Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 3 Solutions

Matrices and Determinants

Every set of first-order formulas is equivalent to an independent set

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Reminders: linear functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Congruence Classes of Invertible Matrices of Order 3 over F 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Finite Field Problems: Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Partial Differential Equations in Biology The boundary element method. March 26, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CRASH COURSE IN PRECALCULUS

Statistical Inference I Locally most powerful tests

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math221: HW# 1 solutions

Lecture 13 - Root Space Decomposition II

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Fractional Colorings and Zykov Products of graphs

SOME PROPERTIES OF FUZZY REAL NUMBERS

C.S. 430 Assignment 6, Sample Solutions

Quadratic Expressions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Uniform Convergence of Fourier Series Michael Taylor

Lecture 15 - Root System Axiomatics

Second Order Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

A Note on Intuitionistic Fuzzy. Equivalence Relation

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Concrete Mathematics Exercises from 30 September 2016

Tridiagonal matrices. Gérard MEURANT. October, 2008

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 7.6 Double and Half Angle Formulas

On a four-dimensional hyperbolic manifold with finite volume

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Areas and Lengths in Polar Coordinates

New bounds for spherical two-distance sets and equiangular lines

ST5224: Advanced Statistical Theory II

derivation of the Laplacian from rectangular to spherical coordinates

Srednicki Chapter 55

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.3 Forecasting ARMA processes

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Second Order RLC Filters

Homomorphism in Intuitionistic Fuzzy Automata

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Notes on the Open Economy

Lecture 26: Circular domains

Lecture 10 - Representation Theory III: Theory of Weights

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

D Alembert s Solution to the Wave Equation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Generating Set of the Complete Semigroups of Binary Relations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Higher Derivative Gravity Theories

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Commutative Monoids in Intuitionistic Fuzzy Sets

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 2. Soundness and completeness of propositional logic

PARTIAL NOTES for 6.1 Trigonometric Identities

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Problem Set 3: Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

On the Galois Group of Linear Difference-Differential Equations

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Numerical Analysis FMN011

5. Choice under Uncertainty

Solution Series 9. i=1 x i and i=1 x i.

Trigonometric Formula Sheet

Homework 8 Model Solution Section

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The challenges of non-stable predicates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to Exercise Sheet 5

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

If we restrict the domain of y = sin x to [ π 2, π 2

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

The Simply Typed Lambda Calculus

Parametrized Surfaces

Transcript:

Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14 by Jamilah Alanazi, B. Math (King Faisal University) A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science School of Mathematics and Statistics Ottawa-Carleton Institute for Mathematics and Statistics Carleton University Ottawa, Ontario, Canada c Copyright 2015, Jamilah Alanazi

Abstract We determine explicit formulae for the number of representations of a positive integer n by the quaternary quadratic forms a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4, where a 1, a 2, a 3, a 4 {1, 2, 7, 14} which satisfy the simplifying assumptions a 1 a 2 a 3 a 4 and gcd(a 1, a 2, a 3, a 4 ) = 1. We use a modular form approach. We then extend our work to determine explicit formulae for the number of representations of n by the octonary quadratic forms x 2 1+x 2 2+x 2 3+x 2 4+7(x 2 5+x 2 6+x 2 7+x 2 8), x 2 1+x 2 2+7(x 2 3+x 2 4+x 2 5+x 2 6+x 2 7+x 2 8) and x 2 1 + x 2 2 + x 2 3 + x 2 4 + x 2 5 + x 2 6 + 7(x 2 7 + x 2 8). i

Dedication To my mother who was always supporting me and my husband Mohammed who never gave up. ii

Acknowledgements I thank God for everything that I have been blessed with in my lifespan. I would especially like to convey my special thanks to my supervisor Dr. Ayşe Alaca who has always been there for me, shown acceptance and a welcoming attitude towards me. I thank Dr. Şaban Alaca who have offered so much assistance during my program, as well as Carleton University and all the professors whose courses I have studied over the years. I also, thank Saudi Arabia for the financial support needed to do my Master s degree in Canada. iii

Contents Abstract i Dedication ii Acknowledgements iii 1 Introduction 1 2 Basic Concepts 4 2.1 Modular Forms.............................. 4 2.2 Eisenstein Series............................. 9 2.3 Dimension Formulae........................... 10 3 Representations by Quaternary Quadratic Forms with Coefficients 1, 2, 7 and 14 15 3.1 Preliminaries............................... 15 3.2 The space M 2 (Γ 0 (56), χ 0 )......................... 18 3.3 The space M 2 (Γ 0 (56), χ 3 )......................... 28 3.4 The space M 2 (Γ 0 (56), χ 5 )......................... 41 3.5 The space M 2 (Γ 0 (56), χ 6 )......................... 51 iv

4 Representations by Octonary Quadratic Forms and Future Work 68 4.1 Representations by Octonary Quadratic Forms with Coefficients 1 and 7 68 4.2 Conclusion and Future Work....................... 80 v

Chapter 1 Introduction Let N, N 0, Z, Q, R and C denote the sets of positive integers, nonnegative integers, integers, rational numbers, real numbers and complex numbers respectively. Let a 1, a 2, a 3, a 4 N, and n N 0. Let N(a 1, a 2, a 3, a 4 ; n) denote the number of representations of n by the quaternary quadratic form a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4, that is N(a 1, a 2, a 3, a 4 ; n) := card{(x 1, x 2, x 3, x 4 ) Z 4 n = a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4}. It is clear that N(a 1, a 2, a 3, a 4 ; 0) = 1. Since N(a 1, a 2, a 3, a 4 ; n) is invariant under a permutation of a 1, a 2, a 3, a 4, we may suppose that a 1 a 2 a 3 a 4. (1.0.1) Note that if gcd(a 1, a 2, a 3, a 4 )= d, then N(a 1, a 2, a 3, a 4 ; n) = N(a 1 /d, a 2 /d, a 3 /d, a 4 /d; n/d). So we may also suppose that gcd(a 1, a 2, a 3, a 4 ) = 1. (1.0.2) 1

CHAPTER 1. INTRODUCTION 2 Our first objective in this thesis is to determine explicit formulae for N(a 1, a 2, a 3, a 4 ; n), where a 1, a 2, a 3, a 4 {1, 2, 7, 14} which satisfy the simplifying assumptions (1.0.1) and (1.0.2). We then extend our work to determine explicit formulae for the number of representations of n by the octonary quadratic forms x 2 1 +x 2 2 +x 2 3 +x 2 4 +7(x 2 5 +x 2 6 +x 2 7 +x 2 8), x 2 1 + x 2 2 + 7(x 2 3 + x 2 4 + x 2 5 + x 2 6 + x 2 7 + x 2 8) and x 2 1 + x 2 2 + x 2 3 + x 2 4 + x 2 5 + x 2 6 + 7(x 2 7 + x 2 8), which we denote by N(1 4, 7 4 ; n), N(1 2, 7 6 ; n) and N(1 6, 7 2 ; n) respectively. Over the years many people have worked on the problem of representations of integers by quadratic forms. In 1770 Lagrange [16] proved that every positive integer can be written as a sum of four integer squares. Jacobi [12] gave formulae for N(1, 1, 1, 1; n) as 8σ(n) if 4 n, N(1, 1, 1, 1; n) = 8σ(n) 32σ(n/4) = 24σ(n) if 4 n, where σ(n) is the sum of divisors function. See [26]. In 1860, Liouville [18] gave a formula for N(1, 1, 2, 2; n) and in 1861 he gave two more formulae for N(1, 1, 1, 2; n) and N(1, 2, 2, 2; n). Also, Benz [4], Demuth [10], and Pepin [23] gave proofs for these formulae. Williams [29] gave a completely arithmetic proof of the Liouville formulae for N(1, 1, 1, 2; n) and N(1, 2, 2, 2; n). In Chapter 2 we present some basic properties of modular groups and modular forms. In Chapter 3 we determine an explicit formula for N(a 1, a 2, a 3, a 4 ; n) for each of the twenty-two quaternary quadratic forms given by (a 1, a 2, a 3, a 4 ) = (1, 1, 7, 7), (2, 2, 7, 7), (1, 2, 7, 14), (1, 1, 14, 14), (1, 1, 1, 7), (1, 2, 2, 7), (1, 7, 7, 7), (1, 1, 2, 14), (2, 7, 7, 14), (1, 7, 14, 14),

CHAPTER 1. INTRODUCTION 3 (1, 1, 2, 7), (2, 2, 2, 7), (2, 7, 7, 7), (1, 1, 1, 14), (1, 2, 2, 14), (1, 7, 7, 14), (2, 7, 14, 14), (1, 14, 14, 14), (1, 2, 7, 7), (1, 1, 7, 14), (2, 2, 7, 14), (1, 2, 14, 14). To the best of our knowledge, these are the only remaining diagonal quaternary quadratic forms with coefficients 1, 2, 7 and 14 for which explicit formulae for N(a 1, a 2, a 3, a 4 ; n) have not been determined so far. In Chapter 4 we determine the number of representations of a positive integer n by the octonary quadratic forms N(1 4, 7 4 ; n), N(1 2, 7 6 ; n) and N(1 6, 7 2 ; n). We conclude our thesis by indicating some further directions for our research.

