digraph G = (V E) Q: Find a minimum length tour of G CLIQUE (tour: a cycle isiting each node once) I: A graph G=(VE) Q: Find the maximum subset C V s. t. u C: (u) E (the maximum complete subgraph of G) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 6
7 Optimiation problems Έχουμε δει ότι υπάρχουν δύο ερωτήσεις /εκδοχές για ένα πρόβλημα βελτιστοποίησης: Ερώτηση κόστους: Να βρεθεί το κόστος μιας βέλτιστης λύσης Ερώτηση λύσης: Να βρεθεί μια βέλτιστη λύση (η ίδια η λύση) Μια τρίτη ερώτηση εκδοχή για ένα πρόβλημα βελτιστοποίησης: Ερώτηση/εκδοχή απόφασης (decision ersion) : Δεδομένου ενός φράγματος B υπάρχει λύση με - κόστος B (για προβλήματα ελαχιστοποίησης) ή - κόστος B (για προβλήματα μεγιστοποίησης)? TSP CLIQUE Q: Find the cost of a minimum tour Q: Find the sie of max C Q: Find a tour of minimum cost Q: Find the ertices of max C Q3: Is there a tour of cost B? Q3: Is there C V s.t. C B? Για κάθε πρόβλημα βελτιστοποίησης μπορούμε τελείως εύκολα να ορίσουμε το αντίστοιχο πρόβλημα απόφασης (χρήση φράγματος Β) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 7
8 Why decision problems? Για κάθε πρόβλημα βελτιστοποίησης μπορούμε τελείως εύκολα να ορίσουμε το αντίστοιχο πρόβλημα απόφασης ΓΙΑΤΙ προβλήματα απόφασης? ) Μπορούν να κωδικοποιηθούν ως γλώσσες (ιστορικοί λόγοι) ) Χρησιμοποιούνται για τον ορισμό των κλάσεων πολυπλοκότητας 3) Είναι ισοδύναμα με τα αντίστοιχα προβλήματα βελτιστοποίησης Έστω ότι υπάρχει Ο(poly) αλγόριθμος για την ερώτηση απόφασης: τότε υπάρχουν Ο(poly) αλγόριθμοι και για τις ερωτήσεις κόστους και λύσης! Για τον ορισμό των κλάσεων πολυπλοκότητας μελετάμε ΜΟΝΟ προβλήματα απόφασης!!! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 8
9 Decision s. Optimiation problems () Ο(poly) αλγόριθμος για την ερώτηση απόφασης Ο(poly) αλγόριθμος για την ερώτησης κόστους! Example: TSP Έστω OPT το κόστος ενός βέλτιστου tour w min = min {w(e) e E} w max = max {w(e) e E} Ισχύει ότι nw min OPT nw max Χρήση της ερώτησης «υπάρχει tour κόστους B" για κατάλληλες τιμές του B Για ποιες τιμές του B? Για όλες: O(n max ) τιμές NOT O(poly( I ) Βinary search: O(logn+log max ) τιμές O(poly( I )!! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 9
10 Decision s. Optimiation problems () O(poly) αλγόριθμος για την ερώτηση απόφασης Ο(poly) αλγόριθμος για την ερώτηση λύσης! Example: TSP (cont.) Find OPT as in () T= { } // an optimal tour for each edge e E: x =w(e) w(e) = w(e) + M // increase the weight of e "is there a tour of cost OPT? " if NO: T=T U {e} // e is in an optimal tour w(e)=x // restore the weight of e // if YES then e is not in any optimal tour // keep its weight to w(e) + M O( E ) iterations - O(poly I ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 0
11 Complexity Class NP Όλα τα προβλήματα για τα οποία υπάρχει ένας Non-deterministic Polynomial (NP) αλγόριθμος Ένα πρόβλημα Π NP iff για κάθε στιγμιότυπο του Π με απάντηση ΝΑΙ υπάρχει ένας Ο(poly) αλγόριθμος επαλήθευσης (πιστοποιητικό - certificate) δηλ. μπορείτε να πείσετε κάποιον για ένα ΝΑΙ στιγμιότυπο σε Ο(poly) χρόνο. Example: TSP ΝΑΙ στιγμιότυπο: δείξτε (μαντέψτε) μία λύση! έλεγχος ότι είναι διαδρομή; υπολογισμός κόστους ; είναι το κόστος B ; O(n) time in total OXI στιγμιότυπο : έλεγχος όλων των διαδρομών! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
12 P and NP Π NP: Για κάθε στιγμιότυπο Ι του Π υπάρχει ένας O(poly) αλγόριθμος Ο αλγόριθμος αυτός: - Αν το Ι έχει λύση βρίσκει (και επαληθεύει ) μία τέτοια λύση - Αν το Ι δεν έχει λύση το αναφέρει Άρα P NP P NP ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
13 Polynomial Reductions A B: προβλήματα απόφασης Το A ανάγεται πολυωνυμικά στο B (A p B) εάν υπάρχει ένας πολυωνυμικός μετασχηματισμός R ο οποίος για κάθε είσοδο x για το A παράγει μια είσοδο R(x) για το Β τέτοια ώστε: το Β με είσοδο R(x) έχει απάντηση ΝΑΙ εάν και μόνο εάν το Α με είσοδο x έχει απάντηση ΝΑΙ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 3
14 Polynomial Reductions Για να λύσουμε το Α με είσοδο x αρκεί να : μετασχηματίσουμε την x στην R(x) λύσουμε το Β με είσοδο R(x) O(poly) for R(x) + O(poly) algorithm for B O(poly) algorithm for A το Α δεν είναι πιο δύσκολο από το Β. ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 4
