Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Σχετικά έγγραφα
Matrices and Determinants

A manifestly scale-invariant regularization and quantum effective operators

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Space-Time Symmetries

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

The Simply Typed Lambda Calculus

Section 9.2 Polar Equations and Graphs

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Higher Derivative Gravity Theories

Uniform Convergence of Fourier Series Michael Taylor

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

The challenges of non-stable predicates

Reminders: linear functions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order Partial Differential Equations

( ) 2 and compare to M.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2 Composition. Invertible Mappings

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Statistical Inference I Locally most powerful tests

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Parametrized Surfaces

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1 String with massive end-points

D-term Dynamical SUSY Breaking

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.3 Forecasting ARMA processes

C.S. 430 Assignment 6, Sample Solutions

Spherical Coordinates

Graded Refractive-Index

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Dark matter from Dark Energy-Baryonic Matter Couplings

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

The ε-pseudospectrum of a Matrix

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Congruence Classes of Invertible Matrices of Order 3 over F 2

w o = R 1 p. (1) R = p =. = 1

Srednicki Chapter 55

Derivation of Optical-Bloch Equations

Differential equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Local Approximation with Kernels

UV fixed-point structure of the 3d Thirring model

Solutions to Exercise Sheet 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Trigonometry 1.TRIGONOMETRIC RATIOS

Bounding Nonsplitting Enumeration Degrees

Math221: HW# 1 solutions

CORDIC Background (4A)

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

D Alembert s Solution to the Wave Equation

Non-Gaussianity from Lifshitz Scalar

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 26: Circular domains

Every set of first-order formulas is equivalent to an independent set

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ST5224: Advanced Statistical Theory II

CORDIC Background (2A)

Abstract Storage Devices

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Strain gauge and rosettes

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Solar Neutrinos: Fluxes

4.6 Autoregressive Moving Average Model ARMA(1,1)

Variational Wavefunction for the Helium Atom

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Tridiagonal matrices. Gérard MEURANT. October, 2008

( y) Partial Differential Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Finite Field Problems: Solutions

Notes on the Open Economy

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Trigonometric Formula Sheet

Transcript:

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal Alexandros Karam Theory Division Physics Department University of Ioannina AK and Kyriakos Tamvakis: 1508.03031 September 7, 015 Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 1 / 8

Beyond the Standard Model (SM) Shortcomings of the SM: Dark Matter Neutrino Masses Vacuum Stability Matter-Antimatter Asymmetry Flavor Problem Strong CP Problem Gauge Unification Inflation... Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 3 / 8

The Hierarchy Problem Solutions to the problems of the SM generally require new large scales Λ NP υ EW. These scales contain particles with mass m = Λ NP that give loop corrections to the Higgs boson mass: M h = M 0 + m h, m h Λ NP A huge amount of fine-tuning is needed between M0 and Λ NP in order to obtain M h = 15.09 GeV. A similar argument holds if we consider the SM as an effective theory, without any additional degrees of freedom, having a cut-off Λ UV. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 4 / 8

The Hierarchy Problem Popular Solution: Supersymmetry Alternate Solution: Classical Scale Symmetry Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 5 / 8

Classical Scale Invariance (CSI) A theory is said to have Classical Scale Symmetry if the Lagrangian is invariant under the transformations x µ dx µ, S(x) ds(dx), V µ (x) dv µ (dx), F (x) d 3/ F (dx) There is only one scale in the SM, the parameter µ SM in the scalar potential V (H) = 1 µ SMH H + λ(h H) With µ SM = 0 the SM is Classically Scale Invariant (T µ µ ) classical = 0. The quadratic sensitivity to the cut-off is now unphysical. Quantum effects break the symmetry through the β-functions (T µ µ = β λi O i ), but this does not reintroduce the quadratic divergences. = Solution to the Hierarchy Problem Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 6 / 8