Chapter 2 Basic Concepts In this chapter we present some basic concepts for modular forms. For more information one can see [8], [9], [14], [15], [21], [22], [25], [27], and [28]. 2.1 Modular Forms Definition 2.1.1. The modular group SL 2 (Z) is defined as {( a b SL 2 (Z) = c d ) } a, b, c, d Z, ad bc = 1, which acts on the upper half plane H = {z C Im(z) > 0} by the linear fractional transformation ( a b c d ) (z) = az + b, for z H. cz + d 4

CHAPTER 2. BASIC CONCEPTS 5 Note that the modular group SL 2 (Z) is generated by two elements ( ) ( ) 1 1 0 1 T = and S =. 0 1 1 0 Definition 2.1.2. Let N N. We define the principal congruence subgroup Γ(N) by {( a b Γ(N) := c d ) SL 2 (Z) a d 1(mod N), b c 0(mod N)}. A subgroup Γ of SL 2 (Z) is called a congruence subgroup if it contains Γ(N) for some positive integer N. The smallest such N is called the level of Γ. The two important congruence subgroups are {( ) } a b Γ 0 (N) := SL 2 (Z) c 0(mod N), c d {( ) } a b Γ 1 (N) := Γ 0 (N) a d 1(mod N). c d Definition 2.1.3. A Dirichlet character (mod N) is a function χ : Z C satisfying (i) χ(ab) = χ(a)χ(b) for any a, b Z, (ii) χ(a) 0 if gcd(a, N) = 1, (iii)χ(a) = 0 if gcd(a, N) > 1, (iv) χ(a) = χ(b) if a b (mod N). Definition 2.1.4. The trivial character is the Dirichlet character of modulus 1 and is denoted by χ 0. Definition 2.1.5. The conductor of a Dirichlet character χ is the smallest positive integer M dividing its modulus such that there exists a Dirichlet character ψ of

CHAPTER 2. BASIC CONCEPTS 6 modulus M with χ(a) = ψ(a) for all a Z with (a, N) = 1. We say that a Dirichlet character modulo N is primitive if its conductor equals its modulus. Definition 2.1.6. Let k Z. A weakly modular function of weight k for a congruence subgroup Γ is a meromorphic function f : H C which satisfies ( ) ( az + b a b f = (cz + d) k f(z), for cz + d c d ) Γ and z H. ( ) a b Definition 2.1.7. [14] Let γ = Γ and z H. We define the weight k c d operator [γ] k on a function from H to C by ( ) (f [γ] k ) (z) = (cz + d) k az + b f. cz + d Definition 2.1.8. [14] Let Γ be a congruence subgroup of level N in SL 2 (Z) and k Z. A function f : H C is called a modular form of weight k for Γ if it satisfies the following conditions (i) f is weakly modular for Γ, (ii) f is holomorphic on H, (iii) f [α] k is holomorphic at for all α SL 2 (Z). Note that by condition (iii), f [α] k has a Fourier expansion of the form f [α] k = a n qn, n q N = e 2πiz/N. n=0 We say that f is a cusp form of weight k for Γ if f [α] k vanishes at, which mean a 0 = 0 for every α SL 2 (Z) in the Fourier expansion of f [α] k. Definition 2.1.9. [14] Let N be a positive integer and let χ be a Dirichlet character.

CHAPTER 2. BASIC CONCEPTS 7 A function f : H C which is holomorphic on H and f [α] k is holomorphic at for all α is a modular form of weight k for Γ 0 (N) with character χ if ( a b f [γ] k = χ(d)f(z) for all γ = c d ) Γ 0 (N). We write M k (Γ 0 (N), χ) to denote the space of modular forms of weight k and character χ, and S k (Γ 0 (N), χ) to denote the subspace of cusp forms of weight k and character χ. Let k Z. We write E k (Γ 0 (N), χ) to denote the subspace of Eisenstein series. It is known (see for example [28, p.83]) that M k (Γ 0 (N), χ) = E k (Γ 0 (N), χ) S k (Γ 0 (N), χ). (2.1.1) Definition 2.1.10. The Dedekind eta function is defined on the upper half plane H by the product formula η(z) = q 1/24 An eta quotient is defined as a finite product of the form (1 q n ), q = e 2πiz. (2.1.2) f(z) = η r (z), (2.1.3) where runs through a finite set of positive integers and the exponents r are non-zero integers. By taking N to be the least common multiple of the s we can write the

CHAPTER 2. BASIC CONCEPTS 8 eta quotient (2.1.3) as f(z) = η r (z), (2.1.4) 1 N where some of the exponents r may be 0. When all exponents are non-negative, f(z) is said to be an eta product. For q C with q < 1 we set F (q) = (1 q n ). (2.1.5) Appealing to (2.1.5) we can express the eta function (2.1.2) as η(z) = q 1/24 (1 q n ) = q 1/24 F (q), q = e 2πiz. Definition 2.1.11. For q C with q < 1 Ramanujan s theta function ϕ(q) is defined by ϕ(q) = q n2. n= We note that for quaternary quadratic forms a 1 x 2 1+a 2 x 2 2+a 3 x 2 3+a 4 x 2 4 (a 1, a 2, a 3, a 4 N), we have N(a 1, a 2, a 3, a 4 ; n)q n = ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ), (2.1.6) n=0 and for octonary quadratic forms a 1 x 2 1 + + a 8 x 2 8 (a 1,..., a 8 N), we have N(a 1,..., a 8 ; n)q n = ϕ(q a 1 ) ϕ(q a 8 ). (2.1.7) n=0

CHAPTER 2. BASIC CONCEPTS 9 The infinite product representation of ϕ(q) is due to Jacobi ([3]), ϕ(q) = F 5 (q 2 ) F 2 (q)f 2 (q 4 ), (2.1.8) where F (q) is given by (2.1.5). It follows from (2.1.2), (2.1.5) and (2.1.8) that η(z) = η5 (2z) η 2 (z)η 2 (4z). (2.1.9) 2.2 Eisenstein Series Definition 2.2.1. Let χ and ψ be Dirichlet characters. For n N we define σ (k 1,χ,ψ) (n) by σ (k 1,χ,ψ) (n) := 1 m n ψ(m)χ(n/m)m k 1. (2.2.1) We set σ (k 1,χ,ψ) (n) = 0 for n / N. If χ and ψ are trivial characters then σ (k 1,χ,ψ) (n) becomes the sum of divisors function σ k 1 (n) = m k 1. 1 m n Definition 2.2.2. Let ψ be a Dirichlet character of modulus N. We define the generalized Bernoulli numbers {B k,ψ } k N by the formal series N xe ax ψ(a) e Nx 1 = x k B k,ψ k!. a=1 k=0 Let χ and ψ be primitive Dirichlet characters with conductors L and M, respec-

CHAPTER 2. BASIC CONCEPTS 10 tively. We set E k,χ,ψ (q) = c 0 + ( ψ(m)χ(n/m)m )q k 1 n, (2.2.2) n 1 m n where c 0 is written in terms of the generalized Bernoulli numbers defined by 0 if L > 1; c 0 = B k,ψ if L = 1. 2k If χ and ψ are trivial characters, then the Eisenstein series E 2,χ0,χ 0 (q) and E 4,χ0,χ 0 (q) become L(q) := E 2 (q) := E 2,χ0,χ 0 (q) = 1 24 + σ(n)q n, (2.2.3) and E 4 (q) := E 4,χ0,χ 0 (q) = 1 240 + σ 3 (n)q n. (2.2.4) The following theorem can be found in [28]. Theorem 2.2.3. Suppose t, k are positive integers. Let χ and ψ be Dirichlet characters with conductors L and M, respectively. The power series E k,χ,ψ (q t ) with LMt N and χψ = ε form a basis for the Eisenstein subspace E k (Γ 0 (N), ε). Except if k = 2, χ = ψ = 1, t > 1 then L(q) tl(q t ) is a modular form of weight 2 in M 2 (Γ 0 (t)). 2.3 Dimension Formulae Let N, k N and χ a Dirichlet character. In this section we state formulae for the dimensions of M k (Γ 0 (N), χ), E k (Γ 0 (N), χ) and S k (Γ 0 (N), χ). First, we state the

CHAPTER 2. BASIC CONCEPTS 11 trivial character case. Let µ 0 (N) =N p N(1 + 1/p), 0 if 4 N, µ 0,2 (N) = 4 p N (1 + ( )) otherwise, p 0 if 2 N or 9 N, µ 0,3 (N) = 3 p N (1 + ( )) otherwise, p c 0 (N) = d N φ(gcd(d, N/d)), where φ is Euler totient function and p runs through the prime divisors of N. Also, let g(n) := 1 + µ 0(N) 12 µ 0,2(N) 4 µ 0,3(N) 4 c 0(N). 2 the following proposition which is taken from [28, Section 6.1, p. 93]. Proposition 2.3.1. We have dims 2 (Γ 0 (N)) = g(n), and for k 4 even, ( k ) dims k (Γ 0 (N)) = (k 1) (g(n) 1) + 2 1 c(n) k k +µ 0,2 (N) + µ 0,3 (N), 4 3 where is the floor function. The dimension of the Eisenstein subspace is c 0 (N) 1 if k = 2, dime k (Γ 0 (N)) = c 0 (N) if k 2.