15 Complexity Class NP-complete Ένα πρόβλημα Π NP-complete iff ) Π NP ) Για κάθε άλλο Π' NP : Π' p Π (Όλα τα άλλα προβλήματα στο ΝΡ ανάγονται στο Π) ΝP-complete problems: capture the essence and the difficulty of NP the most difficult problems in NP Αποδείξτε ότι το Π είναι NP-complete:. Αποδείξτε ότι Π NP. Αποδείξτε ότι Π' NP : Π' p Π???!!! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 5
16 Complexity Class NP-complete Ευτυχώς: ) έχουμε το Cook's Theorem [Cook 97 Lein 97]: SAT is NP complete ( Π' NP : Π' p SAT) ) η σύνθεση πολυωνυμικών αναγωγών είναι πολυωνυμική Αποδείξτε ότι το Π είναι NP -complete:. Αποδείξτε ότι Π NP. Αποδείξτε ότι Π'NP-complete: Π' p Π (Διαλέξτε ένα πρόβλημα Π'NP-complete: και αποδείξτε ότι Π' p Π) S. Cook R. Karp τα πρώτα NP-complete προβλήματα (97) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 6
17 Complexity Class NP-complete Θυμηθείτε ότι P NP Ποιος είναι ο χάρτης της NP? Kurt Gödel Αυτό πιστεύουμε Αδύνατο Απίθανο Ladner s theorem H ΕΡΩΤΗΣΗ στη Θεωρητική Πληροφορική Για κανένα NP-complete πρόβλημα δεν είναι γνωστός O(poly) αλγόριθμος Εάν υπάρχει για ένα υπάρχει για όλα! Τότε P=NP! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 7
18 Tree of reductions (partial) Cook s Th. Π in NP SAT 3-SAT MAX -SAT CLIQUE / IS / VC 3-DM 3- GC ZOE SUBSET SUM HP / HC 0- KNAPSACK TSP / Δ -TSP Polynomial Γενίκευση του Π Πρόβλημα Π Ειδική περίπτωση του Π NP -complete ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 8
19 3-SAT (CNF) 3-SAT Instance: a 3-CNF boolean formula (all φ s clauses hae 3 literals) Question: Is satisfiable? e.g. ( x y ) ( x y ) ( y x) ( y x) n = # ariables of m = # clauses of ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 9
20 3-SAT is NP-complete. 3-SAT is in NP Gien an assignment we just check that each clause is TRUE Complexity: # ORs =m that is O(m). 3-SAT is NP-complete By a reduction from SAT to 3-SAT We will transform each clause to a set of 3-literals clauses Independently for each clause based on its length k k = k= k=3 k >3 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 0
21 3-SAT is NP-complete k= that is C = { } We use new ariables We replace C with new clauses C ' C' C' { } { } If C is TRUE then C is TRUE If C is TRUE => =T or =T => C =T since both clauses of C include both and If C is TRUE then C is TRUE If C is TRUE => C i is TRUE i= Consider both assignments for =F: C = T => =T or =T =T: C = T => =T or =T that is C = T in both cases ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
22 3-SAT is NP-complete k= that is C = {} We use new ariables and We replace C with 4 new clauses C ' C' C' C' 3C' 4 { } { } { } { } If C is TRUE then C is TRUE C = T => =T => C = T since is in all four clauses of C If C is TRUE then C is TRUE C = T => C i = T i=34 Consider all possible assignments for and =F =F: C = T => = T =F =T: C = T => = T =T =F: C 3 = T => = T =T =T: C 4 = T => = T that is C = T in each case ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I
23 k > 3 that is C = { 3 k } We use k-3 new ariables 3 k-3 We replace C with k- new clauses 3-SAT is NP-complete } { } { '... ' ' ' k C C C C } {... } {... } { 3 3 k k k p p p ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 3
24 k > 3 that is C = { 3 k } If C is TRUE then C is TRUE C=T => there is at least one i =T i k Let p=min index such that p =T Then there is a truth assignment for C : 3-SAT is NP-complete if p i T } { '... ' ' ' k C C C C C i =T i k- otherwise if F p i T i ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 4 } {... } {... } { } { 3 3 k k k p p p
25 3-SAT is NP-complete k > 3 that is C = { 3 k } If C is TRUE then C is TRUE C =T => C i =T i k- Assume that C=F => i = F i k C = T => =T C = T => =T C 3 = T => 3 =T. C k-3 = T => k-3 =T C k- = F C' C' C'... C' k { } { {... contradiction since C = T! k- { } ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 5 k } k } k
26 3-SAT is NP-complete Complexity of the reduction SAT: n ariables m clauses In the worst case all the clauses contain n literals 3-SAT: there will be m(n-) clauses (why?) That is O(nm) clauses ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 6
27 (CNF) SAT ariants POLYNOMIAL -SAT: Each clause has at most literals Horn SAT: Each clause has at most one positie literal NP-COMPLETE 3-SAT: Each clause has at most 3 literals k-sat: Each clause has at most k literals - generaliation of 3-SAT MAX -SAT: I: A -CNF formula of m clauses and integer B m Q: is there an assignment satisfying Β clauses MAX k-sat: I: A k-cnf formula of m clauses and integer B m Q: is there an assignment satisfying Β clauses? - generaliation of 3-SAT; set B=m - generaliation of MAX -SAT ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I 7
