|
|
- Ὀρφεύς Κόρακας
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3 ! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L M 7? H? N? O A P Q R S T U V W X Y P Z T W Q V Q [ \ X ] V ^ _ X Y R W _ ` a S Y V W S V b R T W Q _ X Y R W c P d ^ a b e f Q g _ W S V Q h V S ] W R ` R i Y S _ ` j Q T S _ X Y R W d f h j e G D k? 2 G A H? G H F G 8? m H F E G 8 5 K k l m L J n G 4 H o 1 p ; q ; : r q : H > ; ; : q s t u 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L A v 1 4 G w G O O? D D O O? 6? p x? 4 D 5 C C 5 5 C 6 4 8? H 8 1 E y H 5 C z F 8? H { 1 4 D 1 H 5 A C H 1 E F 8 H? 4 8 7? 8? 4 D C 1 A 8 7? o l } 4?? k 1 E F 8 G 8 5 ~ 5 C? y w? 4 C 5 > p : O G 8? 4 N? 4 C 5 2 F z O 5 C 7? H z 3 8 7? } 4?? B 1 A 8 n G 4? } 1 H G 8 5 p J E A C O 5 C? E z? A 1 H G { { n n n p F p { O 5 C? C { A H O p 7 8 D O p
4 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E ˆ Š ˆ Œ Ž Ž š œ œ ž Ÿ Ž œ œ Ž Ž Ž œ Ž œ œ œ Ž œ Ž ª œ «ª š œ Ž ª Œ ± Ž ª ² ³ œ œ µ Œ Œ ± Ž ª ² µ Œ ³ Ž Ž Œ Ž œ Ž ³ Ž ª Ž ¹ Ž º Ž ª» œ Œ Œ ± Ž ª» œ Œ ³ Ž Ž ¼ Ž œ Ž ¼ ³ Ž ª Ž ¹ Ž º Ž ª œ ½ Ž œ µ Œ ± Ž ª œ ½ Ž œ µ ³ Ž Ž Ž œ Ž ¾ œ œ œ Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : 1 A < s
5 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E š œ œ š œ œ œ œ ª Ž œ ª ª Ž Ž œ š œ ³ œ Ž œ œ ² œ Ž Ž ² Ž ¹ Ž œ ³ ¹ À Ž œ œ œ œ ² œ Ž Á Á À Â Ž œ š œ Ã Ä Å Æ Ç È Ä É Ê Ë Æ Ì È Ë Ì Í Ç Î È Ï Ä Å Æ Ç È Ð Ñ Ò Ã Ê Í Ó ¹ Ž œ œ Ž ª Ÿ Ž ¹ Ÿ À ª ² œ ² œ Ž ± Ž œ ª œ Ÿ Ž ± Ÿ À ¹ Ô ¼ Ô Ž Œ Ô Õ œ œ š œ œ œ Ž œ Ž œ œ œ ³ ² ¹ œ Ö œ Ž Ø œ ² Ž ª š  œ Ž œ Ž œ œ Ž ª Ž œ Ž ª œ œ œ œ Ž ² œ  œ ² ² ² Ž Â» œ Â Ž œ ½ Ž œ ² ² ² Ž Ž Á ± œ Ž œ œ Á ± À Ž Ž º œ Ž Ž œ ² Ž» œ œ Ž œ œ Ž Ž º œ œ ² œ ½ Ž œ œ Â Ž œ ² œ œ œ ² œ ª œ Ž œ š Ž œ œ Ž ª ž Œ Ù ± Ž ª ² œ œ Ù ³ Ž ª Ž ¹ Ž º Ž ª» œ Ù ³ Ž ª Ž ¹ Ž º Ž ª œ ½ Ž œ ¹ Ž œ œ Ž Ž œ ² Ž Ž œ š œ Ž Ž º œ Ž œ Ž š œ ² Ž Ž œ œ Ž œ œ š œ Ž œ  œ œ ² Ž Ž ª œ Ž š œ œ Ž Ž Â Ž º Ž ª Ž Ž Ž Ú Û Ü Š Ý Þ Ü ß à Œ á â ¹ Ž º œ œ š Ž œ œ» œ œ Ž œ Ž Ž Ž» Ž Â Ž Â Ž Ž ½ ã ä Š å Ü ß æ Û ˆ Š Ü à á â œ ½ Ž œ œ Ž Ž º œ Ž œ Ž ç ¹  œ ç œ Ž Â Ž Ž œ» Ž œ Ž ª œ ² è é ê ë ì é í á â ¹ Ž î ± ã ª ² œ Ž œ ï ˆ Û ð ð Š Ü â ¹ Ž œ œ œ Ž œ Ž œ œ ª ² œ ² » œ Â Ž œ ½ Ž œ Ž š œ œ Ž ñ ò ñ ó Û ô Š â «ª ² Ž Ž Ž œ ² » œ Â Ž œ ½ Ž œ œ œ Ž œ œ «³ ¹ «œ ² Ž œ œ œ «³ ¹ «² Â Ž œ œ œ» œ œ ½ Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < 1 A < s
6 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú û ü ý þ ÿ ú ù r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? s 1 A < s
7 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ Ž ² Ž Ž œ š œ š œ š œ Ž œ œ œ Ž œ ² œ œ œ š œ œ Ž š œ œ œ Ž œ œ Ž ² Ž Š ë Û Ü Š ê Û Ü ë Þ ô æ Þ è Ý Û ˆ Š Þ ˆ ê ò é é ô Û è Þ Û ˆ ª Ž œ Ž ª ² Ž œ š œ œ Ž ª œ Ž š ž! " # $ % # & & # ' ( ) ) * ( +, - -. / * ( +, - - ) 0 1 '! " # $ % # & & # ' ) ) " 2, 3 4 5! " # $ % # & & # " & " 2, 3 5 ) ) & # & #! # 6 % ) ) " 2, & # & #! # " & " " 2, 3 5 ) ) r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? 1 A < s
8 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Ú Û ˆ ê å 8 9 : Û ˆ ; Œ ³ Ž œ» Ž Ô Ž Ž œ ª Ÿ Ž œ œ œ Ž ² œ  ë ê Š ˆ œ œ œ Ž ² œ Ž À œ Ž œ  é Þ å Ü ê Ž œ Ž œ ª Ž œ œ Ž À õ ö ø ù ú < ü = ö A ö > 9 Û ˆ ë B ï ˆ Û ð ð Š Ü 9 : Û ˆ ; Œ ³ Ž œ Ž Ž œ Ž Ž œ ª œ Ü œ C ô : Û ˆ ; œ Ž ² œ ² ¹ œ ²  œ Ü ç œ œ  œ Ž š œ œ œ Á ±  œ Þ Ü B œ D š ž E F ² Ž Š ˆ Š Ü õ ö ø ù ú G ü H ö > ø I þ > ö J J ú ù ö > K Þ è ß L Ü Þ è ß M 9 : Û ˆ ; Œ ³ Ž œ Ø Ž Ž œ ª œ Ü œ š ª Ž ž œ Ž ² œ ² œ é Þ å Ü ê œ «ž ² õ ö ø ù ú N ü O P Q ù P Q R ö > r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? t 1 A < s
9 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ Á ±  œ Þ Ü B œ D š ž E F ² õ ö ø ù ú R ü O P Q ù P Q R S T P ù ø Ú Û ˆ ê å V W W X ï Š Ü Y Š Ü 9 : Û ˆ ; Œ ³ Ž œ» Ž œ œ Ž Ž œ ª œ œ Ž Ž š Ž œ Ž Ž œ œ Ž ² ² Ž œ À Ÿ Ž œ œ ± œ Ž ² œ  ò ê ì Û ˆ Û Ü Þ Ü œ œ œ Ž ² œ Ž À œ Ž œ ž é Þ å Ü ê Ž œ Z [ š Ž œ œ Ž À õ ö ø ù ú \ ü = ö < G ö > K Þ è ß L Ü Þ è ß ] 9 : Û ˆ ; Œ ³ Ž œ Ø Ž Ž œ ª ¹ œ ± š Ž š ² œ Ž Â œ C ] œ œ œ Ø œ ² õ ö ø ù ú A ü T ^ ø > ø O ý ú > ø r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? q 1 A < s
10 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ Ü œ š ª Ž ž œ Ž ² œ ² œ é Þ å Ü ê œ «ž ² ç œ œ  œ Ž š œ œ œ Á ±  œ Þ Ü B œ D š ž E F ² õ ö ø ù ú _ ü O P Q ù P Q N ö > r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? r 1 A < s
11 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E a Ä b Å Ç c Ä È Ì Å d Ç b e Ä Ï f Æ È Æ Ñ Å b Ä Å Ç b Ð Ñ g Ç h Ë Ä È h Ì Å Ç Ë Ä i Å Î b Ì Ä È Ï Ä È Ä É j k Ì È Ì Å d Ç b e Å b Ä c c Æ Ë Ž œ œ œ Ž Â Ž Ž ª œ œ Ž Ž œ œ š œ Ž œ  œ œ ² Ž Ž ª œ Ž š œ œ Ž Ž Â Ž º Ž ª Ž Ž Ž œ œ œ ² Ž Ž š œ º œ œ Ž œ Â Ž Ž ª ² œ Ž š Ž Ø Ž œ Ž œ Ž œ ² Ž œ Ø š Ž œ š œ œ Ž œ Ž œ Ž œ Ž ª Ž œ Ž 9 : ˆ Ý Š ˆ Û ð ð Š Ü l œ œ ª ª œ Ž œ Ž Ž œ œ š œ Ž š œ Ž ª  œ Ž Â œ Ž š œ ª Ž œ Œ ª Ž œ Ž Ž œ œ œ Ž ² œ Ü œ Ü ç œ œ  œ Ž š œ œ œ œ Ž ª ² ² Ž Ž º œ œ Á ± Á ± œ Ž œ œ À ž D š ž E F Þ Ü B õ ö ø ù ú m ü H ö > > n ú þ > ö J J ú ù œ Ž œ ² Ž Ž œ Ž œ œ ² š Ž ª Ž œ ² ª œ œ œ ç œ Ž œ š Â Ž œ š ² œ œ œ Ž r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? ` 1 A < s
12 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú û o ü n ú ú ù p ö > P = ö ö n ö > O P Q ù P Q Ž œ œ Ž œ œ œ ² œ œ Ž Ø œ œ Ž ² ª Ž œ «¹ œ œ ª œ œ q ³ «Â Ž ² q ³ Ž ª Ž «œ œ ² œ Ž œ Ž œ r œ Â š œ Ž ª œ œ œ Ž œ š œ Â Œ Ô Œ  œ œ Ž œ ž D š ž E F Û ð è ˆ ð Û : õ ö ø ù ú û û ü U s t?? u n ú ù n P > n ú H ^ P Q t?? J û < A v o v o v û u w P ú? œ œ Ž ª ² ² Ž œ š œ Ž œ œ Ž œ œ ² ž D š ž E F Û ð è ˆ ð Û : x Þ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > ; 1 A < s
13 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú û < ü t t y P ö P ^ ú U > ú ù J P Q > n ú ú p œ œ œ Ž œ œ  œ œ Œ  œ ª Ž œ «¹ œ œ Ž œ œ œ œ Ž œ œ œ Ž œ Ž œ Ž œ œ œ Ž Ž œ œ ; œ œ Ž œ ç œ Ž œ œ Ž Ž Ž œ œ š Ž œ õ ö ø ù ú û G ü n ú þ > ö J J ú ù > > ú Q ú? ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > > 1 A < s
14 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E ¹ Ž œ š œ œ Ž ª Ž ² ² œ Ž œ œ Ž œ œ Ž œ œ Ž ² ² œ  œ œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý W x é Ü ì Û è D š ž E F Û ð è ˆ ð Û : Š Ý z x é Ü ì Û è œ Ž œ Ž œ œ Ž Ž œ œ ª ² œ Ž œ ž ³ Ž Ž œ œ Ž œ Ž œ œ œ Ž œ œ q š ³ Ž Ž œ œ Ž œ Ñ d Æ Å Ë { Ð Ñ «¹  œ ¹ Ž º œ œ «œ œ Ž œ œ  œ œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý W ë é õ ö ø ù ú û N ü t Q ö y P ö > n ú õ ö U > ú ù J P Q ú œ œ Ž œ œ  œ œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý W õ ö ø ù ú û R ü n ú U > ú ù J P Q ú P Q ö y P ú? ö n ø P > U s t?? Õ œ œ œ Ž Ž œ œ  œ œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý z ë é õ ö ø ù ú û \ ü t Q ö y P ö > n ú þ ú Q >? U > ú ù J P Q ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > : 1 A < s
15 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Ô œ œ œ Ž Ž œ œ  œ œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý z õ ö ø ù ú û A ü n ú U > ú ù J P Q ú P Q ö y P ú? ö n ø P > U s t?? œ Ž î ± ã ² ² ² Ž œ š Ž œ ² Ž œ Ž œ Ž Ž œ ½ Ž Ž œ ² Ž œ Ž œ Á ±  Á ± œ Ž œ œ Â Ž Ž Ž ª Á ± š œ œ» œ œ ½ Ž œ Ž š œ ¹ Ž œ š œ Ž œ Ž ª ² Ž œ œ ª œ œ œ Ž š œ ² ¼ œ œ Ž ª ² ² Ž œ œ œ š œ œ ² ž D š ž E F è é ê ë ì é x x Ý Š ô é õ ö ø ù ú û _ ü n ú t y P ö P ^ ú ö J ù Q? ø p µ Ž ² Ž œ Ž œ œ ª ² œ Ž Ž œ œ œ Ž Ž œ œ  œ ž D š ž E F è é ê ë ì é } Û Š Ý W» Ž œ Ž œ œ œ š œ œ Ž ª œ œ õ ö ø ù ú û m ü n ú ø ø J Q? ø p > n ú > ú ú p ú > ö > ú ù J P Q ú ú n o Q > > ú Q ú? r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > < 1 A < s