CHAPTER 2. BASIC CONCEPTS 12 Example 2.3.2. Let N = 56. We have c(56) = 8, µ 0 (N) = 96, µ 0,2 (56) = µ 0,3 (56) = 0. Hence g(56) = 1 + 96 12 8 2 = 5. Thus by Propostion 2.3.1 we have dims 2 (Γ 0 (56)) = 5 and dime 2 (Γ 0 (56)) = 7. Second, we state the non-trivial character case. The formulae are taken from [28, Section 6.3, p. 98-100]. Let υ p (N) denote the largest r N 0 such that p r N and let c be the conductor of χ. We set p r 2 + p r 2 1 if 2 v p (c) r and 2 r, λ (p,n,vp(c)) = 2 p r 1 2 if 2 v p (c) r and 2 r, 2 p r vp(c) if 2 v p (c) > r. The rational numbers γ 3 and γ 4 are defined as follows 1/3 if k 2 (mod 3), γ 3 (k) = 0 if k 1 (mod 3), 1/3 if k 0 (mod 3), 1/4 if k 2 (mod 4), γ 4 (k) = 0 if k is odd, 1/4 if k 0 (mod 4).

CHAPTER 2. BASIC CONCEPTS 13 Let χ be a Dirichlet character of modulus N for which χ( 1) = ( 1) k. dims k (Γ 0 (N), χ) dimm 2 k (Γ 0 (N), χ) = k 1 12 µ 0(N) 1 2 λ(p, N, v p (c)) p N +γ 4 (k) χ(x) + γ 3 (k) χ(x), (2.3.1) x A 4 (N) x A 3 (N) where A 4 (N) = { x Z/NZ : x 2 + 1 = 0 } and A 3 (N) = { x Z/NZ : x 2 + x + 1 = 0 }. To compute dimm k (Γ 0 (N), χ) for k 2, we use the fact that dims k (Γ 0 (N), χ) = 0 for k 0. dimm k (Γ 0 (N), χ) = (dims 2 k (Γ 0 (N), χ) dimm k (Γ 0 (N), χ)) ( 1 k = 12 µ 0(N) 1 2 λ(p, N, v p (c)) + γ 4 (2 k) x A 4 (N) p N χ(x) + γ 3 (2 k) x A 3 (N) ) χ(x), (2.3.2) and dime k (Γ 0 (N), χ) = dimm k (Γ 0 (N), χ) dims k (Γ 0 (N), χ). (2.3.3) ( Example 2.3.3. For N = 56, k = 2, χ 3 (m) = ( ) χ 6 (m) =, we have 56 m x A 4 (N) χ(x) = x A 3 (N) 28 m ), χ 5 (m) = χ(x) = 0. ( 8 m ) and Also, we have

CHAPTER 2. BASIC CONCEPTS 14 Thus by (2.3.1) (2.3.3) we obtain χ χ 3 χ 5 χ 6 p 56 λ(p, 56, v p(c)) 8 4 4 χ dimm 2 (Γ 0 (56), χ) dims 2 (Γ 0 (56), χ) dime 2 (Γ 0 (56), χ) χ 3 12 4 8 χ 5 10 6 4 χ 6 10 6 4

Chapter 3 Representations by Quaternary Quadratic Forms with Coefficients 1, 2, 7 and 14 3.1 Preliminaries We recall that, for a 1, a 2, a 3, a 4 N and n N 0, N(a 1, a 2, a 3, a 4 ; n) denotes the number of representations of n by the quaternary form a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4, that is N(a 1, a 2, a 3, a 4 ; n) := card{(x 1, x 2, x 3, x 4 ) Z 4 n = a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4}. We also have the simplifying assumptions a 1 a 2 a 3 a 4, (3.1.1) 15

CHAPTER 3. QUATERNARY QUADRATIC FORMS 16 Table 3.1.1 M 2 (Γ 0 (56), χ 0 ) M 2 (Γ 0 (56), χ 3 ) M 2 (Γ 0 (56), χ 5 ) M 2 (Γ 0 (56), χ 6 ) (1, 1, 7, 7) (1, 1, 1, 7) (1, 2, 7, 7) (1, 1, 2, 7) (2, 2, 7, 7) (1, 2, 2, 7) (1, 1, 7, 14) (2, 2, 2, 7) (1, 2, 7, 14) (1, 7, 7, 7) (2, 2, 7, 14) (2, 7, 7, 7) (1, 1, 14, 14) (1, 1, 2, 14) (1, 2, 14, 14) (1, 1, 1, 14) (2, 7, 7, 14) (1, 2, 2, 14) (1, 7, 14, 14) (1, 7, 7, 14) (2, 7, 14, 14) (1, 14, 14, 14) and gcd(a 1, a 2, a 3, a 4 ) = 1. (3.1.2) We also recall that χ 0 denotes the trivial character. For m Z we define six characters by χ 1 (m) = ( 7 ), χ 2 (m) = m ( 4 ), χ 3 (m) = m ( 28 ), (3.1.3) m χ 4 (m) = ( 8 ) ( 8, χ 5 (m) =, χ 6 (m) = m m) ( 56 ). (3.1.4) m Under the simplifying assumptions (3.1.1) and (3.1.2) there are twenty-six quaternary quadratic forms a 1 x 2 1 + a 2 x 2 2 + a 3 x 2 3 + a 4 x 2 4 for which ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) M 2 (Γ 0 (56), χ) where χ {χ 0, χ 3, χ 5, χ 6 }. Their coefficients (a 1, a 2, a 3, a 4 ) are listed in Table 3.1.1. Formulae for the four quaternary quadratic forms (1, 1, 1, 1), (1, 1, 2, 2), (1, 2, 2, 2), (1, 1, 1, 2) appeared in [1], [29]. In this chapter we determine formulae for the remaining twenty-two quaternary quadratic forms listed in Table 3.1.1.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 17 We use the following theorem to determine if an eta quotient f(z) = 1 N η r (z) is in M k (Γ 0 (N), χ). See [11], [13, Corollary 2.3, p. 37], [14, Theorem 5.7, p. 99] and [17]. Theorem 3.1.1. ( Ligozat) Let N N and let f(z) = which satisfies the following conditions: (L1) r 0 (mod 24), (L2) 1 N 1 N (L3) for each d N, N r 0 (mod 24), 1 N gcd(d, ) 2 r 0. Then f(z) is in M k (Γ 0 (N), χ), where χ is given by ( ( 1) k s ) χ(m) =, m 1 N η r (z) be an eta quotient with weight k = 1 2 r, 1 N and s = r. 1 N In addition to the above conditions if f(z) also satisfies the condition gcd(d, ) 2 r (L4) for each d N, > 0, 1 N then f(z) is in S k (Γ 0 (N), χ).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 18 3.2 The space M 2 (Γ 0 (56), χ 0 ) In this section we determine formulae for N(a 1, a 2, a 3, a 4 ; n) for the quaternary quadratic forms listed in the first column of Table 3.1.1 in terms of σ(n), σ(n/2), σ(n/4), σ(n/7), σ(n/8), σ(n/14), σ(n/28), σ(n/56), and a k (n) (1 k 5) defined by A 1 (q) = A 2 (q) = A 3 (q) = A 4 (q) = A 5 (q) = a 1 (n)q n = η(2z)η(4z)η(14z)η(28z), (3.2.1) a 2 (n)q n = η3 (2z)η 3 (28z) η(4z)η(14z), (3.2.2) a 3 (n)q n = η(z)η3 (4z)η(7z)η 3 (28z) η(2z)η(8z)η(14z)η(56z), (3.2.3) a 4 (n)q n = η3 (2z)η(8z)η 3 (14z)η(56z), (3.2.4) η(z)η(4z)η(7z)η(28z) a 5 (n)q n = η 4 (4z)η 4 (28z) η(2z)η(8z)η(14z)η(56z). (3.2.5) There is no linear relationship among the A k (q), 1 k 5. The first fifty-six values of a k (n), are given in Table 3.2.1. Table 3.2.1 n a 1 (n) a 2 (n) a 3 (n) a 4 (n) a 5 (n) n a 1 (n) a 2 (n) a 3 (n) a 4 (n) a 5 (n) 1 0 0 1 0 0 29 0 2 2 2 0 2 1 0 1 0 1 30 0 0 0 0 0 3 0 1 0 1 0 31 0 2 0 2 0 4 1 0 1 1 1 32 1 0 1 1 1 5 0 3 2 1 0 33 0 0 0 0 0 6 2 0 2 0 2 34 6 0 6 0 6 7 0 1 1 0 0 35 0 1 2 1 0 8 1 0 1 1 1 36 1 0 1 1 1 9 0 2 1 0 0 37 0 2 2 2 0 10 0 0 0 0 0 38 2 0 2 0 2 11 0 2 0 0 0 39 0 0 4 2 0 12 2 0 2 2 2 40 0 0 0 0 0 13 0 1 2 1 0 41 0 2 2 2 0 14 1 0 1 0 1 42 2 0 2 0 2 15 0 4 4 2 0 43 0 6 8 0 0 16 1 0 1 1 1 44 0 0 0 0 0 17 0 2 2 2 0 45 0 1 2 1 0

CHAPTER 3. QUATERNARY QUADRATIC FORMS 19 18 1 0 1 0 1 46 0 0 0 0 0 19 0 5 0 1 0 47 0 2 8 2 0 20 0 0 0 0 0 48 2 0 2 2 2 21 0 1 0 1 0 49 0 0 1 0 0 22 0 0 0 0 0 50 5 0 5 0 5 23 0 4 4 2 0 51 0 2 8 2 0 24 2 0 2 2 2 52 4 0 4 4 4 25 0 6 3 4 0 53 0 8 2 4 0 26 4 0 4 0 4 54 4 0 4 0 4 27 0 2 0 2 0 55 0 4 0 0 0 28 1 0 1 1 1 56 1 0 1 1 1 Theorem 3.2.1. Let (a 1, a 2, a 3, a 4 ) be as in the first column of Table 3.1.1. Then ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) M 2 (Γ 0 (56), χ 0 ). Proof. Appealing to (2.1.9) for each quadratic form, we then check conditions (L1), (L2) and (L3) of Theorem 3.1.1 for each form. We have N = 56. First we consider (1, 1, 7, 7) ϕ 2 (q)ϕ 2 (q 7 ) = η 10 (2z)η 10 (14z) η 4 (z)η 4 (4z)η 4 (7z)η 4 (28z). Table 3.2.2(a) 1 2 4 7 14 28 r 4 10 4 4 10 4 It can be seen from Table 3.2.2(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.2(b) d 56 1 2 4 7 8 14 28 56 0 96/7 0 0 0 96 0 0