Coleman-Weinberg Mechanism (1973) Massless scalar QED: L = 1 4 F µνf µν + (D µ φ) D µ φ λ φ 4! φ 4 1-loop effective potential: [ V eff (φ) = λ ( ) ] φ 4 φ 4 + 3e4 φ φ 64π φ 4 log φ 5 6 Minimization at φ = φ 0 gives λ φ ( φ ) = 33 8π e4 φ ( φ ) ( ) φ V eff (φ) e 4 φ [log φ 4 φ 1 ] Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 7 / 8

Coleman-Weinberg Mechanism (1973) Dimensional Transmutation: exchange a dimensionless parameter λ φ for a dimensionful parameter φ. [ ] λ φ ( φ ) = 33 8π e4 φ ( φ ), The scalar boson (scalon) obtains a mass: φ Λ UV exp 4π e φ ( φ ) Λ UV M s = 3e4 φ 8π φ In the SM: M s 1 [ 6M 4 8π υ W + 3MZ 4 1M 4 ] t < 0 EW Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 8 / 8

Conclusion We should add bosonic fields in order to obtain a positive mass. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 9 / 8

Gildener-Weinberg Formalism (1976) V 0 (Φ) = 1 4 λ ijklφ i Φ j Φ k Φ l We choose a renormalization scale Λ, at which V 0 (Φ) has a nontrivial minimum on some ray Φ i = N i ϕ: min V 0(N) = min (λ ijkl(λ)n i N j N k N l ) = 0 N i N i =1 N i N i =1 The conditions for a minimum along a particular direction N i = n i are V 0 N i = V 0 (n) = 0 n 1-loop potential V 1 (nϕ) = Aϕ 4 + Bϕ 4 log ϕ Λ. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 10 / 8

Gildener-Weinberg Formalism (1976) A = { [ 1 64π ϕ 4 3 Tr MV 4 ln M V ] [ ϕ +Tr MS 4 ln M S ] [ ϕ 4 Tr MF 4 ln M F ] } ϕ B = 1 ( 3 Tr M 4 64π ϕ 4 V + Tr MS 4 4 Tr MF 4 ) The symmetry breaks when: V 1 (nϕ) ϕ = 0 ln ϕ ϕ= ϕ Λ = 1 A B Quantum corrections along the flat direction give mass to the scalar: M s = 1 ( 3 Tr M 4 8π ϕ V + Tr MS 4 4 Tr MF 4 ) Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 11 / 8

The Model CSI SU(3) c SU() L U(1) Y SU() X New fields: 1 complex scalar doublet Φ under SU() X 3 gauge bosons X a 1 real scalar singlet σ 3 right-handed neutrinos N i Unitary gauge: H = 1 ( 0 h ), Φ = 1 ( 0 φ ) V 0 (h, φ, σ) = λ h 4 h4 + λ φ 4 φ4 + λ σ 4 σ4 λ hφ 4 h φ λ φσ 4 φ σ + λ hσ 4 h σ L N = Yν ij L i iσ H N j + h.c. + Yσ ij N i c N j σ Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 1 / 8

Vacuum Stability The scalar potential is bounded from below if the matrix λ h λ hφ λ hσ A = 1 8 λ hφ λ φ λ φσ λ hσ λ φσ λ σ is copositive, i.e. such that η a A ab η b is positive for non-negative vectors in the basis (h, φ, σ ). This is equivalent to the stability conditions λ hφ λ h λ φ 1, det A = λ h λ φ λ σ 1 4 λ h 0, λ φ 0, λ σ 0 λ hσ λ h λ σ 1, λ φσ λ φ λ σ 1 ( λ hφ λ σ + λ hσ λ φ + λ φσ λ h) + 1 4 λ hφλ hσ λ hσ 0 Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 13 / 8