16 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E ¹ œ Ž œ œ ² œ œ  L 9 x œ Ž œ œ œ Ž œ Œ µ Œ Õ ¼ Œ î œ  œ œ Ž œ Ž œ œ Ž œ Œ Œ Œ µ î œ  œ œ Ž œ œ Ž Ž œ ¹ Â Ž œ œ œ ² œ Ž œ µ Õ š œ Œ Ž ² Ž œ Ž œ œ ª ² œ Ž Ž œ œ œ Œ Ž Ž œ œ  œ ž D š ž E F è é ê ë ì é } Û Š Ý z» Ž œ Ž œ œ œ š œ œ Ž ª œ œ õ ö ø ù ú < o ü n ú ø ø J Q? ø p > n ú > ú ú p ú > ö > ú ù J P Q ú ú n û Q > > ú Q ú? ¹ œ Ž œ œ ² œ œ  L 9 x œ Ž œ œ œ Ž œ Œ µ Œ Õ ¼ Œ î œ  œ Œ œ Ž œ Ž œ œ Ž œ Œ Œ Œ µ î œ  œ Œ œ Ž œ œ Ž Ž œ Œ Œ œ Ž œ Œ µ Œ Õ ¼ Œ î Ž œ Ž œ Ž œ  œ ž D š ž E F è é ê ë ì é } Û Š Ý W x ˆ ˆ x W x å è Þ é ˆ Š z l é è Þ é x z W W õ ö ø ù ú < û ü Q? ø > P I œ Ž ª š œ œ œ œ œ œ ² ² ² Ž ž ~ & - ~., ( ƒ 5-5 ~ & - ( ) -! $ ƒ - ( ) ~ ) ( - ƒ - ) ~, ) ) ( - - r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > s 1 A < s
17 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú < < ü w ú P ö ú? Q? ø p þ > P I ÿ I P ö > ú?» š ² Ž œ œ œ œ ² œ ª œ Ž œ œ «œ L 9 x ² ² Ž Ž Ž ª Ž Ž Ž œ œ Ž œ œ Œ œ œ œ œ  œ œ Ž ª ² ² Ž œ Ø œ ² Ž ž D š ž E F å Û Ü Š Ý Þ Ü ß è Þ é ˆ Š z l é è Þ é õ ö ø ù ú < G ü ú > ö > n ú Q? ø p Q P ø ù ú ö n = ö ù n P ù Œ ³ œ œ ˆ Š Œ ˆ Ž Œ Œ š Ž œ Z [ š Ž õ ö ø ù ú < N ü ú > ö > n ú Q? ø p Q P ø ù ú ö n = ö ù n P ù» œ œ Ž Ž œ œ œ œ  ² œ Ž œ œ œ Ž š œ ž œ œ œ œ œ Ž œ Œ µ Œ Õ ¼ Œ î Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > 1 A < s
18 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú < R ü n ú Q? ø p P ø ù ú w P ú? ö n ö > = ö ù n P ù Œ ³ œ» œ Œ œ Ž œ Œ Œ Œ µ î Ž œ Ž œ Ž œ  œ ž D š ž E F è é ê ë ì é } Û Š Ý z x ˆ ˆ x W x å è Þ é ˆ Š V l é è Þ é x z W W õ ö ø ù ú < \ ü Q? ø > P I» š ² Ž œ œ œ œ ² œ ª œ Ž œ œ «œ L 9 x ² ² Ž Ž Ž ª Ž Ž Ž œ œ Ž œ œ Œ Õ œ œ œ œ  œ œ Ž ª ² ² Ž œ Ø œ ² Ž ž D š ž E F å Û Ü Š Ý Þ Ü ß è Þ é ˆ Š V l é è Þ é õ ö ø ù ú < A ü ú > ö > n ú Q? ø p Q P ø ù ú ö n = ö ù n P ù» œ œ Ž Ž œ œ œ œ ² œ Ž œ œ œ Ž š œ ž œ œ œ œ œ Ž œ Œ Œ Œ µ î Ž œ Ÿ» œ œ Ž Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > t 1 A < s
19 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú < _ ü n ú Q? ø p P ø ù ú w ö@ P ú? ö n ö > = ö ù n P ù Ž œ œ Ž œ œ ² ç œ ² œ Â Ž œ œ ³ ½ «Â Ž œ ² œ Œ Ô ª Ž œ» Ž Ž œ Ž œ œ š Ž ª œ ï Š ˆ ê Ü ô x ò ô x Š ô Ž Ž œ š ² ª Ž Ž œ œ š œ Ž ª Ž œ œ œ œ œ Ž ² œ ò ê ì Û ˆ Û Ü Þ Ü Ž œ é Þ å Ü ê õ ö ø ù ú < m ü þ ú >? ù t w ú n ú = ö < o o G þ ú ù y ú ù Œ ¼ ³ œ œ ² ² Ž ² Ž Ž œ» Ž œ õ ö ø ù ú G o ü = ö < o o G p p P >? s ù p Œ µ œ œ Ž ª ² ² Ž Ž œ Ž Ž Ž ª œ ª œ ž ³ ž é Û ˆ : z V l z š l z W W l z } r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > q 1 A < s
20 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú G û ü s ö > ö > n ú S P ú P Ž œ Ž œ ½ Ž œ  œ œ Ž ª œ ³ ½ «Ž œ Œ ž D š ž E F è é ê ë ì é } Û Š Ý W Û è ì é õ ö ø ù ú G < ü P ø ù ö > U ý s ù P J J ö Q ö n Q? ø p «œ L 9 x ² ² Ž Ž Ž ª Ž Ž Ž œ œ Ž œ œ Ž œ» Ž œ œ œ ²  œ L 9 x œ Ž Ž Ž ª Œ ª Ž œ Ÿ œ Ž Ø ² Ž œ œ œ Ž ² œ Ü Ž œ é Þ å Ü ê ç œ œ  œ Ž š œ œ œ œ Ž ª ² ² Ž Ž º œ œ Á ±  Á ± œ Ž œ œ ž D š ž E F Þ Ü B õ ö ø ù ú G G ü H ö > > n ú ÿ I ú ù > P O P Q ù P Q p P Q n ö > ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > r 1 A < s
21 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E ª Ž œ» Ž Ÿ œ Ž œ œ š Ž ª œ ï Š ˆ ê Ü ô x ò ô x Š ô Ž Ž œ š ² ª Ž Ž œ œ š œ Ž ª Ž œ œ œ œ œ Ž ² œ ò ê ì Û ˆ Û Ü Þ Ü Ž œ é Þ å Ü ê õ ö ø ù ú G N ü þ ú >? ù t w ú n ú = ö < o o G þ ú ù y ú ù ³ œ œ ² ² Ž ² Ž Ž œ» Ž œ õ ö ø ù ú G R ü = ö < o o G p p P >? s ù p œ œ Ž ª ² ² Ž Ž Ž Ž ª œ Ÿ œ Ž Ø œ ½ ž ³ ž é Û ˆ : z W l z W l z l z ] š } õ ö ø ù ú G \ ü s ö > ö > n ú ÿ I ú ù > P O P Q ù P Q ý P Q n ö > ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? > ` 1 A < s
22 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Ž œ Ž œ ½ Ž œ  œ œ Ž ª œ ³ ½ «Ž œ ž D š ž E F è é ê ë ì é } Û Š Ý z Û è ì é õ ö ø ù ú G A ü P ø ù ö > U ý s ù P J J ö Q ö n Q? ø p Õ «œ L 9 x ² ² Ž Ž Ž ª Ž Ž Ž œ œ Ž œ œ Ô Ž œ» Ž œ œ œ ²  œ L 9 x œ Ž Ž Ž ª œ ² ² ² Ž š Ž œ Ž Ž ± Ž œ Ž ª œ ² Ž š œ œ œ Ž œ œ š œ Ž œ Ž ª ² Ž œ œ ² Ž Ž œ ² Ž œ Ž œ Á ±  Á ± œ Ž œ œ Â Ž Ž Ž ª Á ± š œ œ» œ Ž š œ ¹ Ž œ š œ Ž œ Ž ª ² Ž œ œ ª œ œ œ Ž š œ ² Â Ž œ œ Œ œ Ž œ Ž œ œ Ž Ž œ ² Ž œ œ r œ Ž «¹ œ Ž ² œ œ È Æ c c Ì b Ð Ñ Ž œ Ž œ œ œ œ q œ œ ² Ž œ š œ œ ² q Ž œ Ž œ Ž œ œ Ž Ž r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : ; 1 A < s
23 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E» œ Á ±  Á ± œ Ž œ œ  œ Ž Ž º œ Ž œ» œ Ž Ž» Ž Â Ž Â Ž Ž ½ ã» œ Ž š œ Ž œ ² œ Ž ª Ž ž ž î î œ ª î Ž ² Ø œ œ Ž ª» œ  ² Ž š Ž ª œ Ž œ Ž œ œ Ÿ œ Ž ª Ž œ Ž Œ  ª œ œ œ œ œ r œ œ Œ Ž œ Ž Ž œ œ ² Â š Ž ª š œ Ž œ Ž œ œ š Ž ª œ Ž ª ² ² Ž ž D š ž E F Û ð è ˆ ð Û : Š Ý W ë é D š ž E F Û ð è ˆ ð Û : Š Ý z ë é õ ö ø ù ú G _ ü ø ù > ö > ^ n þ > ö J J ú ù U > ú ù J P Q > œ œ Ž ª œ Ž «¹ œ š œ œ Ž œ œ œ Ž œ œ ž D š ž E F Û ð è ˆ ð Û : õ ö ø ù ú G m ü ž ú ù ö J ö > n P n ú þ > ö J J ú ù U > ú ù J P Q > n P y ú U s t?? r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : > 1 A < s
24 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Ž œ Ž œ œ ² Ž Â œ œ Ž ª ² ² Ž» œ ž D š ž E F å Û Ü Š Ý Þ Ü ß õ ö ø ù ú N o ü ú > ö > = ö ù n P ù œ œ š œ Ž œ œ  œ œ Þ é ë Ü Š œ Ž ª Ž Ÿ ˆ Š Ü ð Þ è Š l õ ö ø ù ú N û ü þ ú ú Q ö > U > ú ù J P Q J ù p n ú P ø ù ú ý ú > ø œ Ú Û Ü Š Ý Þ Ü ß ; Þ é ë Ü Š Ÿ ˆ Š Ü ð Þ è Š Ù š š œ œ Ž œ Ž œ õ ö ø ù ú N < ü n ú w ú y ö Q ú n o P >? ú n û? > n P y ú U s t?? ú? œ œ Ž œ Œ Ž œ «¹ œ œ œ Ž œ œ «² Ž r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : : 1 A < s
25 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E» Ž œ Þ é ë Ü Š Ÿ ˆ Š Ü ð Þ è Š ² œ Ž Â ï Þ Ü œ œ Ž œ œ œ õ ö ø ù ú N G ü þ P ù ö > P P ø ù ú > n ú ú ù ö > U > ú ù J P Q ú ú n o Ž ª œ œ œ  œ š œ Ž ª Ž œ ç «Â ç œ Ž œ «Â ² œ» Ž Ô Ž œ Ž ½ Ž œ œ» Ž Ž œ Ž ² Ž œ Õ œ Ž ² ² Ž ² Ž œ» Ž Ô ² Ž œ š š œ Ž ª Ž œ è ì ê x ï Ý Ü è ë Ž œ œ õ ö ø ù ú N N ü ú > ö > P p p P >? s ù p > = ö A Ô œ œ Ž ª ² ² Ž Ž Ž œ œ» Ž ç «œ œ ž ³ ž ð é z V l z š l z W W l V W z õ ö ø ù ú N R ü > > ú Q ö > n ú õ s þ ú ù y ú ù û m < v û \ _ v û o o v < o û œ œ œ œ ² œ ª œ  ª «¼ ç œ œ Ž ² œ  œ ð é Ž œ Ž œ ç œ  œ ì Š è ë Ü Š é Þ œ ž ç œ œ  œ Ž š œ œ œ Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : < 1 A < s
26 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E õ ö ø ù ú N \ ü H ö > ö > n ú õ s þ ú ù y ú ù œ œ œ œ ² œ ª œ  ± ² ³ ² ³ µ µ Ž œ Ž œ ² Ž œ  œ é š Ž Ž» œ œ œ õ ö ø ù ú N A ü þ ö > n ú = ö ù n P ù Q P ø ù ú Œ Ž œ Ž œ ² Ž œ  œ ð é Ž œ œ Ž œ Ž ò é é ô õ ö ø ù ú N _ ü ö > J ö > n ú = ö ù n P ù J ö ú ù P > ú œ Â Ž œ œ œ œ Ž ² œ ð é Ž œ ì Š è ë Ü Š é Þ õ ö ø ù ú N m ü n ú õ s ú ù > P p ú P ù? P ú P ù ö > Q ú P ù ú I v r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : s 1 A < s
27 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E  œ œ ç «Ž œ œ œ Ž Ž œ Ž ª Ž œ œ œ Œ Œ Œ œ œ š œ Ž œ œ  œ œ Þ é ë Ü Š œ Ž ª Ž Ÿ ˆ Š Ü ð Þ è Š l õ ö ø ù ú R o ü þ ú ú Q ö > U > ú ù J P Q J ù p n ú P ø ù ú ý ú > ø œ Ú Û Ü Š Ý Þ Ü ß ; Þ é ë Ü Š Ÿ ˆ Š Ü ð Þ è Š Ù š š œ œ Ž œ Ž œ õ ö ø ù ú R û ü n ú w ú y ö Q ú n o P >? ú n û? > n P y ú U s t?? ú? œ œ Ž œ Œ Ž œ «¹ œ œ œ Ž œ œ «² Ž Œ» Ž œ Þ é ë Ü Š Ÿ ˆ Š Ü ð Þ è Š ² œ Ž Â œ œ Œ Ž œ œ œ õ ö ø ù ú R < ü þ P ù ö > P P ø ù ú > n ú ú ù ö > U > ú ù J P Q ú ú n û Ž ª œ œ œ  œ š œ Ž ª Ž œ ç «Â ç œ Ž œ «Â ² œ Ø Ÿ œ Ž ½ Ž œ œ» Ž œ œ Ÿ œ Ž ² Ž œ r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : 1 A < s
28 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Œ ³ ˆ Û ˆ ë Š å Û Ý ë ï Þ Y Û ˆ : œ œ œ Ž Ž ª ² œ ª œ õ ö ø ù ú R G ü > ö > ø ú = ö n ø þ P y ö > Œ Ž œ Ž œ œ ² Ž Â œ œ ² ² Ž C Š œ œ Ž Ž œ Ž Œ œ Ž œ ² Ž Ž œ Ø œ ² š Ž ª Ž œ ² ª œ œ œ ç œ Ž œ š Â Ž œ š ² œ œ œ Ž õ ö ø ù ú R N ü n ú O P Q ù P Q ú ù p ö > P Œ Õ œ œ Ž ª ² ² Ž Ž Ž œ œ» Ž ç «œ œ ž D š ž E F ð é z W l z W l z l V W V õ ö ø ù ú R R ü > > ú Q ö > n ú õ s þ ú ù y ú ù û m < v û \ _ v û o o v < o û œ œ œ œ ² œ ª œ  r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : t 1 A < s