CHAPTER 3. QUATERNARY QUADRATIC FORMS 20 From Table 3.2.2(b) the condition (L3) is also satisfied. Thus ϕ 2 (q)ϕ 2 (q 7 ) M 2 (Γ 0 (56), χ 0 ). Second we consider (2, 2, 7, 7) ϕ 2 (q 2 )ϕ 2 (q 7 ) = η 10 (4z)η 10 (14z) η 4 (2z)η 4 (7z)η 4 (8z)η 4 (28z). Table 3.2.3(a) 2 4 7 8 14 28 r 4 10 4 4 10 4 It can be seen from Table 3.2.3(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.3(b) d 56 1 2 4 7 8 14 28 56 0 12/7 24 0 0 84 24 0 From Table 3.2.3(b) the condition (L3) is also satisfied. Thus ϕ 2 (q 2 )ϕ 2 (q 7 ) M 2 (Γ 0 (56), χ 0 ). Third we consider (1, 2, 7, 14) ϕ(q)ϕ(q 2 )ϕ(q 7 )ϕ(q 14 ) = η3 (2z)η 3 (4z)η 3 (14z)η 3 (28z) η 2 (z)η 2 (7z)η 2 (8z)η 2 (56z). Table 3.2.4(a) 1 2 4 7 8 14 28 56 r 2 3 3 2 2 3 3 2 It can be seen from Table 3.2.4(a) that conditions (L1) and (L2) are satisfied.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 21 1 56 gcd(d, ) 2 r Table 3.2.4(b) d 56 1 2 4 7 8 14 28 56 0 48/7 96/7 0 0 48 96 0 From Table 3.2.4(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ(q 2 )ϕ(q 7 )ϕ(q 14 ) M 2 (Γ 0 (56), χ 0 ). Fourth we consider (1, 1, 14, 14) ϕ 2 (q)ϕ 2 (q 14 ) = η 10 (2z)η 10 (28z) η 4 (z)η 4 (4z)η 4 (14z)η 4 (56z). Table 3.2.5(a) 1 2 4 14 28 56 r 4 10 4 4 10 4 It can be seen from Table 3.2.5(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.5(b) d 56 1 2 4 7 8 14 28 56 0 12 24/7 0 0 12 168 0 From Table 3.2.5(b) the condition (L3) is also satisfied. Thus ϕ 2 (q)ϕ 2 (q 14 ) M 2 (Γ 0 (56), χ 0 ). Theorem 3.2.2. A k (q) (1 k 5) given by (3.2.1) (3.2.5) are in S 2 (Γ 0 (56), χ 0 ). Proof. We will check conditions (L1), (L2) and (L4) of Theorem 3.1.1. We have N = 56. First we consider A 1 (q) = η(2z)η(4z)η(14z)η(28z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 22 Table 3.2.6(a) 2 4 14 28 r 1 1 1 1 It can be seen from Table 3.2.6(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.6(b) d 56 1 2 4 7 8 14 28 56 6/7 24/7 48/7 6 48/7 24 48 48 From Table 3.2.6(b) the condition (L4) is also satisfied. Thus A 1 (q) S 2 (Γ 0 (56), χ 0 ). Then A 2 (q) = η3 (2z)η 3 (28z) η(4z)η(14z). Table 3.2.7(a) 2 4 14 28 r 3 1 1 3 It can be seen from Table 3.2.7(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.7(b) d 56 1 2 4 7 8 14 28 56 9/7 36/7 24/7 3 24/7 12 72 72 From Table 3.2.7(b) the condition (L4) is also satisfied. thus A 2 (q) S 2 (Γ 0 (56), χ 0 ). Then A 3 (q) = η(z)η3 (4z)η(7z)η 3 (28z) η(2z)η(8z)η(14z)η(56z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 23 Table 3.2.8(a) 1 2 4 7 8 14 28 56 r 1 1 3 1 1 1 3 1 It can be seen from Table 3.2.8(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.8(b) d 56 1 2 4 7 8 14 28 56 9/7 12/7 72/7 9 24/7 12 72 24 From Table 3.2.8(b) the condition (L4) is also satisfied. Thus A 3 (q) S 2 (Γ 0 (56), χ 0 ). Then A 4 (q) = η3 (2z)η(8z)η 3 (14z)η(56z). η(z)η(4z)η(7z)η(28z) Table 3.2.9(a) 1 2 4 7 8 14 28 56 r 1 3 1 1 1 3 1 1 It can be seen from Table 3.2.9(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.9(b) d 56 1 2 4 7 8 14 28 56 3/7 36/7 24/7 3 72/7 36 24 72 From Table 3.2.9(b) the condition (L4) is also satisfied. Thus A 4 (q) S 2 (Γ 0 (56), χ 0 ). Then A 5 (q) = η 4 (4z)η 4 (28z) η(2z)η(8z)η(14z)η(56z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 24 Table 3.2.10(a) 2 4 8 14 28 56 r 1 4 1 1 4 1 It can be seen from Table 3.2.10(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.2.10(b) d 56 1 2 4 7 8 14 28 56 3/7 12/7 96/7 3 48/7 12 96 48 From Table 3.2.10(b) the condition (L4) is also satisfied. Thus A 5 (q) S 2 (Γ 0 (56), χ 0 ). Theorem 3.2.3. (a) {A 1 (q),..., A 5 (q)} constitute a basis for S 2 (Γ 0 (56), χ 0 ). (b) L(q) tl(q t ) (t = 2, 4, 7, 8, 14, 28, 56) constitute a basis for E 2 (Γ 0 (56), χ 0 ). (c) L(q) tl(q t ) (t = 2, 4, 7, 8, 14, 28, 56) together with A k (q) (1 k 5) constitute a basis for M 2 (Γ 0 (56), χ 0 ). Proof. (a) By Theorem 3.2.2, A k (q) (1 k 5) S 2 (Γ 0 (56), χ 0 ). There is no linear relationship among them. By Example 2.3.2, we have dims 2 (Γ 0 (56), χ 0 ) = 5. Thus A k (q) (1 k 5) constitute a basis for S 2 (Γ 0 (56), χ 0 ). (b) By Example 2.3.2, we have dime 2 (Γ 0 (56), χ 0 ) = 7. By Theorem 2.2.3, L(q) tl(q t ) (t = 2, 4, 7, 8, 14, 28, 56) constitute a basis for E 2 (Γ 0 (56), χ 0 ). (c) It follows from (a), (b) and (2.1.1) that the dimension of M 2 (Γ 0 (56), χ 0 ) is 12 and therefore L(q) tl(q t ) (t = 2, 4, 7, 8, 14, 28, 56) together with A k (q) (1 k 5) constitute a basis for M 2 (Γ 0 (56), χ 0 ). Theorem 3.2.4. (a) ϕ 2 (q)ϕ 2 (q 7 ) = 4 3 L(q) 8 3 L(q2 ) + 16 3 L(q4 ) 28 3 L(q7 ) + 56 3 L(q14 ) 112 3 L(q28 ) + 8 3 A 3(q) 16 3 A 4(q) + 16 3 A 5(q),