Flat Direction In order to study the flat directions of the tree-level potential we may parametrize the scalar fields as h = ϕn 1, φ = ϕn, σ = ϕn 3, with N i a unit vector in the three-dimensional field space. The condition for an extremum along a particular direction N i = n i is V 0 N i = V 0 (n) = 0 n Then, the equations giving the symmetry breaking direction are λ h n 1 = λ hφ n λ hσ n 3 λ φ n = λ hφ n 1 + λ φσ n 3 λ σ n 3 = λ φσ n λ hσ n 1 λ h n 4 1 + λ φ n 4 + λ σ n 4 3 λ hφ n 1n λ φσ n n 3 + λ hσ n 1n 3 = 0 Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 14 / 8

The shifted scalar fields and vevs are Mass Matrix h = (ϕ + v) n 1, φ = (ϕ + v) n, σ = (ϕ + v) n 3 h v h = v n 1, φ v φ = v n, σ v σ = v n 3 From the shifted tree-level potential we can read off the scalar mass matrix λ h n M 0 = υ 1 n 1 n λ hφ +n 1 n 3 λ hσ n 1 n λ hφ λ φ n n n 3 λ φσ +n 1 n 3 λ hσ n n 3 λ φσ λ σ n 3 in the (h, φ, σ) basis. Introduce a general rotation in terms of three parametric angles R M 0 R 1 = M d, with the rotation matrix R 1 given by ( cos α cos β sin α cos α sin β ) R 1 = cos β cos γ sin α + sin β sin γ cos α cos γ cos γ sin α sin β cos β sin γ cos γ sin β cos β sin α sin γ cos α sin γ cos β cos γ sin α sin β sin γ Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 15 / 8

Parametrize the vevs as ( h1 h h 3 Mass Eigenstates ) = Then, M d is diagonal, provided that (.... R.... ) ( h φ σ v h = v sin α = vn 1 v φ = v cos α cos γ = vn v σ = v cos α sin γ = vn 3 ) v h tan α = vφ + v σ = 4λ φ λ σ λ φσ (λ σλ hφ λ φ λ hσ ) + λ φσ (λ hφ λ hσ ) tan γ = v σ = λ hλ φσ λ hφ λ hσ vφ 4λ h λ σ λ hσ tan β = v h v φ v σv (λ hσ + λ hφ ) (λ φ + λ σ + λ φσ ) v φ v σ λ h v h v. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 16 / 8

Mass Eigenvalues The resulting mass eigenvalues are Mh 1 / = λ h vh cos α cos β + λ φ vφ (cos β cos γ sin α sin β sin γ) +λ σvσ (cos γ sin β + cos β sin α sin γ) +λ hφ v h v φ cos α cos β (cos β cos γ sin α sin β sin γ) λ φσ v φ v σ (cos β cos γ sin α sin β sin γ) (cos γ sin β + cos β sin α sin γ) λ hσ v h v σ cos α cos β (cos γ sin β + cos β sin α sin γ) Mh = 0 Mh 3 / = λ h vh cos α sin β + λ φ vφ (sin β cos γ sin α + cos β sin γ) +λ σvσ (cos γ cos β sin β sin α sin γ) +λ hφ v h v φ cos α sin β (sin β cos γ sin α + cos β sin γ) +λ φσ v φ v σ (sin β cos γ sin α + cos β sin γ) (cos γ cos β sin β sin α sin γ) +λ hσ v h v σ cos α sin β (cos γ cos β sin β sin α sin γ) Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 17 / 8

Neutrino Masses The Yukawa terms that give rise to neutrino masses are Y ij ν v h ν i iσ N j + h.c. + Y ij σ v σ N c i N j The neutrino mass matrix 0 Y ν v h Y ν v h Y σv σ has the following eigenvalues M N Y σ v σ, m ν v ( ) h Y ν Y 1 σ Yν, 4v σ with M N O(100 GeV) and m ν O(0.1 ev), assuming Y ν v h O(10 4 GeV), v σ O(1 TeV) and Y σ O(0.1), so that Y ν v h Y σ v σ. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 18 / 8