29 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Œ Ô ç œ œ Ž ² œ  œ ð é Ž œ Ž œ ç œ  œ ë é Š Ü Š è ë Ü Š ç œ œ  œ Ž š œ œ œ Ž œ õ ö ø ù ú R \ ü H ö > ö > n ú õ s þ ú ù y ú ù œ œ œ œ ² œ ª œ  ± ² ³ ² ³ µ Œ ¼ Ž œ Ž œ ² Ž œ  œ š Ž Ž» œ œ œ õ ö ø ù ú R A ü þ ö > n ú = ö ù n P ù Q P ø ù ú Œ µ Ž œ Ž œ ² Ž œ  œ ð é Ž œ œ Ž œ Ž Ž œ œ œ À õ ö ø ù ú R _ ü ö > J ö > n ú = ö ù n P ù J ö ú ù P > ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : q 1 A < s
30 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ  œ œ œ œ Ž ² œ ð é Ž œ ë é Š Ü Š è ë Ü Š õ ö ø ù ú R m ü n ú õ s ú ù > P p ú P ù? P ú P ù ö > Q ú P ù ú I v Ÿ» œ Ž œ Ø œ ² Ž Â œ œ ² ² Ž C Š œ œ Ž Ž œ Ž» œ Á ±  Á ± œ Ž œ œ  œ Ž Ž º œ Ž œ» œ Ž Ž» Ž Â Ž Â Ž Ž ½ ã» œ Ž š œ œ œ Ž œ Ž Ž Ž œ œ Ž œ Ž œ Ž «¹ œ œ» œ œ Ž œ Ž š œ œ œ œ Œ ç «œ Ž ² œ Ž œ Ž œ œ q œ œ Ž œ œ œ Ž Ž» œ q œ œ Ž Ž œ» œ ª ² q œ Ž œ» œ ª ² ² œ œ ² Ž Ž Ž r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : r 1 A < s
31 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ ½ Ž œ Ž ç ¹  œ ç œ Ž ¹ Ž Â Ž Ž» Ž œ Ž ª œ ² œ ² ² ² Ž Ž Á ± œ Ž œ œ Ž Ž º œ Ž Ž œ ² Ž» œ œ Ž œ œ Ž Ž º œ œ ² œ ½ Ž œ œ Â Ž œ ² œ œ œ ² œ ª œ Ž œ Z é Š ˆ ä Š å Ü ß æ Û ˆ Š Ü Œ œ Ž œ ½ Ž œ Ž œ» Ž Ô ² Ž œ š š œ Ž ª Ž œ œ õ ö ø ù ú \ o ü ú > ö > ú ù ý ö > ú ù ³ œ œ ª œ ï Š ô Š è Þ ˆ Š å Ü ß Þ ê Þ é Š Ü Û ˆ Ý Š ô Û Ž œ œ ž ï è ß Š ; Ÿ ˆ Š ô ¹ ñ Z º z W W W æ L ä Š å Ü ß ˆ ˆ Š è Û ˆ» z V l z š l z W W M ¼ õ ö ø ù ú \ û ü þ ú ú Q ö > n ú t ù ù ö P ú U > ú ù J P Q ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? : ` 1 A < s
32 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E œ œ œ œ Ž œ œ Ž š œ œ Ž œ œ œ Ž œ ½ Ž œ õ ö ø ù ú \ < ü n ú ù ù ú Q U > ú ù J P Q ú n ^ ú ú ú ú Q ú? ö n ö > ú ù ý ö > ú ù ³ œ ï Þ Ü š Ž Â œ Ž œ ª Â Ž œ œ õ ö ø ù ú \ G ü þ P ù ö > n ú P ø ù ú ³ Ž œ Ÿ ˆ Š Ü ˆ Š ½ B é ô Ü Š Ü Ÿ è ˆ Ž œ» Ž š õ ö ø ù ú \ N ü ú > ö > U > ú ù > ú ÿ I ù ú ù Ž œ Ž œ Ÿ œ œ Ž Ø Ž «ª œ Þ C ë ; C ô Þ ˆ ß Ž œ ± ¾ š õ ö ø ù ú \ R ü t O P > s P ú ö > U > ú ù > ú ÿ I ù ú ù r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < ; 1 A < s
33 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Ž œ ± ¾ š  œ œ Ž ª Ž Ž œ œ» Ž œ œ» œ š «ª œ ž Ý é ; º º z V l z š l z W W l V W z º õ ö ø ù ú \ \ ü n ú = ö < o o G = ú ^ s P ú œ œ œ ì Š è l ô è Þ ô ¾ L Š ñ Þ : Š œ Ž Ž Ž œ Ž ª œ» Ž œ œ Õ Ž œ ± ¾ š  œ œ Ž ª Ž Ž œ œ ¾ q Ÿ» œ š «ª œ ž Ý é ; º º z V l z š l z W W l z ] 8 º õ ö ø ù ú \ A ü n ú À ÿ H = ú ^ þ ö ú Ô ³ Ž œ ï é š Ž œ Ž œ œ ½ Ž œ œ õ ö ø ù ú \ _ ü õ ö ö n ö > n ú ú ù P ø ù ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < > 1 A < s
34 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E ¼ ³ Ž œ ó Û ô Š š Ž œ œ ½ Ž œ «ª ² õ ö ø ù ú \ m ü õ ö ö n ö > n ú ú ù P ø ù ú µ ¾ ª Ž œ Û ˆ ê Š B l Ý ì ô œ Ž œ œ œ Ž œ õ ö ø ù ú A o ü n ú ö >? ú I v n p J ö P y ú? ö n ö > n ú ú ù P ø ù ú œ œ ² œ œ ª œ õ ö ø ù ú A û ü ú > ö > P H Q P J n ú U >? ú I v n p J ö ú r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < : 1 A < s
35 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Œ ¾ ª Ž œ œ Ž Û ˆ ê Š B l Ý ì ô œ Ž œ œ œ Ž œ õ ö ø ù ú A < ü n ú ö >? ú I v n p J ö P y ú? ö n ö > n ú ú ù P ø ù ú œ œ œ ¾ œ q Ÿ Ž œ œ Ž œ «ª œ õ ö ø ù ú A G ü ú > ö > P H Q P J n ú U >? ú I v n p J ö ú œ ½ Ž œ Ž ç ¹  œ ç œ Ž ¹ Ž Â Ž Ž» Ž œ Ž ª œ ² œ ½ Ž œ œ Ž œ ² œ œ œ ² œ ª œ  œ Â Ž œ š ª œ ² œ œ Œ» Ž œ ½ Ž œ Ž œ Ž ª œ ² œ œ ½ Ž œ ª ² Ž q œ œ š ª œ œ œ Ž œ ½ Ž œ» Ž œ œ š œ Ž ª œ Ž œ ½ Ž œ Ž ª r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < < 1 A < s
36 ~ G z > o? 8 n 1 4 k? N 5 E? C H M? E 1 O 1 6 5? C = 0 G 2 8 F 4 6 o? 8 n 1 4 M 4 G A A 5 E Œ» œ ž ž î î œ ª î œ ½ Ž œ ž ž î î Ž œ œ œ ² î ª œ Á œ ½ Ž œ ½ Ž «ª œ ² ž ž î î ² ª î ²  ² Ž ²» œ Ž ž ž î î œ ª î Ž ² œ ½ Ž œ Ž ž ž î î œ ª œ Ž œ î œ î Ž œ ² Ž œ î œ î œ î Ž r { > { : ; > : : ; ; < = : ; > : 8? 4 A 1 4 B 3 C 8? D C B? E F H I@ A 1 4 D G 8 5 J C C F 4 E? K 0 B B IJ L x G 6? < s 1 A < s
37 Ä Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Å Æ Ö Ð Ø Ù Ú Ì Ñ Û Å Ï Ü Ë Ì Í Î Ï Ð Ñ Ò Ý Þ ß Ì Í Ñ Ð à Ì Ø á â ã Ê Ç Ç ä Ò Ö å Ð Æ Ç ä Ì Æ Ì Ñ æ Ì Í Î Ï Ì Ì Ñ Û Å Ï Ü Ö å Æ Ð Ð æ Ñ Ï Ö Ñ Ð Å Ç Ï Ð Í Ð Ç ä Ì æ Õ Å Í Î Æ Ì Ñ ç Ì Ï æ Ð Å ã â è Ø â Ù è é Ù Ø ê ë ì Ì Ñ Ö í : Ö Þ Ê Î Ñ ; Å Ï ã < Ì æ æ Ì ç Ö Ï æ Ö ä Å Ì Ê æ æ Ð æ Ñ Ö Ñ = Ï Å > Ì æ æ Å Ï Ò Þ Ì Ï Ë Ì Í Î Ï Ð Ñ Ò Ý Ï? Ö Ö Ñ Ð Å ã Ä Å Æ Æ Î Ð Ñ Ò Ä Å ä ä Ì? Ì Å > ì Ö ä Ñ Ð Æ Å Ï Ì Ä Å Î Ñ Ò î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î õ ý ý ý ï ð ý þ ö ï ÿ ö õ ó ï ý þ ö ó ÿ þ ý ñ ö õ ý ö ó ï þ! " # $ % $ & " & ð ò ï ô ò ' ý ð ò ö ý þ ö ï ÿ ( þ ý ò ô ò ö ý ) ö ó ï þ ' ( ) * ò ï + ù, ù ø -, ø þ ü ù ù ø,. / 0 î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î ó þ ý þ ö ó ö ñ ï ÿ 1 ï ò ó þ ý 2 ý ñ î ï þ ó ö ñ î ï ý ô ý + 3 ý ò ó ó ï þ ó ô ò þ ö ý ö ï ï ð ñ 4 ó ö ò ó ö ý þ 5 ï ò ï ó ÿ ñ ö õ ó ï ý þ ö þ ý ò ö õ ý ö ý ò ï ÿ ö õ ý 6 ( 7 ò ý ý ' ï ý þ ö ö ó ï þ 8 ó ý þ ý 4 2 ý ò ó ï þ ü + ø ï ò þ ñ ö ý ò ý ò ó ï þ ð ó õ ý ñ ö õ ý 7 ò ý ý ï ÿ ö * ò ý 7 ï þ ö ó ï þ + ï ð ñ ï ÿ ö õ ó ó ý þ ý þ ý ÿ ï þ ö õ ö ö ð 95 5 * * * + ô þ + ï ò ô 5 ó ý þ ý 5 ÿ + õ ö +
38 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U ^ _ ` a b ` a c d e f g h i j k l g m i f n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n o p q r s t l g m u t v w x x y z { f j m x y t t f g } t l k h t f t g ~ i h { j m f m } g h { g m i f x h m f l m x y t } n n n n n n n n n n n n n o o i j i x i y i z n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ƒ ƒ { r t g g m f } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n { } d i w f { y z } m } m f m f k ˆ } m f h t x n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n { } d n d ˆ } m f h t x n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n { } d n p Š i f l y k } m i f n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n d ƒ { } d n o m } l k } } m i f Œ k t } g m i f } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n d ƒ { } p i w f { y z } m } m f m f k ˆ } m f { ~ n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n d { } p n d ˆ } m f { ~ n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n d { } p n p Š i f l y k } m i f n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p d { } p n o m } l k } } m i f Œ k t } g m i f } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p d { } o i w f { y z } m } m f m f j i ~ } ˆ } m f Ž m f j n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p p { } o n d ˆ } m f Ž m f j m f m f j i ~ } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p p { } o n p Š i f l y k } m i f n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p { } o n o m } l k } } m i f Œ k t } g m i f } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p t Ž t h t f l t } n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n p - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ø ï ÿ ø ]