CHAPTER 3. QUATERNARY QUADRATIC FORMS 25 (b) ϕ 2 (q 2 )ϕ 2 (q 7 ) = 2 3 L(q) 2 3 L(q2 ) 4 3 L(q4 ) 14 3 L(q7 ) + 16 3 L(q8 ) + 14 3 L(q14 ) + 28 3 L(q28 ) 112 3 L(q56 ) 10 3 A 1(q) + 4A 2 (q) 2 3 A 3(q) 20 3 A 4(q) + 16 3 A 5(q), (c) ϕ(q)ϕ(q 2 )ϕ(q 7 )ϕ(q 14 ) = 2 3 L(q) 2 3 L(q2 ) 4 3 L(q4 ) 14 3 L(q7 ) + 16 3 L(q8 ) + 14 3 L(q14 ) + 28 3 L(q28 ) 112 3 L(q56 ) + 2 3 A 1(q) + 4 3 A 3(q) + 4 3 A 4(q) + 4 3 A 5(q), (d) ϕ 2 (q)ϕ 2 (q 14 ) = 2 3 L(q) 2 3 L(q2 ) 4 3 L(q4 ) 14 3 L(q7 ) + 16 3 L(q8 ) + 14 3 L(q14 ) + 28 3 L(q28 ) 112 3 L(q56 ) + 2 3 A 1(q) 4A 2 (q) + 10 3 A 3(q) + 4 3 A 4(q) + 16 3 A 5(q). Proof. Let (a 1, a 2, a 3, a 4 ) be one of the quadratic forms listed in the first column of Table 3.1.1. By Theorem 3.2.1 and Theorem 3.2.3 (c), ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) must be a linear combinations of L(q) tl(q t ) (t = 2, 4, 7, 8, 14, 28, 56) and A k (q) (1 k 5), namely ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) = x 1 (L(q) 2L(q 2 )) + x 2 (L(q) 4L(q 4 )) +x 3 (L(q) 7L(q 7 )) + x 4 (L(q) 8L(q 8 )) + x 5 (L(q) 14L(q 14 )) +x 6 (L(q) 28L(q 28 )) + x 7 (L(q) 56L(q 56 )) + y 1 A 1 (q) + y 2 A 2 (q) +y 3 A 3 (q) + y 4 A 4 (q) + y 5 A 5 (q). We equate the first 60 coefficients of q n on both sides of the equation above to obtain a system of linear equations with the unknowns x 1, x 2, x 3, x 4, x 5, x 6, x 7, y 1, y 2, y 3, y 4, y 5. Then, using MAPLE we solve the system to find the asserted coefficients.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 26 We now give an explicit formulae for N(a 1, a 2, a 3, a 4 ; n) for the quadratic forms (a 1, a 2, a 3, a 4 ) in Theorem 3.2.4 in terms of σ(n/d) (d = 1, 2, 4, 7, 14, 28, 56) and a k (n) (1 k 5). Theorem 3.2.5. Let n N. Then (a) N(1, 1, 7, 7; n) = 4 3 σ(n) 8 3 σ(n/2) + 16 3 28 56 σ(n/4) σ(n/7) + 3 3 σ(n/14) 112 3 σ(n/28) + 8 3 a 3(n) 16 3 a 4(n) + 16 3 a 5(n), (b) N(2, 2, 7, 7; n) = 2 3 σ(n) 2 3 σ(n/2) 4 3 + 14 28 σ(n/14) + 3 3 14 16 σ(n/4) σ(n/7) + 3 3 σ(n/8) 112 10 σ(n/28) σ(n/56) 3 3 a 1(n) + 4a 2 (n) 2 3 a 3(n) 20 3 a 4(n) + 16 3 a 5(n), (c) N(1, 2, 7, 14; n) = 2 3 σ(n) 2 3 σ(n/2) 4 3 + 14 3 14 16 σ(n/4) σ(n/7) + 3 3 σ(n/8) 28 112 σ(n/14) + σ(n/28) 3 3 σ(n/56) + 2 3 a 1(n) + 4 3 a 3(n) + 4 3 a 4(n) + 4 3 a 5(n), (d) N(1, 1, 14, 14; n) = 2 3 σ(n) 2 3 σ(n/2) 4 3 + 14 3 14 16 σ(n/4) σ(n/7) + 3 3 σ(n/8) 28 112 σ(n/14) + σ(n/28) 3 3 σ(n/56) + 2 3 a 1(n) 4a 2 (n) + 10 3 a 3(n) + 4 3 a 4(n) + 16 3 a 5(n). Proof. From (2.1.6), (2.2.3) and Theorem 3.2.4, we obtain (a) N(1, 1, 7, 7; n)q n = ϕ 2 (q)ϕ 2 (q 7 ) n=0 = 1 + ( 4 3 σ(n) 8 3 σ(n/2) + 16 3 28 56 σ(n/4) σ(n/7) + 3 ) 112 3 σ(n/28) + 8 3 a 3(n) 16 3 a 4(n) + 16 3 a 5(n) q n, 3 σ(n/14)

CHAPTER 3. QUATERNARY QUADRATIC FORMS 27 (b) (c) (d) N(2, 2, 7, 7; n)q n = ϕ 2 (q 2 )ϕ 2 (q 7 ) n=0 = 1 + ( 2 3 σ(n) 2 3 σ(n/2) 4 3 112 σ(n/28) 3 + 28 3 + 16 ) 3 a 5(n) n=0 = 1 + q n, σ(n/4) 14 3 16 14 σ(n/7) + σ(n/8) + 3 3 σ(n/14) σ(n/56) 10 3 a 1(n) + 4a 2 (n) 2 3 a 3(n) 20 3 a 4(n) N(1, 2, 7, 14; n)q n = ϕ(q)ϕ(q 2 )ϕ(q 7 )ϕ(q 14 ) ( 2 3 σ(n) 2 3 σ(n/2) 4 14 16 σ(n/4) σ(n/7) + 3 3 3 σ(n/8) + 14 28 112 σ(n/14) + σ(n/28) 3 3 3 σ(n/56) + 2 3 a 1(n) + 4 3 a 3(n) + 4 3 a 4(n) + 4 ) 3 a 5(n) q n, N(1, 1, 14, 14; n)q n = ϕ 2 (q)ϕ 2 (q 14 ) n=0 = 1 + ( 2 3 σ(n) 2 3 σ(n/2) 4 3 σ(n/4) 14 3 16 14 σ(n/7) + σ(n/8) + 3 3 σ(n/14) + 28 112 σ(n/28) 3 3 σ(n/56) + 2 3 a 1(n) 4a 2 (n) + 10 3 a 3(n) + 4 3 a 4(n) + 16 ) 3 a 5(n) q n. Equating the coefficients of q n on both sides of equations (a) (d) yields the results. For (a 1, a 2, a 3, a 4 ) = (1, 1, 7, 7), (1, 1, 14, 14), (2, 2, 7, 7), (1, 2, 7, 14), the values of N(a 1, a 2, a 3, a 4 ; n) for 1 n 20 are given in Table 3.2.11. One can verify them by using Table 3.2.1. Table 3.2.11 n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 N(1, 1, 7, 7; n) 4 4 0 4 8 0 4 20 20 8 16 32 8 4 32 36 40 20 32 40 N(2, 2, 7, 7; n) 0 4 0 4 0 0 4 4 16 8 16 0 0 4 16 20 32 20 0 8 N(1, 2, 7, 14; n) 2 2 4 2 0 4 2 6 10 8 8 4 8 2 8 18 12 18 12 8

CHAPTER 3. QUATERNARY QUADRATIC FORMS 28 N(1, 1, 14, 14; n) 4 4 0 4 8 0 0 4 4 8 0 0 8 4 16 20 8 20 32 8 For example, using Table 3.2.1, we obtain N(2, 2, 7, 7; 16) = 2 3 σ(16) 2 3 σ(8) 4 3 + 14 28 σ(16/14) + 3 3 14 16 σ(4) σ(16/7) + 3 3 σ(2) 112 10 σ(16/28) σ(16/56) 3 3 a 1(16) +4a 2 (16) 2 3 a 3(16) 20 3 a 4(16) + 16 3 a 5(16) = 2 3 (31) 2 3 (15) 4 3 = 20, 16 10 (7) + (3) 3 3 ( 1) 2 20 ( 1) 3 3 + 16 3 which agrees with the value of N(2, 2, 7, 7; 16) in Table 3.2.11. 3.3 The space M 2 (Γ 0 (56), χ 3 ) Let χ 0 be the trivial character and χ 1, χ 2, χ 3 as in (3.1.3). We define the Eisenstein series E 2,χ3,χ 0 (q) = σ (χ3,χ 0 )(n)q n, (3.3.1) E 2,χ0,χ 3 (q) = 4 + E 2,χ1,χ 2 (q) = E 2,χ2,χ 1 (q) = σ (χ0,χ 3 )(n)q n, (3.3.2) σ (χ1,χ 2 )(n)q n, (3.3.3) σ (χ2,χ 1 )(n)q n. (3.3.4) We determine N(a 1, a 2, a 3, a 4 ; n) for the six quaternary quadratic forms listed in the second column of Table 3.1.1 in terms of σ (χ,ψ) (n), where χ, ψ {χ 0, χ 1, χ 2, χ 3 }, and

CHAPTER 3. QUATERNARY QUADRATIC FORMS 29 b k (n) (1 k 4) defined by B 1 (q) = B 2 (q) = B 3 (q) = B 4 (q) = b 1 (n)q n = η2 (2z)η 3 (7z), (3.3.5) η(z) b 2 (n)q n = η3 (8z)η 2 (28z), (3.3.6) η(56z) b 3 (n)q n = η2 (4z)η 3 (56z), (3.3.7) η(8z) b 4 (n)q n = η3 (z)η 2 (14z). (3.3.8) η(7z) There is no linear relationship among the B k (q), 1 k 4. The first fifty-six values of b k (n), 1 k 4, are given in Table 3.3.1. Table 3.3.1 n b 1 (n) b 2 (n) b 3 (n) b 4 (n) n b 1 (n) b 2 (n) b 3 (n) b 4 (n) 1 1 1 0 1 29 2 2 0 2 2 1 0 0 3 30 0 0 0 0 3 0 0 0 0 31 0 0 0 0 4 1 0 0 5 32 5 0 0 9 5 0 0 0 0 33 0 0 0 0 6 0 0 0 0 34 0 0 0 0 7 1 0 1 7 35 0 0 0 0 8 3 0 0 1 36 3 0 0 15 9 3 3 0 3 37 6 6 0 6 10 0 0 0 0 38 0 0 0 0 11 2 0 2 14 39 0 0 0 0 12 0 0 0 0 40 0 0 0 0 13 0 0 0 0 41 0 0 0 0 14 3 0 0 7 42 0 0 0 0 15 0 0 0 0 43 2 0 2 14 16 1 0 0 11 44 10 0 0 14 17 0 0 0 0 45 0 0 0 0 18 3 0 0 9 46 6 0 0 14 19 0 0 0 0 47 0 0 0 0 20 0 0 0 0 48 0 0 0 0 21 0 0 0 0 49 7 7 0 7 22 6 0 0 14 50 5 0 0 15 23 2 0 2 14 51 0 0 0 0 24 0 0 0 0 52 0 0 0 0 25 5 5 0 5 53 10 10 0 10 26 0 0 0 0 54 0 0 0 0 27 0 0 0 0 55 0 0 0 0