The 1-loop Potential Along the minimum flat direction at the scale Λ: where A = 1 ( 64π υ 4 Mh 4 1,3 3 + log M i υ 1,3 ( ) V 1 (nϕ) = Aϕ 4 + Bϕ 4 log ϕ Λ, ) ( + 6MW 4 5 6 + log M ) ( W υ + 3MZ 4 5 6 + log M ) Z υ +9MX 4 5 6 + log M X ( υ 1Mt 4 1 + log M t ) υ 6MN 4 1 + log M N υ 1 B = 64π υ 4 Mh 4 1,3 + 6MW 4 + 3M Z 4 + 9M X 4 1M t 4 6MN 4 1,3 Minimization: V 1 (nϕ) ϕ ( υ ) = 0 log ϕ=v Λ ( = 1 4 A B )], Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 19 / 8

Darkon Mass The one-loop effective potential becomes [ V 1 (nϕ) = Bϕ 4 log ϕ υ 1 ] The pseudo-goldstone boson (darkon) mass is now shifted from zero to Mh = 1 ( M 4 8π υ h1 + Mh 4 3 + 6MW 4 + 3MZ 4 + 9MX 4 1Mt 4 6MN 4 ), Positivity condition B > 0 translates to v = v h + v φ + v σ M 4 h 3 + 9M 4 X 6M 4 N > (317.6 GeV) 4 Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 0 / 8

Model RGEs β g1 = 41 10 g3 1 + 1 1 ( (4π) 50 g3 1 199g ) 1 + 135g + 440g 3 85y t β g = 19 6 g3 + 1 (4π) 1 30 g3 ( 7g ) 1 + 175g + 360g 3 45y t β g3 = 7g 3 3 + 1 1 ( (4π) 10 g3 3 11g ) 1 + 45g 60g 3 0y t β gx = 43 6 g3 X 1 (4π) 59 6 g5 X β yt = y t ( 9 y t 17 ( β Yσ = 4 Y σ Tr Y σy σ β λh = 6y 4 t + 4λ h + λ h 0 g 1 9 4 g 8g 3 ) + 1 Y σy σ Yσ ) ( 1y t 9 ) 5 g 1 9g + 7 00 g4 1 + 9 0 g 1 g + 9 8 g4 + λ hφ + 1 λ hσ β λφ = 9/8 g 4 X 9g X λ φ + 4λ φ + λ hφ + 1/ λ φσ ( β λσ = 64Tr Y σy σ YσY ) ( σ + 16λ σ Tr Y σy ) σ + 18λ σ + λ hσ + λ φσ β λhφ = λ hφ (6y t + 1λ h + 1λ φ 4λ hφ 9/10 g 1 9/ g 9/ g X ( β λφσ = λ φσ (8Tr Y σy ) σ + 1λ φ + 6λ σ 4λ φσ 9/ g ) X + 4λ hσ λ hφ ) + λ hσ λ φσ ( β λhσ = λ hσ 6y t (Y + 8Tr σy ) σ + 1λ h + 6λ σ + 4λ hσ 9/10 g ) 1 9/ g + 4λ hφ λ φσ Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 1 / 8

Parameter Space Scan v h v φ v σ λ h (Λ) λ φ (Λ) λ σ(λ) λ hφ (Λ) λ φσ (Λ) λ hσ (Λ) M h3 46 11 770 0.176 0.004 0.57 0.0036 0.06 0.001 550.6 50 M N 40 GeV, M X 75 GeV 00 900 10 1 Λ Σ MN [GeV] 150 100 700 500 300 M h Mass [GeV] scalar couplings 10 Λ hσ Λ h Λ hφ Λ φσ 50 100 Λ φ 500 1000 1500 000 500 MX [GeV] 10 4 10 6 10 8 10 10 10 1 10 14 10 16 10 18 Μ GeV Y σ (M N ) = M N /v σ 0.31, g X (M X ) = M X /v φ.51 Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 / 8