39 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U m } y { r m } x { h g i Ž { } t h m t } i Ž y { r t t h l m } t } j t } m f t j g h i k { h { f g m f m g m { g m u t r z g t Š t f g t h Ž i h z } g t } t l k h m g z { f j e f Ž i h { g m i f w } } k h { f l t Š e w { f j g t t g ~ i h t u t y i x t f g h i k x š š œ ž Ÿ ž š ž ª «w j u { f l t j t l f i y i m l { y j k l { g m i f w x h i h { t x { h g t f g i Ž ˆ f j t h h { j k { g t j k l { g m i f ˆ w ~ { h j i n p p { f j d p ƒ n m } } t h m t } i Ž y { r t t h l m } t } m } m f g t f j t j g i } k x x i h g l i k h } t ~ { h t Ž i h Š i x e w t l k h m g z ± l t h g m Ž m l { g m i f n ² z g t t f j i Ž g m } y { r } g k j t f g } ~ m y y r t { r y t g i x { h } t y i Ž m y t } ~ m g m f m f k { f j m f j i ~ } Ž i h m f Ž i h { g m i f x t h g m f t f g g i } t l k h m g z t u t f g } i f g t m h } z } g t n g k j t f g } ~ m y y x t h Ž i h { j m f m } g h { g m i f i f m f k { f j m f j i ~ } { l m f t } { f j u m t ~ g t y i } Ž h i g t } t g { } } n m } y { r m f l y k j t } g t Ž i y y i ~ m f g { } } v { } d ³ i w f { y z } m } m f m f k ˆ } m f h t x { } p ³ i w f { y z } m } m f m f k ˆ } m f { ~ { } o ³ i w f { y z } m } m f m f j i ~ } ˆ } m f Ž m f j µ Ÿ š ž š œ ž ž ¹ Ÿ µ º ¹ š ~ t h t } g i y t f { f j g t f k } t j g i { m f { l l t } } g i { f { l l i k f g m f i h j t h g i } g t { y i f t z n t k } t i Ž } g h i f x { } } ~ i h j } m } l h m g m l { y g i x h i g t l g m f z i k h { l l i k f g } { } ~ t y y { } j { g { { f j h t } i k h l t } ~ m g m f { f i h { f m» { g m i f n ¼ ½ b ¾ d À Á g { f j } Ž i h y i r { y t k y { h x h t } } m i f h m f g n t k g m y m g z { y y i ~ } z i k g i } t { h l g h i k { y { h t f k r t h i Ž Ž m y t } { f j Ž i y j t h } Ž i h } x t l m Ž m t j g t g n ¼ Â Ã Ä p À Á t m f k Å ˆ e Æ { ~ l i { f j ~ m y y { y y i ~ z i k g i j m } x y { z i k g x k g m f { f t { } z g i j m } x y { z k { f h t { j { r y t Ž i h { g n z x m f ¼ Â Ã Ä Ç È b É ¾ m f m f k ~ m y y j m } x y { z { ~ i x g m i f } n Ê Ë ` Ì o À Á m } l i { f j l { f r t k } t j ~ m g m f m f k { f j m f j i ~ } n t Ž m f j l i { f j m f m f j i ~ } ~ m y y { y y i ~ z i k g i } t { h l Ž i h { } x t l m Ž m l } g h m f ~ m g m f { y { h t h i k x i Ž u { y k t } n c b Í Î ½ b ƒ À Á m } y i Ž m y t g h { l } Ï i h t l k h t t y y l i f f t l g m i f } n e g x h i u m j t } m f Ž i h { g m i f } k l { } e w j j h t } } t } { f j j { g t { f j g m t } g { x } n e g { y } i g h { l } i g t h t u t f g } h t y { g t j g i } t l k h m g z } k l { } g t l h t { g m i f i Ž f t ~ k } t h { l l i k f g } { f j f t ~ h i k x { l l i k f g } n Â Í Í b c c Ð É _ ¼ Á m } y i Ž m y t g h { l } Ï i h Ï z x t h t g h { f } Ž t h h i g i l i y l i f f t l g m i f } n e g x h i u m j t } m f Ž i h { g m i f } k l { } e { j j h t } } t } k } t h w t f g } { f j j { g t { f j g m t } g { x } n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ú ï ÿ ø ]
40 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü Ý Ö Þ ß à Õ á â à ã à ä à Ó å - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý. ï ÿ ø ]
41 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U t m f Ž i h { g m i f m f g t g { r y t r t y i ~ ~ m y y r t f t t j t j m f i h j t h g i l i x y t g t g t y { r n t g { } } t l g m i f } r t y i ~ x h i u m j t j t g { m y } i f g t k } t i Ž g m } m f Ž i h { g m i f n æ b ç Î Ë ½ b Ì è Ë ½ a Î Â É é Â Í È Ë ` b c  ` Ì ê ¾ ¾ É Ë Í Â a Ë _ ` c i m f g i g t Ž i y y i ~ m f u m h g k { y { l m f t } r t Ž i h t } g { h g m f g t g { } } m f g m } y { r v ë ì í î ï ð ì í î ñ ò ó ô õ ð ó ì ö ô ô ì í î ø ì í ù ú ó õ û ü ý þ û ÿ þ û þ ë ì í î ï ð ì í î ñ ð ô ì ð ì ð ò ó ô õ ð ó ì ö ú í ô ú ø ì í ù ú ó õ û ü ý þ û ÿ þ û þ û ð ô ì ð ì ð ë ì í î ï ð ì í î ô õ ð ó ì ö ô ô ì í î ø ì í ù ú ó õ û þ û þ û ü þ û ë ì í î ï ð ì í î ð ô ì ð ì ð ú ó ý î õ ð õ ð ô õ ð ó ì ö ú í ô ú ø ì í ù ú ó õ û þ û þ û ü þ ý ý ú ó ý î õ ð õ ð ì ú ó ú ô ð ì ô ð ì ð ì ð Â Í Ä ½ Â Í Ä _ ¼ Ë ` d n Š y m l i f g t ² { l h { l m l i f i f g t g i x i y i z n p n z x t ½ a { g g t a É _ ¼ Ë ` k } t h f { t x h i x g n o n z x t ¾  c c à _ ½ Ì { g g t  c c à _ ½ Ì x h i x g n Ñ Ò Ó Ô Õ Ö Ø á â Õ á ä à Ó Ò - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý \ ï ÿ ø ]
42 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U ƒ n i } g { h g g t ˆ e g z x t c a  ½ a! { g g t h i i g " r g v # $ x h i x g n Ñ Ò Ó Ô Õ Ö % Ø á â Õ á & ' ( ) Þ Õ Þ Ô ã æ b Ì *  a + ` a b ½ ¾ ½ Ë c b Ë ` Î! _ ¼ Ë ` d n Š y m l i f g t t j Ï { g m f k m l i f i f g t g i x i y i z n p n z x t ½ a { g g t h t y y i m f v x h i x g n o n z x t ¾  c c à _ ½ Ì { g g t { } } ~ i h j v x h i x g n, i h } t l k h m g z x k h x i } t } g t x { } } ~ i h j ~ m y y f i g r t j m } x y { z t j n ƒ n i } g { h g g t ˆ e g z x t c a  ½ a! { g g t h i i g " h t # À $ x h i x g n Ñ Ò Ó Ô Õ Ö - Ø. / Û 0 ä à Ó Ò Â Í Ä ½ Â Í Ä 1 _ ¼ Ë ` d n Š y m l i f g t ² { l h { l ƒ m l i f i f g t g i x i y i z n p n w g g t ˆ r k f g k r i i g t f k g z x t a 1 g i } t y t l g g t ² { l h { l ƒ } z } g t n Ñ Ò Ó Ô Õ Ö Ø ' 2 Ô Þ Ô à à Þ Ù Ö Ô - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý / ï ÿ ø ]
43 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U o n z x t ½ a { g g t r g y i m f v k } t h f { t x h i x g n ƒ n z x t ¾  c c à _ ½ Ì { g g t { } } ~ i h j v x h i x g n, i h } t l k h m g z x k h x i } t } g t x { } } ~ i h j ~ m y y f i g r t j m } x y { z t j n n i } g { h g g t ˆ e g z x t c a  ½ a! { g g t } g h i i g " r g v # $ x h i x g n Ñ Ò Ó Ô Õ Ö 3 Ø á â Õ á - ä à Ó Ò 4 Ë ` Ì _ à c b ½ 9 b ½ _ ¼ Ë ` d n Š y m l i f g t m f j i ~ } p o t h u t h m l i f i f g t g i x i y i z g t } t m f } g h k l g m i f } ~ m y y ~ i h Ž i h r i g m f g t h f { y { f j t g t h f { y u m l g m { l m f t } n p n f g t h g t ˆ } t h f { t ê Ì : Ë ` Ë c a ½  a _ ½ u t h m Ž z g t k } t h f { t ~ m g z i k h m f } g h k l g i h n o n z x t m f g t x { } } ~ i h j v ¾  c c à _ ½ Ì { f j l y m l g t ; < r k g g i f u t h m Ž z g t x { } } ~ i h j ~ m g z i k h m f } g h k l g i h n Ñ Ò Ó Ô Õ Ö = Ø > Ò? à ß ) á % ä à Ó Ò - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý, ï ÿ ø ]
44 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U m g m f t g ~ i h w j m f m } g h { g m i f m g m } u t h z m x i h g { f g g i l t l g t } z } g t y i } t u t h z j { z g i i f m g i h ~ i m } y i m f i f { f j ~ { g g z x t i Ž { l g m u m g z m } { x x t f m f i f { } z } g t n i Ž m y t } l { f r t l i t t g h t t y z y { h t } i g i i y } y m t h t x l { f r t u { y k { r y t m f { y y i ~ m f g t t g ~ i h w j m f m } g h { g i h g i Ž m y g t h Ž i h l t h g { m f u { y k t } n t h t { h t { f z y i { f { y z } m } s i r } g { g l { f r t h k f k } m f h t x g { g ~ m y y x h i u m j t g t t g ~ i h w j m f m } g h { g i h ~ m g m f Ž i h { g m i f i f g t } g { g k } i Ž { } z } g t n ; ¾ b `  b ½ : Ë ` Â É a b a 8 a  ½ a b Ì e Ž z i k { u t { y h t { j z y i t j m f { f j } g { h g t j g t ˆ e m f g t h Ž { l t { } j t } l h m r t j m f g t { r t g g m f } } t l g m i f z i k { z } g { h g m t j m { g t y z { g g t x d n t f } g { h g m f g t ² { l h { l } z } g t z i k k } g Ž m h } g t f g t h m f g t k } t h f { t ½ a Ž i y y i ~ t j r z g t x { } } ~ i h j ¾  c c à _ ½ Ì n w g g t m f m g m { y } g { h g k x } l h t t f g z x t g t Ž i y y i ~ m f l i { f j g i } g { h g g t ˆ e m f g t h Ž { l t v h i i g " r g n # $ c a  ½ a! n Ñ Ò Ó Ô Õ Ö A Ø 0 Ò Ô B ( Ò Þ Ò ä Ú Þ Õ Þ Ô ã Ú Õ Ö Ö ) d n q x t f { g t h m f { y i f g t ² { l h { l e f g t h f { y w g g { l } z } g t r z l y m l m f i f g t x m l g k h t g i g t h m g i Ž g t ~ i h j 8 C c a b : m f g t g { } r { h m f g t g i x i Ž g t } l h t t f n Ñ Ò Ó Ô Õ Ö D Ø â E Ö â Ö Õ F Ò ä > Ò? à ß ) ß Ò Þ E Ò á â Õ á { x i h f t g ~ i h { x x t h { y y i ~ } z i k g i j t g t h m f t ~ m l Š h { f } m } } m i f Š i f g h i y h i g i l i y i h ˆ ˆ } t h { g { h { h i g i l i y x i h g } { h t i x t f i f { h t i g t } z } g t n G t f { x m } { ˆ e h { x m l { y ˆ } t h e f g t h Ž { l t Ž h i f g ³ t f j Ž i h f { x n G t f { x m } x { l { t j ~ m g f { x n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý - ï ÿ ø ]