CHAPTER 3. QUATERNARY QUADRATIC FORMS 30 28 5 0 0 7 56 1 0 0 21 Theorem 3.3.1. Let (a 1, a 2, a 3, a 4 ) be as in the second column of Table 3.1.1. Then ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) M 2 (Γ 0 (56), χ 3 ). Proof. We appeal to (2.1.9) for each of the six quadratic forms and then check the conditions (L1), (L2) and (L3) of Theorem 3.1.1 for each quadratic form. We have N = 56. First we consider (1, 1, 1, 7) ϕ 3 (q)ϕ(q 7 ) = η 15 (2z)η 5 (14z) η 6 (z)η 6 (4z)η 2 (7z)η 2 (28z). Table 3.3.2(a) 1 2 4 7 14 28 r 6 15 6 2 5 2 It can be seen from Table 3.3.2(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.2(b) d 56 1 2 4 7 8 14 28 56 0 132/7 0 0 0 60 0 0 From Table 3.3.2(b) the condition (L3) is also satisfied. Thus ϕ 3 (q)ϕ(q 7 ) M 2 (Γ 0 (56), χ 3 ). Now for the form (1, 2, 2, 7) we have ϕ(q)ϕ 2 (q 2 )ϕ(q 7 ) = η(2z)η 8 (4z)η 5 (14z) η 2 (z)η 2 (7z)η 4 (8z)η 2 (28z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 31 Table 3.3.3(a) 1 2 4 7 8 14 28 r 2 1 8 2 4 5 2 It can be seen from Table 3.3.3(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.3(b) d 56 1 2 4 7 8 14 28 56 0 48/7 24 0 0 48 24 0 From Table 3.3.3(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ 2 (q 2 )ϕ(q 7 ) M 2 (Γ 0 (56), χ 3 ). Then for the form (1, 7, 7, 7) we have ϕ(q)ϕ 3 (q 7 ) = η 5 (2z)η 15 (14z) η 2 (z)η 2 (4z)η 6 (7z)η 6 (28z). Table 3.3.4(a) 1 2 4 7 14 28 r 2 5 2 6 15 6 It can be seen from Table 3.3.4(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.4(b) d 56 1 2 4 7 8 14 28 56 0 60/7 0 0 0 132 0 0 From Table 3.3.4(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ 3 (q 7 ) M 2 (Γ 0 (56), χ 3 ). Now for the form (1, 1, 2, 14) we have ϕ 2 (q)ϕ(q 2 )ϕ(q 14 ) = η 8 (2z)η(4z)η 5 (28z) η 4 (z)η 2 (8z)η 2 (14z)η 2 (56z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 32 Table 3.3.5(a) 1 2 4 8 14 28 56 r 4 8 1 2 2 5 2 It can be seen from Table 3.3.5(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.5(b) d 56 1 2 4 7 8 14 28 56 0 12 96/7 0 0 12 96 0 From Table 3.3.5(b) the condition (L3) is also satisfied. Thus ϕ 2 (q)ϕ(q 2 )ϕ(q 14 ) M 2 (Γ 0 (56), χ 3 ). Now for the form (2, 7, 7, 14) we have ϕ(q 2 )ϕ 2 (q 7 )ϕ(q 14 ) = η 5 (4z)η 8 (14z)η(28z) η 2 (2z)η 4 (7z)η 2 (8z)η 2 (56z). Table 3.3.6(a) 2 4 7 8 14 28 56 r 2 5 4 2 8 1 2 It can be seen from Table 3.3.6(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.6(b) d 56 1 2 4 7 8 14 28 56 0 12/7 96/7 0 0 84 96 0 From Table 3.3.6(b) the condition (L3) is also satisfied. Thus ϕ(q 2 )ϕ 2 (q 7 )ϕ(q 14 ) M 2 (Γ 0 (56), χ 3 ). Now for the form (1, 7, 14, 14) we have ϕ(q)ϕ(q 7 )ϕ 2 (q 14 ) = η5 (2z)η(14z)η 8 (28z) η 2 (z)η 2 (4z)η 2 (7z)η 4 (56z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 33 Table 3.3.7(a) 1 2 4 7 14 28 56 r 2 5 2 2 1 8 4 It can be seen from Table 3.3.7(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.7(b) d 56 1 2 4 7 8 14 28 56 0 48/7 24/7 0 0 48 168 0 From Table 3.3.7(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ(q 7 )ϕ 2 (q 14 ) M 2 (Γ 0 (56), χ 3 ). Theorem 3.3.2. B k (q) (1 k 4) given by (3.3.5) (3.3.8) are in S 2 (Γ 0 (56), χ 3 ). Proof. We will check conditions (L1),(L2) and (L4) of Theorem 3.1.1. We have N = 56. First we consider B 1 (q) = η2 (2z)η 3 (7z). η(z) Table 3.3.8(a) 1 2 7 r 1 2 3 It can be seen from Table 3.3.8(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.8(b) d 56 1 2 4 7 8 14 28 56 3/7 24/7 24/7 21 24/7 24 24 24

CHAPTER 3. QUATERNARY QUADRATIC FORMS 34 From Table 3.3.8(b) the condition (L4) is also satisfied. Thus B 1 (q) S 2 (Γ 0 (56), χ 3 ). Secondly we consider B 2 (q) = η3 (8z)η 2 (28z). η(56z) Table 3.3.9(a) 8 28 56 r 3 2 1 It can be seen from Table 3.3.9(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.9(b) d 56 1 2 4 7 8 14 28 56 3/7 12/7 48/7 3 24 12 48 24 From Table 3.3.9(b) the condition (L4) is also satisfied. Thus B 2 (q) S 2 (Γ 0 (56), χ 3 ). Thirdly we consider B 3 (q) = η2 (4z)η 3 (56z). η(8z) Table 3.3.10(a) 4 8 56 r 2 1 3 It can be seen from Table 3.3.10(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.10(b) d 56 1 2 4 7 8 14 28 56 3/7 12/7 48/7 3 24/7 12 48 168

CHAPTER 3. QUATERNARY QUADRATIC FORMS 35 From Table 3.3.10(b) the condition (L4) is also satisfied. Thus B 3 (q) S 2 (Γ 0 (56), χ 3 ). Fourthly we consider B 4 (q) = η3 (z)η 2 (14z). η(7z) Table 3.3.11(a) 1 7 14 r 3 1 2 It can be seen from Table 3.3.11(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.3.11(b) d 56 1 2 4 7 8 14 28 56 3 24/7 24/7 3 24/7 24 24 24 From Table 3.3.11(b) the condition (L4) is also satisfied. Thus B 4 (q) S 2 (Γ 0 (56), χ 3 ). Theorem 3.3.3. (a) {B 1 (q), B 2 (q), B 3 (q), B 4 (q)} is a basis for S 2 (Γ 0 (56), χ 3 ). (b) {E 2,χ3,χ 0 (q t ), E 2,χ0,χ 3 (q t ), E 2,χ1,χ 2 (q t ), E 2,χ2,χ 1 (q t ) t = 1, 2} is a basis for E 2 (Γ 0 (56), χ 3 ). (c) {E 2,χ3,χ 0 (q t ), E 2,χ0,χ 3 (q t ), E 2,χ1,χ 2 (q t ), E 2,χ2,χ 1 (q t ) t = 1, 2} together with B k (q) (1 k 4) constitute a basis for M 2 (Γ 0 (56), χ 3 ). Proof. (a) By Theorem 3.3.2, B k (q) (1 k 4) S 2 (Γ 0 (56), χ 3 ). There is no linear relationship among them. By Example 2.3.3, we have dims 2 (Γ 0 (56), χ 3 ) = 4. Therefore, B k (q) (1 k 4) constitute a basis for S 2 (Γ 0 (56), χ 3 ). (b) By Example 2.3.3, we have dime 2 (Γ 0 (56), χ 3 ) = 8. By Theorem 2.2.3, {E 2,χ3,χ 0 (q t ), E 2,χ0,χ 3 (q t ), E 2,χ1,χ 2 (q t ), E 2,χ2,χ 1 (q t ) t = 1, 2} is a basis for E 2 (Γ 0 (56), χ 3 ). (c) By Example 2.3.3, we have dimm 2 (Γ 0 (56), χ 3 ) = 12. Therefore, by (2.1.1)