DM Annihilations and Semi-annihilations Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 3 / 8

Boltzmann Equation The dark gauge bosons X a are stable due to a remnant SO(3) symmetry. The Boltzmann equation has the form dn dt + 3 H n = σv ( a n n ) σv eq s n (n n eq ) 3 3 M N = 40 GeV 10-4 10-5 10-6 10-7 (cm 3 / s) 10-8 10-9 10-30 10-31 10-3 10-33 10-34 <συ> a <συ> s 0 100 00 300 400 500 600 700 800 900 1000 M X [GeV] Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 4 / 8

Relic Density Ω X h = 3 1.07 109 GeV 1 g M P J(x f ), J(x f ) = x f dx σv a + σv s x Ω DM h = 0.1187 ± 0.0017 M X 700 750 GeV 50 00 900 MN [GeV] 150 100 700 500 300 M h Mass [GeV] 50 100 500 1000 1500 000 500 MX [GeV] Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 5 / 8

Direct Detection σsi X Ri R1i µred = fn MX mn πvh vφ Mhi i 10-43 σsi[cm ] 10-44 10-45 10-46 LUX (013) XENON 1T 10-47 0 00 400 600 800 1000 100 1400 1600 1800 000 MX [GeV] Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 6 / 8

Conclusions Classically scale invariant models do not suffer from the hierarchy problem and are very minimal BSM extensions Dark matter and neutrino mass scales are dynamically generated The model predicts three scalar bosons (one identified with 15 GeV Higgs) Stable vacuum Contains weak scale RH Majorana neutrinos TeV scale DM in agreement with direct detection limits Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 7 / 8

Thank you! Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 8 / 8

Effective Lagrangian Effective Lagrangian that contains all the interactions between the scalars and the rest of the fields with L h i eff = R i1h i ( M W v h W + µ W µ + M Z v h Z µz µ Mt v h tt M b v h bb Mc v h cc Mτ v h ττ + αs 1πv h G a µνg aµν + α πv h A µνa µν 3M X + R ih i XµX a aµ M N R i3h i N N + V ijk h ih jh k, v φ v σ V h ijk = R i1 [λ hφ R j (v h R k + v φ R k1 ) λ hσ R j3 (v h R k3 + v σr k1 ) + R j1 ( 6λ h v h R k1 + λ hφ v φ R k λ hσ v σr k3 )] + R i [λ hφ R j1 (v h R k + v φ R k1 ) λ φσ R j3 (v φ R k3 + v σr k ) + R j ( 6λ φ v φ R k + λ hφ v h R k1 λ φσ v σr k3 )] + R i3 [ λ hσ R j1 (v h R k3 + v σr k1 ) + λ φσ R j (v φ R k3 + v σr k ) + R j3 ( 6λ σv σr k3 λ hσ v h R k1 + λ φσ v φ R k )] ) Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 8 / 8

Higgs Total Decay Width and Signal Strength Parameter Total decay width Γ tot h 1 of a SM Higgs-like scalar h 1 with M h1 = 15.09 GeV: Γ tot h 1 = cos α cos β Γ SM h 1 + Γ inv h 1, Γ inv h 1 = Γ (h 1 XX) + Γ ( h 1 NN ), Γ (h 1 h h ) = Γ (h 1 h 3 h 3 ) = 0 Construct the signal strength parameter µ h1 : It simplifies to: which translates to µ h1 = σ (pp h 1) BR (h 1 χχ) σ SM (pp h) BR SM (h χχ) = cos4 α cos 4 β ΓSM h1 Γ tot Using the first benchmark set of values: µ h1 cos α cos β > 0.81, @ 95% CL R 11 = cos α cos β > 0.9. R 11 = 0.994, which lies comfortably within the allowed range. Alexandros Karam (Univeristy of Ioannina) 1508.03031 September 7, 015 8 / 8 h 1