45 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U p n z x t g t Ž i y y i ~ m f l i { f j g i x t h Ž i h { Š f { x } l { f i Ž g t t j Ï { g m f k H m l g m v h i i g " r g v # $ I b ` : Â ¾ Ñ Ò Ó Ô Õ Ö J Ø K Ö F ã 2 Ö 0 Ô E Ö? 2 å â å ã Ò Ó Þ E Ö K Ö F ã Ü à F F? ß Ò Þ E Ò Þ E Ö â Ö Õ F Ò ä o n e f g t g { h t g r i g z x t g t e w j j h t } } i Ž L M 5 N L O P N L 6 6 N L 1 Q g t m f k u m l g m n Ñ Ò Ó Ô Õ Ö Ø Û Þ Ö Õ Ò Ó Þ E Ö ( R S?? Õ Ö ) ) à T Þ E Ö â Õ Ó Ö Þ Ù E Ò Ö i g m l t g { g g t } ~ m g l t } Ž i h f { x { h t { k g i { g m l { y y z { j j t j m f g t r i j m h t l g y z r t y i ~ n ƒ n w Ž g t h { Ž t ~ } t l i f j } l y m l i f g t _ ½ a c U * _ c a c g { r g i j m } x y { z g t i x t f Š x i h g } n Ñ Ò Ó Ô Õ Ö Ø â E Ö V ã Ö â Ü R R à Õ Þ ) à Þ E Ö. Ö F à Þ Ö Ú å ) Þ Ö F - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ] ï ÿ ø ]
46 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U i g m l t g { g x i h g m } i x t f ~ m l y m t y z t { f } g t h t i g t } z } g t m } h k f f m f { t r t h u t h n t» t f { x } l { f m f j m l { g t } g { g g t ~ t r } t h u t h m } w x { l t p n p n o n Ñ Ò Ó Ô Õ Ö % Ø â E Ö. Ö F à Þ Ö Ú å ) Þ Ö F Ò ) > Ö 2 Ú Ö Õ W Ö Õ n Š y i } t g t G t f { x g i i y r z } t y t l g m f 8 Í Â ` Ž h i g t t f k r { h { f j } t y t l g X Î Ë a n Š y m l ^ É _ c b ê ` C Ã Â C m Ž z i k h t l t m u t { ~ { h f m f m f j m l { g m f g { g g t } l { f m } f i g } { u t j n Ñ Ò Ó Ô Õ Ö - Ø Ü ä à ) Ò Ó K Ö F ã i ~ g { g ~ t f i ~ x i h g m } i x t f ~ t l { f { g g t x g g i l i f f t l g g i g t g { h t g ~ t r } m g t n n q x t f, m h t Ž i i f g t ² { l h { l { l m f t r z x t h Ž i h m f g t Ž i y y i ~ m f } g t x } v Š y m l ê ¾ ¾ É Ë Í Â a Ë _ ` c Ž h i g t Y t f k r { h } t y t l g Z ` a b ½ ` b a g t f [ Ë ½ b Ê _! 4 b ½ _ Ã c b ½ n Ñ Ò Ó Ô Õ Ö Ø V ã Ö Ò Ó Ñ Ò Õ Ö T à B à á â Õ á n e f g t ˆ r { h g z x t g t { j j h t } } v g g x v Å Å d p n d n d n d ƒ Ñ Ò Ó Ô Õ Ö 3 Ø â E Ö > Ö 2 Ú Ò Þ Ö à T Þ E Ö. Ö? / Þ Ú å ) Þ Ö F - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü ù ï ÿ ø ]
47 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U t g t } g x { t y m t y z m f j m l { g t } g { g g t ~ t r } m g t { } f i g r t t f l i f Ž m k h t j n Š y i } t, m h t Ž i n w y g i k z i k l { f u m t ~ g t Ï Y l i j t i Ž { ~ t r x { t m f, m h t Ž i g t h t m } { y } i { m f k k g m y m g z l { y y t j l k h y ~ m l } g { f j } Ž i h l y m t f g ˆ f m Ž i h t } i k h l t i l { g i h n n ^ Î ½ É l { f r t k } t j g i { t { l i x z i Ž g t ~ t r } m g t n q f g t ² { l h { l g t h m f { y g z x t v h i i g " r g v # $ Í Î ½ É È a a ¾ U U L M 5 N L O P N L 6 6 N L 1 Q Ñ Ò Ó Ô Õ Ö = Ø â E Ö Ô Õ ä à F F? t i k g x k g Ž h i h k f f m f g t l k h y l i { f j ~ m y y y i i } m m y { h g i g { g r t y i ~ v Ñ Ò Ó Ô Õ Ö A Ø â E Ö V Ô Þ ã Ô Þ T Õ à F Þ E Ö Ô Õ ä à F F? m f l t g t h t } k y g } Ž h i l k h y { h t y { h t z i k ~ m y y Ž m f j m g t y x Ž k y g i Ž m y g t h g t k } m f g t ¼ ½ b ¾ l i { f j n n q f g t ² { l h { l g t h m f { y g z x t g t Ž i y y i ~ m f g i u m t ~ Ï Y l i j t { f j y i i Ž i h g t ~ i h j a b c a h i i g " r g v # $ Í Î ½ É È a a ¾ U U L M 5 N L O P N L 6 6 N L 1 Q \ ¼ ½ b ¾ a b c a Ñ Ò Ó Ô Õ Ö D Ø ' ) Ò Ó &. Û R Þ à T Ò ä Þ Ö Õ Þ E Ö Õ Ö ) Ô ä Þ ) T à Õ Þ E Ö ß à Õ? Þ Ö ) Þ t ~ i h j a b c a m } m y m g t j m f h t j ~ m g m f g t x { h { h { x i Ž g t Ï Y g t g g { g l i f g { m f } g t ~ i h j n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü ü ï ÿ ø ]
48 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U t w x { l t t h u t h t t x } h t l i h j } i Ž g t l i f f t l g m i f } { j t g i g t ~ t r } m g t m f l y k j m f v e w j j h t } } t } ˆ } t h w t f g } { g t Å m t g { x } t { l l t } } ] y i m } y i l { g t j m f g t Å u { h Å y i Å g g x j j m h t l g i h z { f j ~ m y y { u t t u m j t f l t i Ž v t } l { f i Ž g t g { h t g ~ t r } m g t ~ m g G t f { x t l i f f t l g m i f { j t ~ m g, m h t Ž i t l i f f t l g m i f { j t ~ m g g t l k h y l i { f j d n ~ m g l i u t h g i g t t j Ï { g f g t h x h m } t m f k e f g t h f { y H m l g m { l m f t n i u m t ~ g t { l l t } } ] y i g z x t g t Ž i y y i ~ m f l i { f j i f g t t j Ï { g } z } g t v h i i g " h t y # À $ Í Ì U 9  ½ U É _ ¼ U È a a ¾ Ì Ñ Ò Ó Ô Õ Ö J Ø Ú ß Ò Þ E Ò Ó Þ à Þ E Ö ^ Ò Õ Ö Þ à Õ å ß E Ö Õ Ö Þ E Ö Ö ) ) _ ä à Ó Ò ) ä à Þ Ö? d d n i u m t ~ g t l i f f t l g m i f } m f g t y i Ž m y t g z x t g t Ž i y y i ~ m f l i { f j v h i i g " h t y g g x j À $ Í Â a Â Í Í b c c Ð É _ ¼ Ñ Ò Ó Ô Õ Ö Ø ' ) Ò Ó Þ E Ö Þ à F F? Þ à W Ò Ö ß Þ E Ö Ö ) ) _ ä à Ó t h t } k y g } ~ m y y { x x t { h } m m y { h g i g t h t } k y g } m f g t x m l g k h t r t y i ~ n Ñ Ò Ó Ô Õ Ö Ø â E Ö Ö ) ) _ ä à Ó T Ò ä Ö - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü ø ï ÿ ø ]
49 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U e f m f k g t { l l t } } ] y i Ž m y t l { f r t t g h t t y z y i f n t i h y i r { y t k y { h x h t } } m i f h m f g l i { f j l { f r t k } t j g i Ž m y g t h g t h t } k y g } i Ž { f { l l t } } y i i h i g t h i k g x k g n d p n z x t g t Ž i y y i ~ m f g i Ž m y g t h g t { l l t } } ] y i Ž m y t Ž i h g t ~ i h j f { x k } m f h t x v h i i g " h t y g g x j À $ Í Â a Â Í Í b c c Ð É _ ¼ \ ¼ ½ b ¾ ` :  ¾ Ñ Ò Ó Ô Õ Ö % Ø &. Û R Ò Ó T à Õ Þ E Ö ß à Õ? F ã d o n z x t g t Ž i y y i ~ m f g i Ž m y g t h g t { l l t } } ] y i Ž m y t Ž i h g t ~ i h j, m h t Ž i k } m f h t x v h i i g " h t y g g x j À $ Í Â a Â Í Í b c c Ð É _ ¼ \ ¼ ½ b ¾ [ Ë ½ b Ê _! Ñ Ò Ó Ô Õ Ö - Ø &. Û R Ò Ó T à Õ Þ E Ö ß à Õ? Ñ Ò Õ Ö T à B d ƒ n z x t g t Ž i y y i ~ m f g i Ž m y g t h g t { l l t } } ] y i Ž m y t Ž i h g t ~ i h j l k h y k } m f h t x v h i i g " h t y g g x j À $ Í Â a Â Í Í b c c Ð É _ ¼ \ ¼ ½ b ¾ Í Î ½ É Ñ Ò Ó Ô Õ Ö Ø &. Û R Ò Ó T à Õ Þ E Ö ß à Õ? Ô Õ ä - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü ú ï ÿ ø ]
50 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U t { l l t } } ] y i Ž m y t ~ m g m f m f k x h i u m j t } m f Ž i h { g m i f { r i k g l i f f t l g m i f } g i g t } t h u t h m f l y k j m f e { j j h t } } t } k } t h { t f g } { f j j { g t { f j g m t } g { x } n i Ž m y t } l { f r t t g h t t y z y i f { f j { z l i f g { m f { y { h t { i k f g i Ž m f Ž i h { g m i f { r i k g g t l i f f t l g m i f } { j t g i g t } t h u t h n m f k k g m y m g m t } y m t h t x l { f r t k } t j g i Ž m y g t h g t h t } k y g } i Ž g t Ž m y t i k g x k g n d n t h t m } g t { l l t } } ] y i Ž m y t y i l { g t j i f { m f k } z } g t ` p n { g m } l i f g { m f t j ~ m g m f g t { l l t } } ] y i Ž m y t ` o n { g j i t } l k h y } g { f j Ž i h ` ƒ n Ï i ~ j i z i k h t x Ž i h g t ~ i h j f { x ~ m g m f g t { l l t } } ] y i ` - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü. ï ÿ ø ]