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 26 - I. ΜΗΛΗΣ NP-complete προβλήματα ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 26 - Ι. ΜΗΛΗΣ 6 NP-COMPLETENESS II Tree of reductions (partial) Cook s Th. Π NP SAT 3-SAT
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Partition of weighted sets (problems with numbers)
TOPICS IN ALGORITHMS http://eclass.aueb.gr/courses/inf7/ Spring 27 I. ΜILIS Partition of weighted sets (problems with numbers) AUEB / DoI / TOPICS IN ALGORITHMS / Spring 27 / I. MILIS / 6 - PARTITIONS
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Αλγόριθμοι και πολυπλοκότητα NP-Completeness
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness x x x 2 x 2 x 3 x 3 x 4 x 4 2 22 32 3 2 23 3 33 NP-Completeness
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π
Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
conp and Function Problems
conp and Function Problems 1 Ένα πρόβλημα απόφασης λέμε ότι επιλύεται σε μηντετερμινιστικό πολυωνυμικό χρόνο αν υπάρχει ένας μηντετερμινιστικός αλγόριθμος που, εκμεταλλευόμενος μια τυχαία επιλογή, μπορεί
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Chapter 9: NP-Complete Problems
Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Knapsack problems ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2017 - Ι. ΜΗΛΗΣ 10 DP III 1 Knapsack problems ΕΙΣΟΔΟΣ: Σακίδιο χωρητικότητας
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο ΣHMΜY Εισαγωγή Διδάσκοντες: Άρης Παγουρτζής, Δώρα Σούλιου Στάθης Ζάχος, Δημήτρης Σακαβάλας Επιμέλεια διαφανειών: Άρης Παγουρτζής www.corelab.ntua.gr/courses/algorithms
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ 08 DP I 1 Dynamic Programming Richard Bellman (1953) Etymology (at
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων 5: Απαρίθμηση, Αρχή της Θυρίδας, Συνδυασμοί και Μεταθέσεις, Γραφήματα και
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Σχετικά με το Μάθημα Ώρες γραφείου: Δευτέρα Παρασκευή
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 11: Περιορισμοί της Αλγοριθμικής Ισχύος Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Θεμελιώδη Θέματα Επιστήμης Υπολογιστών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Θεμελιώδη Θέματα Επιστήμης Υπολογιστών Μετασχηματισμοί Υπολογιστικών Προβλημάτων Αναγωγές και Πληρότητα Προσαρμογή από
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος Εισαγωγή Εύρεση αλγορίθμου με approx ratio 2 και ½ για τα προβλήματα minimum multicut και integer multicommodity flow αντίστοιχα
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Προσεγγιστικοί Αλγόριθμοι
Κεφάλαιο 12 Προσεγγιστικοί Αλγόριθμοι 12.1 Προβλήματα Βελτιστοποίησης Σε ένα πρόβλημα βελτιστοποίησης σε κάθε στιγμιότυπο του προβλήματος αντιστοιχούν κάποιες εφικτές (feasible) -δηλαδή επιτρεπτές- λύσεις,
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι.
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άνοιξη 2018 Προσεγγιστικοί Αλγόριθμοι Αφορούν κυρίως σε προβλήματα βελτιστοποίησης:
Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 3η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30
NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσhmμy 1η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΠΛΕΟΝΕΚΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ GREEDY CONSTRUCTIVE HEURISTICS Βασικό μειονέκτημα: οι αποφάσεις που
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 8 ΤΕΛΕΙΑ ΓΡΑΦΗΜΑΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου:
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και
A Hierarchy of Theta Bodies for Polynomial Systems
A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 016 - I. ΜΗΛΗΣ AΛΓΟΡΙΘΜΟΙ ΓΡΑΦΩΝ ΙΙΙ Minimum Spanning Trees ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 016 - Ι. ΜΗΛΗΣ 14 - GRAPHS III - MSTs 1 Trees Ένας γράφος T = (V,
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY
Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνο ΣHMΜY 2η ενότητα: Βασικές έννοιες θεωρίας υπολογισμού: υπολογιστικά προβλήματα, υπολογισιμότητα, πολυπλοκότητα Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ 16.00-19.00 (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max