CHAPTER 3. QUATERNARY QUADRATIC FORMS 36 {E 2,χ3,χ 0 (q t ), E 2,χ0,χ 3 (q t ), E 2,χ1,χ 2 (q t ), E 2,χ2,χ 1 (q t ) t = 1, 2} together with B k (q) (1 k 4) constitute a basis for M 2 (Γ 0 (56), χ 3 ). Theorem 3.3.4. Let χ 0 be the trivial character and χ 1, χ 2, χ 3 be as in (3.1.3). Then (a) ϕ 3 (q)ϕ(q 7 ) = 7 2 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q) + 7 4 E 2,χ 1,χ 2 (q) 1 2 E 2,χ 2,χ 1 (q) + 3B 2 (q) 21B 3 (q) 3 2 B 4(q), (b) ϕ(q)ϕ 2 (q 2 )ϕ(q 7 ) = 7 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) + 7 4 E 2,χ 1,χ 2 (q 2 ) 1 4 E 2,χ 2,χ 1 (q) 7 8 B 1(q) + 3 2 B 2(q) 21 2 B 3(q) 1 8 B 4(q), (c) ϕ(q)ϕ 3 (q 7 ) = 1 2 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q) 1 4 E 2,χ 1,χ 2 (q) + 1 2 E 2,χ 2,χ 1 (q) 3 2 B 1(q) + 3B 2 (q) + 3B 3 (q), (d) ϕ 2 (q)ϕ(q 2 )ϕ(q 14 ) = 7 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) + 7 4 E 2,χ 1,χ 2 (q 2 ) 1 4 E 2,χ 2,χ 1 (q) + 21 8 B 1(q) 1 2 B 2(q) + 7 2 B 3(q) + 3 8 B 4(q), (e) ϕ(q 2 )ϕ 2 (q 7 )ϕ(q 14 ) = 1 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) 1 4 E 2,χ 1,χ 2 (q 2 ) + 1 4 E 2,χ 2,χ 1 (q) + 3 8 B 1(q) 1 2 B 2(q) 1 2 B 3(q) 3 8 B 4(q), (f) ϕ(q)ϕ(q 7 )ϕ 2 (q 14 ) = 1 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) 1 4 E 2,χ 1,χ 2 (q 2 ) + 1 4 E 2,χ 2,χ 1 (q) 1 8 B 1(q) + 3 2 B 2(q) + 3 2 B 3(q) + 1 8 B 4(q). Proof. Let (a 1, a 2, a 3, a 4 ) be one of the quadratic forms listed in the second column of Table 3.1.1. By Theorem 3.3.1 we have ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) M 2 (Γ 0 (56), χ 3 ). Therefore, by Theorem 3.3.3 (c), ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) must be a linear combination of {E 2,χ3,χ 0 (q t ), E 2,χ0,χ 3 (q t ), E 2,χ1,χ 2 (q t ), E 2,χ2,χ 1 (q t ) t = 1, 2} and B k (q) (1

CHAPTER 3. QUATERNARY QUADRATIC FORMS 37 k 4), namely ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) =x 1 E 2,χ3,χ 0 (q) + x 2 E 2,χ3,χ 0 (q 2 ) + x 3 E 2,χ0,χ 3 (q) + x 4 E 2,χ0,χ 3 (q 2 ) + x 5 E 2,χ1,χ 2 (q) + x 6 E 2,χ1,χ 2 (q 2 ) + x 7 E 2,χ2,χ 1 (q) + x 8 E 2,χ2,χ 1 (q 2 ) + y 1 B 1 (q) + y 2 B 2 (q) + y 3 B 3 (q) + y 4 B 4 (q). We equate the first twenty coefficients of q n on both sides of the equation above to obtain a system of linear equations with the unknowns x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8 and y 1, y 2, y 3, y 4. Then, using MAPLE we solve the system to find the asserted coefficients. Theorem 3.3.5. Let n N. Let σ χi,χ j (n) be as in (2.2.1) for i, j {0, 1, 2, 3}. Then (a) N(1, 1, 1, 7; n) = 7 2 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n) + 7 4 σ χ 1,χ 2 (n) 1 2 σ χ 2,χ 1 (n) + 3b 2 (n) 21b 3 (n) 3 2 b 4(n), (b) N(1, 2, 2, 7; n) = 7 4 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n/2) + 7 4 σ χ 1,χ 2 (n/2) 1 4 σ χ 2,χ 1 (n) 7 8 b 1(n) + 3 2 b 2(n) 21 2 b 3(n) 1 8 b 4(n), (c) N(1, 7, 7, 7; n) = 1 2 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n) 1 4 σ χ 1,χ 2 (n) + 1 2 σ χ 2,χ 1 (n) 3 2 b 1(n) + 3b 2 (n) + 3b 3 (n), (d) N(1, 1, 2, 14; n) = 7 4 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n/2) + 7 4 σ χ 1,χ 2 (n/2) 1 4 σ χ 2,χ 1 (n) + 21 8 b 1(n) 1 2 b 2(n) + 7 2 b 3(n) + 3 8 b 4(n), (e) N(2, 7, 7, 14; n) = 1 4 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n/2) 1 4 σ χ 1,χ 2 (n/2) + 1 4 σ χ 2,χ 1 (n) + 3 8 b 1(n) 1 2 b 2(n) 1 2 b 3(n) 3 8 b 4(n),

CHAPTER 3. QUATERNARY QUADRATIC FORMS 38 (f) N(1, 7, 14, 14; n) = 1 4 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n/2) 1 4 σ χ 1,χ 2 (n/2) + 1 4 σ χ 2,χ 1 (n) 1 8 b 1(n) + 3 2 b 2(n) + 3 2 b 3(n) + 1 8 b 4(n). Proof. From (2.1.6), (3.3.1)-(3.3.4) and Theorem 3.3.4, we obtain (a) N(1, 1, 1, 7; n)q n = ϕ 3 (q)ϕ(q 7 ) n=0 = 7 2 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q) + 7 4 E 2,χ 1,χ 2 (q) 1 2 E 2,χ 2,χ 1 (q) + 3B 2 (q) 21B 3 (q) 3 2 B 4(q), ( 7 = 1 + 2 σ χ3,χ0(n) 1 4 σ χ0,χ3(n) + 7 4 σ χ1,χ2(n) 1 2 σ χ2,χ1(n) + 3b 2 (n) 21b 3 (n) 3 ) 2 b 4(n) q n, (b) (c) N(1, 2, 2, 7; n)q n = ϕ(q)ϕ 2 (q 2 )ϕ(q 7 ) n=0 = 7 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) + 7 4 E 2,χ 1,χ 2 (q 2 ) 1 4 E 2,χ 2,χ 1 (q) 7 8 B 1(q) + 3 2 B 2(q) 21 2 B 3(q) 1 8 B 4(q), ( 7 = 1 + 4 σ χ3,χ0(n) 1 4 σ χ0,χ3(n/2) + 7 4 σ χ1,χ2(n/2) 1 4 σ χ2,χ1(n) 7 8 b 1(n) + 3 2 b 2(n) 21 2 b 3(n) 1 ) 8 b 4(n) q n, N(1, 7, 7, 7; n)q n = ϕ(q)ϕ 3 (q 7 ) n=0 = 1 2 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q) 1 4 E 2,χ 1,χ 2 (q) + 1 2 E 2,χ 2,χ 1 (q) 3 2 B 1(q) + 3B 2 (q) + 3B 3 (q), ( = 1 + 1 2 σ χ 3,χ 0 (n) 1 4 σ χ 0,χ 3 (n) 1 4 σ χ 1,χ 2 (n) + 1 2 σ χ 2,χ 1 (n) 3 2 b 1(n) ) + 3b 2 (n) + 3b 3 (n) q n,