51 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U m y t h t x ~ m y y { y y i ~ z i k g i Ž m y g t h g t h t } k y g } i Ž g t Ž m y t i k g x k g m g ~ m y y f i g h t { y y z { y y i ~ z i k g i j m } x y { z g t i k g x k g j m Ž Ž t h t f g y z n m } m } ~ t h t { ~ l i t } m f a g t m f k { ~ l i { f j l { f r t k } t j g i j m } x y { z g t i k g x k g i Ž { g t g Ž m y t m f { i h t h t { j { r y t Ž i h n b ½ Ê _ ½ : a È b Ê _ É É _ Ã Ë ` ¼ c a b ¾ c a _ ¼ b ` b ½  a b c b Í Î ½ Ë a C Ë ` Í Ë Ì b ` a c _ ` a È b Ë ` Î! è Ë Í a Ë : c C c a b : n d n q x t f { g t h m f { y i f g t ² { l h { l } z } g t r z l y m l m f i f g t x m l g k h t g i g t h m g i Ž g t ~ i h j 8 C c a b : m f g t g { } r { h m f g t g i x i Ž g t } l h t t f n Ñ Ò Ó Ô Õ Ö 3 Ø â E Ö â Ö Õ F Ò ä > Ò? à ß ) ß Ò Þ E Ò á â Õ á p n z x t g t Ž i y y i ~ m f l i { f j g i Ï g i t l k h t t y y g i g t h t i g t } z } g t v h i i g " h t y # À $ c c È L M 5 N L O P N L 6 6 N L 1 Q { n z x t C b c ¹ Ÿ b š c d ¹ ž ž ž ž z t } Å f i ` r n z x t ¾  c c à _ ½ Ì Ž i h g t x { } } ~ i h j Ž i h h i i g " d p n d n d n d ƒ n Ñ Ò Ó Ô Õ Ö = Ø e i k } i k y j h t l t m u t { t } } { t m f j m l { g m f z i k h y { } g y i m f g m t i f g t } z } g t n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü \ ï ÿ ø ]
52 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U e f i h j t h g i l h t { g t i h t } t l k h m g z t u t f g } ~ t ~ m y y r t l h t { g m f g t h i k x c a  ½ à  ½ c n t ~ m y y l h t { g t { g i g { y i Ž g h t t k } t h } n w Ž g t h l h t { g m f t { l i Ž g t k } t h } { f j x k g g m f g t m f g t h i k x } g { h ~ { h } ~ t ~ m y y { } } m f t { l k } t h { l l i k f g { x { } } ~ i h j n t l { h g r t y i ~ y m } g } g t k } t h } { f j x { } } ~ i h j } Ž i h i k h { l l i k f g } m f g t } g { h ~ { h } h i k x n f g h i j k l m n g o n g l p l q g r n l l o h g s ö t î õ ó ì õ ð ì u ì v ð õ õ ó o n z x t g t Ž i y y i ~ m f l i { f j g i { j j g t h i k x c a  ½ à  ½ c v h i i g " h t y # À $ ¼ ½ _ Î ¾ Â Ì Ì c a  ½ à  ½ c Ñ Ò Ó Ô Õ Ö A Ø S?? Ò Ó Þ E Ö & Õ à Ô ã ) Þ Õ ß Õ ) ƒ n z x t g t Ž i y y i ~ m f l i { f j g i u m t ~ g t h i k x Ž m y t v h i i g " h t y # À $ Í Â a U b a Í U ¼ ½ _ Î ¾ Ñ Ò Ó Ô Õ Ö D Ø w Ò Ö ß Ò Ó Þ E Ö & Õ à Ô ã Ñ Ò ä Ö e Ž z i k } l h i y y g i g t r i g g i i Ž g t h i k x Ž m y t z i k ~ m y y } t t g t h i k x g { g ~ { } l h t { g t j { y i f ~ m g m g } l i h h t } x i f j m f k f m x k t h i k x f k r t h n i g t v t h i i g h i k x { } { f m j i Ž» t h i n Ñ Ò Ó Ô Õ Ö % J Ø â E Ö Ó Õ à Ô ã T Ò ä Ö e i k l { f { j j k } t h } g i g t } z } g t m f m f k r z g z x m f g t Î c b ½ Â Ì Ì l i { f j n t Î c b ½ Â Ì Ì µ µ š ¹ ž µ ž ž š ž ¹ ž Ÿ ž Ÿ ž µ ¹ ž Ÿ ž Ÿ y z { } j m h t l g i h z n t f g t k } t h y i } m f g t z ~ m y y r t x y { l t j m f g i g t m h j m h t l g i h z ~ m g m f y z { } n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü / ï ÿ ø ]
53 A B C D E F G H I J G K G L M N J O P Q R S T S U L J B L S N T V J S T H S W X G U Y A N Z P T B X [ U S U n i { j j { k } t h f { t j É Î Ä b { f j x k g m m f g t c a  ½ à  ½ c h i k x g z x t v h i i g " h t y # À $ Î c b ½ Â Ì Ì É Î Ä b Ç ¼ c a  ½ à  ½ c Ñ Ò Ó Ô Õ Ö % Ø S?? Ò Ó Þ E Ö Ô ) Ö Õ ä Ô á Ö n i { j j { k } t h f { t j 9 Â Ì b ½ { f j x k g m m f g t c a  ½ à  ½ c h i k x g z x t v h i i g " h t y # À $ Î c b ½ Â Ì Ì 9 Â Ì b ½ Ç ¼ c a  ½ à  ½ c Ñ Ò Ó Ô Õ Ö % Ø S?? Ò Ó Þ E Ö Ô ) Ö Õ W? Ö Õ n i { j j { k } t h f { t j C _ Ì Â { f j x k g m m f g t c a  ½ à  ½ c h i k x g z x t v h i i g " h t y # À $ Î c b ½ Â Ì Ì C _ Ì Â Ç ¼ c a  ½ à  ½ c Ñ Ò Ó Ô Õ Ö % % Ø S?? Ò Ó Þ E Ö Ô ) Ö Õ å à? t g ~ t ~ m y y m u t t { l k } t h { x { } } ~ i h j n t ~ m y y k } t } m x y t x { } } ~ i h j } Ž i h g m } t t h l m } t r k g g { g } i k y j f t u t h r t j i f t i f { x h i j k l g m i f } z } g t n w u i m j j m l g m i f { h z ~ i h j } r t l { k } t { g g { l t h } l { f k } t x h i h { } y m t ~ i f g t m x x t h g i l h { l } i h g x { } } ~ i h j } i h x { } } ~ i h j } g { g { h t Ž i k f j m f { j m l g m i f { h z n g m l g i x { } } ~ i h j } ~ m g { m f m k i Ž t m g l { h { l g t h } k x x t h l { } t { f j y i ~ t h l { } t y t g g t h } { f j } x t l m { y l { h { l g t h } n t f z i k k } t { } m x y t x { } } ~ i h j ~ m g g t ¾  c c Ã Ì l i { f j z i k ~ m y y r t ~ { h f š ž Ÿ ž ž Ÿ º ¹ š c d d ƒ ž d ž Ÿ ž n t g z x t g t x { } } ~ i h j { { m f { f j m g ~ m y y r t { l l t x g t j n, i h } t l k h m g z h t { } i f } g t x { } } ~ i h j ~ m y y f i g r t j m } x y { z t j ~ t f z i k g z x t m g n n z x t g t Ž i y y i ~ m f g i m u t y k t { x { } } ~ i h j n z x t c _ ` g ~ m l t Ž i h g t x { } } ~ i h j v h i i g " h t y # À $ ¾  c c Ã Ì É Î Ä b Ñ Ò Ó Ô Õ Ö % - Ø & Ò W Ò Ó Þ E Ö Ô ) Ö Õ R ) ) ß à Õ? e i k } i k y j h t l t m u t g t t } } { t ˆ ˆ Š z } Š Œ Š Œ { Š { Ž } Š } } ˆ ˆ n - 5 ü \ 5 ø ù ü ø î ï ð ñ ò ó ô õ ö ø ù ù ú û ø ù ü ø î ý þ ö ý ò ÿ ï ò ñ ö ý ý ò ó ö ñ þ þ ÿ ï ò ö ó ï þ ò þ ý î 3 ô ý ü, ï ÿ ø ]
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
¼ ½ ¾ À Á Â Á Ã Ä Å Á Æ Ç È É È É Á Ê Ä Ã Ã Ë Ì Í Ç Á Ê Ã È Á Ê Æ Ê Ì Ä Î Í Ï Ä É È Í Ç È Í Ð Í Ä Ê Ñ Ê Ì Ä É È Í Ò Ó Ô Õ Ö Ø Ù Ú Ú Û Ü Ý Þ Ó Ø ß à á
F G H I J J K L L! " # $ % % & ' ( # ) * + ), -. - / 0 1 2 ), -. 3.. 4, 5 1 6 7 1 8 9 4 : ; < 4 = 4 < >? $ @ @ A B < < C D D E E E 1 8 9 4 >? U S U X s U V W U X X Y W U X U V W š T Z J J ^ _ h \ J F \
ΘΕΜΑ: «Προκήρυξη εκλογών για την ανάδειξη Πρύτανη και τεσσάρων (4) Αντιπρυτάνεων του Πανεπιστημίου Δυτικής Αττικής»
ΓΕΝΙΚΗ Δ/ΝΣΗ ΔΙΟΙΚΗΤΙΚΩΝ & ΑΚΑΔΗΜΑΪΚΩΝ ΥΠΟΘΕΣΕΩΝ & ΦΟΙΤΗΤΙΚΗΣ ΜΕΡΙΜΝΑΣ Δ/ΝΣΗ ΥΠΟΣΤΗΡΙΞΗΣ ΑΚΑΔΗΜΑΪΚΩΝ ΟΡΓΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ 2 Πληροφ.: Μ. Παπαδοπούλου Π. Ράλλη & Θηβών 250, 122 44 Αιγάλεω Τηλ.: 210-5381120
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
Im{z} 3π 4 π 4. Re{z}
! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG
D F g ヾ j gj k E k j i g g ヾg g j i kg ヾ j jk g ヾ j g kg k jji g gj G k g k i g H g gh gj g g k j j IJ K L M g N li g ヾ i g IJ L O M BC
! "#$ % "&$ ' ( ' ))$ % *$ ' ( ' +, + + &)$ % &)$ ' ( ' + + + ' + ' ' / 0 1 2 2 3 4 5 6789 : 2 5 ; ; ;?. 2?>> ;? 2 @ >> ;? 2 @ > ; A 2A> 2 2 5 -. D E F G H IJKL M IJ N L O M BC RS TU V RSW U V
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U
Minion Pro Condensed Latin capitals A B C D E F G H I J K L M N O P Q R S T U V W X Y Z & Æ Ł Ø Œ Þ Ð Á Â Ä À Å Ã Ç É Ê Ë È Í Î Ï Ì İ Ñ Ó Ô Ö Ò Õ Š Ú Û Ü Ù Ý Ÿ Ž Ă Ā Ą Ć Č Ď Đ Ě Ė Ē Ę Ğ Ģ Ī Į Ķ Ĺ Ľ Ļ Ń
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
Samples of common TEX font encodings
Samples of common TEX font encodings Scott Pakin scott+pkfh@pakin.org June 12, 2011 The pkfix-helper program occasionally needs help from the user in selecting an appropriate tfm file to match a Type 3
Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2008.. 5, º 5(147).. 777Ä786 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒˆ Šˆ Œ Š ƒ ˆŒ œ ƒ - Ÿ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ± μ, ÎÉμ ² ³ Ö Éμ³ μ-ô³ μ μ μ ±É μ³ É μ Ìμ É μ μ ³μ² ±Ê² CN CO 2 N 2. ±
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Δυναμική διαχείριση μνήμης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας
ZZ (*) 4l. H γ γ. Covered by LEP GeV
: 33 9! " 5< 687 235 # #) " " &( $ # $!" K I K T S R N \ N \ ] N ^ K V 63 7 "" ` 2 9 a C C E D # C B A @ " "? > H N OQP N M Y WX U V H O ( N O_P b i h i h h 63 7 "" ` C C E D # C B A @ " "? > b d e f f
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Σελίδα 2 από 38! " # $ % & & ' $ % & & ' (! " # $ % & & ) (! " * $ % & & ' $ % & & ' '! " # $ % & & ) ' ) " + #, -. -, / ε α 5 # 6, 7 8 ε 9 α :
Σελίδα 2 από 38! " # $ % & & ' $ % & & ' (! " # $ % & & ) (! " * $ % & & ' $ % & & ' '! " # $ % & & ) ' ) " + #, -. -, / ε 1 2 3 α 5 # 6, 7 8 ε 9 α : % ε, / + # ; # # < α 6 5 3 = > 6-2 3? 5 3 = > 6, @
Cascading failure model of complex networks based on tunable load redistribution
J X q Ô ø J 33 1 Vol33 No1 013 1 Systems Engneerng Theory & Prctce Jn 013 : 1000-6788(013)01-003-06 : N949 : A!"#$%&')()*+))-)/)01 4365 7 8 94:4; < = >@?6A 4C4D ( EFIJLKNMOPQRSTLKU VW 410073) YZ]\]^]_`cb]decf]ghc]j]k]lm]mcn]o]p]q]r]]j]s]t]]]]jxwzy]{]]j]s]
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 8: Τριπλά Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
A;B"C"D "E"F"GH"I"J"K"L M"N"G 5 OQP"R"S "K""T"U"!"VXW"Y"Z"[""8"\"]_^"` S"a"b"c"d"_f GXg_h"i"j"k_U" "_8
"!"#"$"%"&"'"""*,+.-"/"""4"5"6"7""8,9;:"?"@ A;B"C"D "E"F"GH"I"J"K"L M"N"G 5 OQP"R"S "K""T"U"!"VXW"Y"Z"[""8"\"]_^"` S"a"b"c"d"_f GXg_h"i"j"k_U" "_8 S T"l"m"n"o"m"V $"[""8,9;:" P"R"S"p"q 9r:"
+ z, όπου I x, I y, I z είναι οι ροπές αδράνειας
r Έστω κβαντικός περιστροφέας ολικής στροφορμής J, που περιγράφεται από Jx J y J τη Χαμιλτονιανή H = z, όπου I x, I y, I z είναι οι ροπές αδράνειας I x I y I z του περιστροφέα ως προς τους άξονες x,y,z,
ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ
Ó³ Ÿ. 2007.. 4, º 5(141).. 719Ä730 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ Š Œ Œ ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ÖÉ Ö Ê²ÓÉ ÉÒ μéò μ ³ Õ ±μ Í É Í CO 2 O 2 ϲ μì
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ Š ˆ œ Š Š Œ ˆ Œ ˆ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± Ò Ê²ÓÉ ÉÒ Î ² μ μ ³μ ² μ Ö É Í μ ÒÌ μí μ ² Î ÒÌ Ì - ³ Ì É ² Í Ö ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ ʲÓÉ ÉÒ ³ ³ É
ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. Σωστό. Σωστό. Σωστό 4. Λάθος 5. Σωστό 6. Λάθος 7. Σωστό 8. Λάθος 9. Σωστό 0. Λάθος. Λάθος a. Σωστό b. Λάθος c. Λάθος
31 9 Vol.31, No Systems Engineering Theory & Practice Sept., 2011 : (2011)
ÿ Ÿ a þ î µ D ý û 31 9 Vol31 No9 2011 9 Systems ngineering Teory & Practice Sept 2011 : 1000-6788(201109-173-10 : O226 :!"#$ RCH *+-/01 %&'( GI/D M SP/1/N 2434 12 64748 1 94:
CD E F>G H IKJML CD N O?P H Q EORJ S T U9V V W X Y - 1, ) !, # ( - 4, 5< CD E F>G H I[Z\L CD N O?P H Q EORJ ] T V V W
! " # $ " %! & ' ( ) * +%, (.-,0/+ ) 1, ) 2" # #3 " # 3 ( # " - 4, 5!! % 276, # 4 3 " # # %.-,7-8 + 4 )3, 20/ # + - 4, 596+ 1, ) +! ( 6! - 4 - ( - 4 5 *." 5 %.5 ( 27+ ) 4 3 " # : " # ( +! 1, )" 5 %9; ("
Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure
LICENTIATE T H E SIS Some New Friedrichs-Type Inequalities in Domains with Microinhomogeneous Structure Yulia Koroleva Luleå University of Technology Some New Friedrichs-Type Inequalities in Domains with
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ
Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Smpso Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ Μια πρώτη προσέγγιση Ο χώρος χωρίζεται σε διαστήματα: {... } Prtto P O r ίz o u µe : { } { } m m : M m :
Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2015.. 12, º 3(194.. 673Ä677 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŸ ˆ Šˆ ˆ ˆ Œ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï μé É ² Ò Ê Ö Ö Î ² Ò Ê²ÓÉ ÉÒ,
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
print( x is positive ) Στο διερμηνευτή Python, προσοχή στη στοίχιση, διότι γίνεται από το χρήστη:
37 ΛΑΜΒΑΝΟΝΤΑΣ ΑΠΟΦΑΣΕΙΣ 1. Εκτέλεση υπό συνθήκη if x >0: print('x is positive') x > = 0 print( x is positive ) Σχήμα: Η λογική του if then Στο διερμηνευτή Python, προσοχή στη στοίχιση, διότι γίνεται από
Ηλικία και αύξηση της τσιπούρας ( λιμνοθαλασσών Μεσολογγίου Αιτωλικού. Συγκριτική ανάλυση βιολογικών και μορφομετρικών δεδομένων των ετών 1992
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΛΙΕΙΑΣ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ηλικία και αύξηση της τσιπούρας
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Δυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ
P9-2008-53 ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ ˆ Œ MATLAB Š ³ÒÏ ƒ.., Š ³ÒÏ.., ±.. P9-2008-53 Î ÉÒ ³ ± Êα Í ±²μÉ μ Ì É ³ MATLAB É ÉÓ μ± μ ³μ μ ÉÓ ³ Ö Œ LAB ²Ö ÊÎ ÒÌ Î - Éμ Ë ± Ê ±μ É ², Î É μ É ²Ö μ Ö
Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ º½ Απλές δομές Ηδομήχρησ ιμοποιείταισ ανσ υλλογήμεταβλητώνδιαφορετικούτύπουπροκειμένου ναπεριγράψεισ υνολικάμιαοντότηταº ΓιαπαράδειγμαηοντότηταΑΝΘΡΩΠΟΣ αποτελείταιαπόταπεδία ½º Ονομα αλφαριθμητικόµ
P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ
P10-2012-134 ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ ƒ ŒŒ ˆŸ ƒ Š Œ Œ Œμ ±μ ±μ ˆ.., ˆ Ó±μ. ˆ., Š ²μ.. P10-2012-134 μ ³³ Ö μî μ Ê ² ±É μ³ É Œ μé μ ÖÐ Éμ³ É Í μí É Í ³, μ μ- ³ÒÌ ±É μ³ É Ì ±Éμ ˆ -2. μì Ö ³ Ö Ëμ ³
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
3 4 " A X. 6! 5 6 b 4 c "
! " E M A I ' www.visitoursite.gr 094000000 00000/31/Β/92/30 1992 195 ourmail@otenet.gr ( ) * +, - +. - / + 0 * + 1 2 1 +. ( 3 4 " 5 6 7 A X ΒΙ.ΠΕ. Λάρισας, Τ.Θ. 1659, Τ.Κ. 41002, Λάρισα, Λάρισα 2410500000-9
Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2010.. 7, º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ ˆ ƒ ˆŠˆ œ Š Šˆ Š ˆ ILC Ÿ ƒ ˆ ˆ ƒ ˆ ˆŸ.. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ É ± ʲÓÉ ±μ μé± Ì Ô² ±É μ ÒÌ Î, ÉÒ ³
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200
P9-2011-62. Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200 Î.. P9-2011-62 É μ É μ μ Í μ μ Ö μ ±μ Êα Ê ±μ É ²Ö -200 É ² μ μ Ê É μ É μ Í μ μ Ö Ò ÒÌ μ - ±μ, ±μéμ μ Ö ²Ö É Ö Î ÉÓÕ É ³Ò μ É ± Êα ²
ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ
Ó³ Ÿ. 2015.. 12, º 1(192).. 256Ä263 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ Š ˆ ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ.. ƒê,.. μ Ö, ƒ.. ³μÏ ±μ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ μ Ò μμé μï Ö ³ Ê μ ³ Ê ³Ò³ μ Í μ Ò³ ² Î ³ μ ³ É μ- ÊÕÐ
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclss.ue.gr/courses/inf6/ Άνοιξη 207 - I. ΜΗΛΗΣ ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Divie Coquer D&C ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 207 - Ι. ΜΗΛΗΣ - 04 - DIVIDE & CONQUER I Divie & Coquer Διαίρεσε αναδρομικά το
Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2014.. 11, º 3(187).. 431Ä438 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ ˆŒ Š Š Š ƒ ˆŸ ŠˆŒ Œ ˆ Œ Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé É ² Ò Ê²ÓÉ ÉÒ ÊÎ Ö ³ μéò Éμ ±μ É ÒÌ Ëμ ÒÌ É Ê μ± ( É μê) Ì
ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ
πastir ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ Σπέσιαλ χ Hamburgerfonts Αλώπηξ 2016 k Υ şerbet 60 στ/pt 18 στ/pt Αστήρ Stella Project Calligraphy à la Greka 14/16 στ/pt ΛΟΓΟΤΥΠΑ ΣΧΕΔΙΑΣΜΕΝΑ ΠΡΟΓΕΝΕΣΤΕΡΑ, ΜΕ ΤΗΝ ΚΙΝΗΣΗ
Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±
Ó³ Ÿ. 009.. 6, º 7(156.. 6Ä69 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒ ˆ - ˆ ƒ ˆ ˆ ˆŸ Š -Œ ˆ Šˆ ˆ.. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ μ ± Ê É É Ê Ò μ μ, Œμ ± É ÉÓ μ Ò ÕÉ Ö ²μ Í Ò - μ Ò ² É Ö ³ ÖÉÓ Ì ÒÎ ² ÖÌ, μ²ó ÊÕÐ Ì ±μ ± 4- μ Ò. This paper
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 4.. 1343Ä1350 ˆ ƒ ŒŒ ˆ ˆ Œ ƒˆ ˆˆ ˆ Š ˆ ˆ Š -3.. ŠÊ Ö 1,, ˆ.. μ 2,.. ɱμ 1, 2,.. 1, 2,.. Ê 1,.. Ê 2,.. μ ±μ 2, ˆ. Œ. μ 1, 2,.. Ÿ 1, Œ.. ² ± 2 1 ˆ É ÉÊÉ Ö ÒÌ ² μ, Œμ ± 2 ˆ É
Ó³ Ÿ , º 4(181).. 501Ä510
Ó³ Ÿ. 213.. 1, º 4(181.. 51Ä51 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ƒ ˆ ˆŸ Ÿ ƒ Ÿ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Š.. Œμ Éμ 1,.. Ê 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒ ÒÎ ² É μ Ô - ³ Ê²Ó ²Ö ³ É ± Š. Ò Ï É Í μ Ò Ô Ö ³μ³
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.
P13-2011-120. ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É E-mail: sobolev@nrmail.jinr.ru μ μ². ƒ., ˆ μ Œ.., μ ± Î.. P13-2011-120 É μ ± ²Ö ³ Ö μ² ÒÌ Î Ö ÒÌ ±Í Ò É Ö Ô± ³ É ²Ó Ö
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ
13-2016-82.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ ˆ Œ ˆŸ Š Š Š ( ) ƒ ˆ ˆ ˆŒ Œ Ÿ Š Œ Š ˆŒ NA62. I. ˆ Œ ˆŸ Ÿ Œ ² μ Ê ² μ Ò É Ì ± Ô± ³ É ƒ²μ É... 13-2016-82 ² ³ Éμ μ²μ Ö μ ÒÌ μ μ²μ± Éμ ±μ É ÒÌ Ëμ
P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï
P15-2012-75.. Ò±,. Ï ± ˆ Œ ˆŸ ˆ, š Œ ˆ ˆŒˆ Š ƒ ˆŸ ˆ ˆ, Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ ² μ Ê ² Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï Ò±.., Ï ±. P15-2012-75 ˆ ³ Ö μ Ì μ É, μ Ñ ³ ÒÌ μ É Ì ³ Î ±μ μ μ É μ Íμ Ö ÕÐ
ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ. Reklama
ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ ξ Reklama commercial ž προφιτερόλ şurup 2014 χ Hamburgerfonts & BLACK 72 PT 16 PT Reklama Stella Project Calligraphy á la Greka 12/14 PT ΠΗΓΗ ΕΜΠΝΕΥΣΗΣ / ΑΝΑΦΟΡΑΣ: h γραφή του
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ
P13-2013-6.. ²ÒÏ,.. μ μ ƒ ˆ Šˆ Š Š ˆ -2Œ. Œ ƒ Š Š ˆ ˆ Ÿ ˆ ²ÒÏ.., μ μ.. P13-2013-6 É Î ± Ê ± ±Éμ ˆ -2Œ. ³ É Ò Ìμ μ μ ÔËË ±É ±É μ É μ É μ Ö μ ÖÉ Ö Ê²ÓÉ ÉÒ ² μ Ö Ìμ ÒÌ ÔËË ±Éμ ±É μ É - ±Éμ ˆ -2Œ, Ò μ² μ μ
Εξίσωση Τηλεπικοινωνιακών Διαύλων
Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 5 η Ανιχνευτές Νικόλαος Χ. Σαγιάς Επίκουρος
ΑΝΑΚΟΙΝΩΣΗ ΕΠΕΞΗΓΗΜΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΓΙΑ ΤΟ ΕΤΟΣ ΠΟΥ ΕΛΗΞΕ ΣΤΙΣ 31 ΕΚΕΜΒΡΙΟΥ 2011
ΑΝΑΚΟΙΝΩΣΗ Πιο κάτω ϖαραθέτουε την ανακοίνωση της Ένδειξης Αϖοτελέσατος της Cysees Iesme Pbic Cmay Ld, για το έτος 11 η οϖοία έχει εξετασθεί και εγκριθεί αϖό το ιοικητικό Συβούλιο της Εταιρείας, στη συνεδρία
P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25
P6-2011-64.. Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25 Œ ²μ... P6-2011-64 ² μ Ö ²Õ³ Ö ± ³ Ö μ Í Ì μ Ò Ö μ-ë Î ± ³ ³ Éμ ³ μ²ó μ ³ ³ ± μé μ Œ -25 μ³μðóõ Ö μ-ë
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Άσκηση 7η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών Ñ [ [ Z É É Æ É Ê HU578: 7 η Seirˆ Ask sew AporÐec: is@csd.uoc.gr ZD[]\^`_bdcNegfh^ifkjle=cDmogp
που σε κάθε χρονική στιγμή περιλαμβάνει τις τιμές των μεταβλητών κατάστασης
1. Έννοια παρατηρησιμότητας. Ας θεωρήσουμε ένα ΓΧΑ σύστημα τάξης, κατ αρχήν μιας εξόδου () και μιας εισόδου (). Έχουμε ήδη θεμελιώσει ότι ένα οποιοδήποτε ΓΧΑ σύστημα μπορεί να περιγραφεί από τις εξισώσεις
Ó³ Ÿ , º 3(180).. 313Ä320
Ó³ Ÿ. 213.. 1, º 3(18).. 313Ä32 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆŸ ƒ ƒ Ÿ ˆ Š ˆ Šˆ Š ŒŒ ˆ ˆ ˆ ˆ ˆ Œ ˆŠ.. μ a, Œ.. Œ Í ± μ,. ƒ. ²Ò ± a ˆ É ÉÊÉ Ö ÒÌ ² μ μ ±μ ± ³ ʱ, Œμ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ
P ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö, Ÿ. ʲ ±μ ± 1. Š Ÿ Šˆ ˆŒ ˆ ƒ ˆŠ. ² μ ±μ Ë Í Õ Œ É ³ É Î ±μ ³μ ² μ ÒÎ ² É ²Ó Ö Ë ± 2013 (ŒŒ '2013)
P9-2013-70 ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö, Ÿ. ʲ ±μ ± 1 Œ Œ ˆ Š Œ ˆ ˆ ˆ ŒˆŠˆ Š Ÿ Šˆ ˆŒ ˆ ƒ ˆŠ ² μ ±μ Ë Í Õ Œ É ³ É Î ±μ ³μ ² μ ÒÎ ² É ²Ó Ö Ë ± 2013 (ŒŒ '2013) 1 ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï
ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ
Ó³ Ÿ. 2008.. 5, º 2(144).. 219Ä225 ˆ ˆ ƒˆÿ, Š ƒˆÿ ˆ Ÿ Ÿ Œ ˆ ˆ ˆ ˆ ˆ Œ Œ ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ.. Šμ ²μ a,.. Š,.. μ ±μ,.. Ö a,.. ² ± a,.. ² Õ± a a ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ö μ Ë ± ³... ±μ ²ÓÍÒ Œμ
UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库
ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±
Ó³ Ÿ. 2010.. 7, º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ Š ˆ œ Š Œ ˆ Œ.. Ëμ μ Î ± É ÉÊÉ ³..., Œμ ± ² É Î ± ³μÉ μ Ëμ ³ μ ²Ó μéμî ÒÌ Ô² ±É μ ÒÌ Êαμ, Ö ±μéμ ÒÌ Î É Î μ É ² μ μ ³, Éμ± ³, ÒÏ ÕÐ ³ ²Ó μ Î Éμ± ²Ó. Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 604Ä616 œ ˆ Š ˆ ˆ ˆ Š ˆŒ CMS LHC ˆ.. ƒμ²êé 1,.. ³ Éμ 1,2, 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö É ² Ò Ê²ÓÉ ÉÒ Ô± ³ É CMS, μ²êî Ò μ μ ÒÌ - μ μ Í ±² μéò LHC
ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144
Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 647Ä653 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ Œ ˆ Š Œ ˆ ˆ ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144 ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï ÔÉμ
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ. Majestic
ΕΛΛΗΝΙΚΗ ΨΗΦΙΑΚΗ ΤΥΠΟΘΗΚΗ λ Majestic Έξοχα! α Τυπογράφος Display 2013 Ξ Extraordinary Ω DEFAULT SET 48 PT STYLISTIC SET 1 16 PT Majestic Stella Project Calligraphy à la Greka DEFAULT SET 12/14 PT ΠΗΓΗ
Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
Ηλεκτρονική Μικροσκοπία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ηλεκτρονική Μικροσκοπία Β. Μπίνας, Γ. Κυριακίδης Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα
Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±
Ó³ Ÿ. 2012.. 9, º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ Ÿ Œ Ÿ.. Ëμ μ,.. μ, Š.. ±μ Î ± É ÉÊÉ ³..., Œμ ± Ö Ì μ ÊÌ É³μ Ë μ μ ² Ö ³ ± ³ ²Ó μ³ Ö μ³ Êɱ μé 0,8 μ 1,2 Œ É μ μ ³ Ê²Ó μ É μ ±μ ²ÊÎ Ô ± Éμ μ² 5 ±Ô
P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É
P13-2009-117.. μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ ² μ Ê ² μ Ò É Ì ± Ô± ³ É 1ˆ É ÉÊÉ Éμ³ μ Ô, ±Ä Ï, μ²óï 2 Ì μ²μ Î ± Ê É É, Õ ², μ²óï μ... P13-2009-117 μ ³ μ ³μ² ±Ê²Ö ÒÌ Êαμ
Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA
Ó³ Ÿ. 2006.. 3, º 7(136).. 78Ä83 Š 537.533.33, 621.384.60-833 Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA ( ).. μ²éêï±,.. Ò±μ ±,. ƒ. Šμ Í,.. Šμ μé,. ˆ. μì³ Éμ,.. Œ ² Ìμ, ˆ.. Œ ϱμ,.. ²μ,.., ˆ.. ²,.. μ,.. ³ μ,. Œ. Ò,
Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 016.. 13 º 7(05).. 1533Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ œ Š ˆ NICA ˆ ˆˆ ƒ ƒ.. ŠÊ Íμ.. Ê ±μ.. ² μ 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ Ê ² Î ² Ö μ É ÉμÎ μ μ ±Êʳ μ ± ³ μí Ê ±μ Ö ÉÖ ²ÒÌ μ μ Ö ²Ö É Ö μ μ Î μé É μ É Ê ±μ É ². μ
Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280
Ó³ Ÿ.. 2012.. 9, º 8.. 89Ä97 Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280 ƒ. ƒ. ƒê²ó ±Ö,.. Ê, ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö Ò μ±μî ÉμÉ Ö Ê ±μ ÖÕÐ Ö É ³ ÉÒ ³μ μ μ Éμ Ö - ÒÌ ±Í ³. ƒ.. ² μ Ñ μ μ É ÉÊÉ Ö
P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.
P6-2009-30.. Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U ² μ Ê ² μì ³ Ö, μ, μ² Ö Œ ²μ... ³ μ É Ê±ÉÊ μ μ ³ É ² ²Ö ² Ö 238U 237 U, μ²êî ³μ
AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),
½ ³ J. Sys. Sci. & Math. Scis. 34(12) (2014, 12), 1438 1450 µ Ñ RFID Ô À (»Ì ÖÚ, Å À ºÓ Ê Â, Å 300071; Ä Õ Ì, Å 300300) Á (Ä Õ Ì, Å 300300) ÚÍ FNN RFID Ò ĐÓ IPS, ÒÇ Ú Í RFID Đ Ó Ù, Ù ½ ² Ë «, Á Å ÈÀ ß
2 SFI
ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù
Imagerie microonde: influence de la polarimétrie du champ diffracté
Imagerie microonde: influence de la polarimétrie du champ diffracté E. Le Brusq To cite this version: E. Le Brusq. Imagerie microonde: influence de la polarimétrie du champ diffracté. Autre. Université
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
ƒπ à ª π ƒ ªπ - π π ƒ - ƒπ ª 9-11 ø ª π 11 ƒ ª ( Ï ÈÓ 3000 LBS & À ÚÔÛˆÏ ÓˆÓ) ª À - º - À - π º ƒ ª π ø 21 À ƒ ø 22
ƒπ à ª ÛÂÏ µ - ª ºƒ 4-9 µ µπ - - ºπ ƒ π ƒ ªπ - π π ƒ - ƒπ ª 9-11 ø ª π 11 ƒ ª ( Ï ÈÓ 3000 LBS & À ÚÔÛˆÏ ÓˆÓ) 12-13 ª À - º - À - π 14-18 º 18-20 ƒ ª π ø 21 À ƒ ø 22 à Àµ ø ƒπµ π DIN 2391 23 à Àµ ø Ãøƒπ
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