CHAPTER 3. QUATERNARY QUADRATIC FORMS 39 (d) (e) N(1, 1, 2, 14; n)q n = ϕ 2 (q)ϕ(q 2 )ϕ(q 14 ) n=0 = 7 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) + 7 4 E 2,χ 1,χ 2 (q 2 ) 1 4 E 2,χ 2,χ 1 (q) + 21 8 B 1(q) 1 2 B 2(q) + 7 2 B 3(q) + 3 8 B 4(q), ( 7 = 1 + 4 σ χ3,χ0(n) 1 4 σ χ0,χ3(n/2) + 7 4 σ χ1,χ2(n/2) 1 4 σ χ2,χ1(n) + 21 8 b 1(n) 1 2 b 2(n) + 7 2 b 3(n) + 3 ) 8 b 4(n) q n, N(2, 7, 7, 14; n)q n = ϕ(q)ϕ 2 (q 7 )ϕ(q 14 ) n=0 = 1 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) 1 4 E 2,χ 1,χ 2 (q 2 ) + 1 4 E 2,χ 2,χ 1 (q) + 3 8 B 1(q) 1 2 B 2(q) 1 2 B 3(q) 3 8 B 4(q) 1 2 D 1(q) 7 5 D 3(q) 12 5 D 4(q) + 1 2 D 5(q) + 7 5 D 6(q), ( 1 =1 + 4 σ χ3,χ0(n) 1 4 σ χ0,χ3(n/2) 1 4 σ χ1,χ2(n/2) + 1 4 σ χ2,χ1(n) + 3 8 b 1(n) 1 2 b 2(n) 1 2 b 3(n) 3 ) 8 b 4(n) q n, (f) N(1, 7, 14, 14; n)q n = ϕ(q)ϕ(q 7 )ϕ 2 (q 14 ) n=0 = 1 4 E 2,χ 3,χ 0 (q) 1 4 E 2,χ 0,χ 3 (q 2 ) 1 4 E 2,χ 1,χ 2 (q 2 ) + 1 4 E 2,χ 2,χ 1 (q) 1 8 B 1(q) + 3 2 B 2(q) + 3 2 B 3(q) + 1 8 B 4(q), ( 1 = 1 + 4 σ χ3,χ0(n) 1 4 σ χ0,χ3(n/2) 1 4 σ χ1,χ2(n/2) + 1 4 σ χ2,χ1(n) 1 8 b 1(n) + 3 2 b 2(n) + 3 2 b 3(n) + 1 ) 8 b 4(n) q n. Equating the coefficients of q n on both sides of equations (a) (f) yields the results. The values of N(a 1, a 2, a 3, a 4 ; n) for 1 n 20 for the quadratic forms (a 1, a 2, a 3, a 4 ) in Theorem 3.3.5 are given in Table 3.3.12. One can verify them by using Table 3.3.1.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 40 Table 3.3.12 n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 N(1, 1, 1, 7; n) 6 12 8 6 24 24 2 24 54 40 36 56 72 48 24 66 96 84 40 72 N(1, 2, 2, 7; n) 2 4 8 6 8 8 2 16 18 24 36 24 24 16 24 26 32 60 40 40 N(1, 7, 7, 7; n) 2 0 0 2 0 0 6 12 2 0 12 0 0 12 24 14 0 24 0 0 N(1, 1, 2, 14; n) 4 6 8 12 8 8 16 6 12 24 8 24 24 2 24 24 32 54 40 40 N(2, 7, 7, 14; n) 0 2 0 0 0 0 4 2 8 0 0 0 0 6 8 12 0 2 0 0 N(1, 7, 14, 14; n) 2 0 0 2 0 0 2 4 2 0 4 0 0 4 8 6 0 8 0 0 For example, by substituting n = 16 in Theorem 3.3.5(b), we obtain N(1, 2, 2, 7; 16) = 7 4 σ χ 3,χ 0 (16) 1 4 σ χ 0,χ 3 (8) + 7 4 σ χ 1,χ 2 (8) 1 4 σ χ 2,χ 1 (16) 7 8 b 1(16) + 3 2 b 2(16) 21 2 b 3(16) 1 8 b 4(16). Then appealing to (2.2.1) and (3.1.3), we obtain σ χ3,χ 0 (16) = 16, σ χ0,χ 3 (8) = 1, σ χ1,χ 2 (8) = 1, σ χ2,χ 1 (16) = 16. From Table 3.3.1, we have b 1 (16) = 1, b 2 (16) = b 3 (16) = 0, b 4 (16) = 11. Thus we have N(1, 2, 2, 7; 16) = 7 4 (16) 1 4 + 7 4 1 4 (16) 7 8 1 ( 11) = 26, 8 which agrees with the value of N(1, 2, 2, 7; 16) in Table 3.3.12.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 41 3.4 The space M 2 (Γ 0 (56), χ 5 ) Let χ 0 be the trivial character and χ 5 as in (3.1.4). We define the Eisenstein series E 2,χ5,χ 0 (q) = σ (χ5,χ 0 )(n)q n, (3.4.1) E 2,χ0,χ 5 (q) = 1 2 + σ (χ0,χ 5 )(n)q n. (3.4.2) We determine N(a 1, a 2, a 3, a 4 ; n) for the quaternary quadratic forms listed in the third column of Table 3.1.1 in terms of σ (χ,ψ) (n), where χ, ψ {χ 0, χ 5 }, and c k (n) (1 k 6) defined by C 1 (q) = C 2 (q) = C 3 (q) = C 4 (q) = C 5 (q) = C 6 (q) = c 1 (n)q n = η3 (2z)η(7z)η 2 (8z)η(28z), (3.4.3) η(z)η 2 (4z) c 2 (n)q n = η(2z)η2 (7z)η(8z)η 3 (28z), (3.4.4) η 2 (14z)η(56z) c 3 (n)q n = η2 (z)η 3 (4z)η(14z)η(56z), (3.4.5) η 2 (2z)η(8z) c 4 (nq n ) = c 5 (n)q n = c 6 (n)q n = η6 (2z)η(8z)η 4 (28z) η 2 (z)η 3 (4z)η(14z)η(56z), (3.4.6) η4 (2z)η(7z)η 6 (28z) η(z)η(4z)η 3 (14z)η 2 (56z), (3.4.7) η4 (4z)η 6 (14z)η(56z) η(2z)η 2 (7z)η(8z)η 3 (28z). (3.4.8) There is no linear relationship among the C k (q), 1 k 6. The first fifty-six values of c k (n), 1 k 6, are given in Table 3.4.1. Table 3.4.1 n c 1 (n) c 2 (n) c 3 (n) c 4 (n) c 5 (n) c 6 (n) n c 1 (n) c 2 (n) c 3 (n) c 4 (n) c 5 (n) c 6 (n) 1 0 1 0 0 1 0 29 0 2 2 0 4 4 2 1 0 0 1 1 1 30 0 4 4 0 4 4 3 1 1 1 2 2 0 31 4 4 0 4 8 4

CHAPTER 3. QUATERNARY QUADRATIC FORMS 42 4 1 0 2 1 1 1 32 3 2 2 5 5 3 5 0 1 1 2 0 0 33 0 0 4 0 4 0 6 1 0 2 2 2 2 34 2 0 0 6 2 6 7 0 0 1 0 1 0 35 1 1 1 0 0 2 8 1 2 2 3 1 1 36 1 0 2 5 7 5 9 2 1 2 2 1 2 37 4 2 2 8 4 4 10 1 2 0 0 4 0 38 1 4 2 2 6 2 11 0 2 2 2 2 2 39 2 2 4 2 4 2 12 0 2 2 2 2 2 40 2 4 0 4 4 4 13 2 1 1 2 0 4 41 4 2 4 4 10 4 14 0 0 0 1 1 1 42 1 2 0 2 2 2 15 2 2 0 2 4 2 43 4 2 2 6 2 6 16 1 2 2 1 3 1 44 2 0 0 2 2 6 17 0 2 4 0 6 0 45 2 5 5 2 8 4 18 1 4 4 3 5 1 46 4 4 4 8 4 4 19 1 1 1 2 2 4 47 0 0 0 0 0 0 20 0 2 2 0 4 4 48 2 0 0 2 2 10 21 0 1 1 0 2 2 49 0 1 0 0 1 0 22 0 4 0 2 6 2 50 1 4 4 1 1 5 23 2 2 4 2 4 2 51 2 2 2 4 4 8 24 0 4 0 2 10 2 52 4 2 2 8 4 4 25 2 1 2 2 5 2 53 4 4 4 4 4 4 26 1 2 4 0 4 0 54 4 4 4 4 4 4 27 2 0 0 0 4 8 55 4 4 0 4 0 4 28 1 2 0 1 3 1 56 1 2 2 1 1 3 Theorem 3.4.1. Let (a 1, a 2, a 3, a 4 ) be as in the third column of Table 3.1.1.Then ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) M 2 (Γ 0 (56), χ 5 ). Proof. We have N = 56. First we consider quadratic form (1, 2, 7, 7). By (2.1.9) we have ϕ(q)ϕ(q 2 )ϕ 2 (q 7 ) = η3 (2z)η 3 (4z)η 10 (14z) η 2 (z)η 4 (7z)η 2 (8z)η 4 (28z). Table 3.4.2(a) and Table 3.4.2(b). Table 3.4.2(a) 1 2 4 7 8 14 28 r 2 3 3 4 2 10 4 It can be seen from Table 3.4.2(a) that conditions (L1) and (L2) are satisfied.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 43 1 56 gcd(d, ) 2 r Table 3.4.2(b) d 56 1 2 4 7 8 14 28 56 0 54/7 12 0 0 90 12 0 From Table 3.4.2(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ(q 2 )ϕ 2 (q 7 ) M 2 (Γ 0 (56), χ 5 ). Secondly we consider the form (1, 1, 7, 14). By (2.1.9) we have ϕ 2 (q)ϕ(q 7 )ϕ(q 14 ) = η10 (2z)η 3 (14z)η 3 (28z) η 4 (z)η 4 (4z)η 2 (7z)η 2 (56z). Table 3.4.3(a) 1 2 4 7 14 28 56 r 4 10 4 2 3 3 2 It can be seen from Table 3.4.3(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.3(b) d 56 1 2 4 7 8 14 28 56 0 90/7 12/7 0 0 54 84 0 From Table 3.4.3(b) the condition (L3) is also satisfied. Thus ϕ 2 (q)ϕ(q 7 )ϕ(q 14 ) M 2 (Γ 0 (56), χ 5 ). Thirdly we consider the form (2, 2, 7, 14). We have ϕ 2 (q 2 )ϕ(q 7 )ϕ(q 14 ) = η10 (4z)η 3 (14z)η 3 (28z) η 4 (2z)η 2 (7z)η 4 (8z)η 2 (56z). Table 3.4.4(a) 2 4 7 8 14 28 56 r 4 10 2 4 3 3 2 It can be seen from Table 3.4.4(a) that conditions (L1) and (L2) are satisfied.

CHAPTER 3. QUATERNARY QUADRATIC FORMS 44 1 56 gcd(d, ) 2 r Table 3.4.4(b) d 56 1 2 4 7 8 14 28 56 0 6/7 180/7 0 0 42 108 0 From Table 3.4.4(b) the condition (L3) is also satisfied. Thus ϕ 2 (q 2 )ϕ(q 7 )ϕ(q 14 ) M 2 (Γ 0 (56), χ 5 ). Fourthly we consider the form (1, 2, 14, 14). We have ϕ(q)ϕ(q 2 )ϕ 2 (q 14 ) = η 3 (2z)η 3 (4z)η 10 (28z) η 2 (z)η 2 (8z)η 4 (14z)η 4 (56z). Table 3.4.5(a) 1 2 4 8 14 28 56 r 2 3 3 2 4 10 4 It can be seen from Table 3.4.5(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.5(b) d 56 1 2 4 7 8 14 28 56 0 6 108/7 0 0 6 180 0 From Table 3.4.5(b) the condition (L3) is also satisfied. Thus ϕ(q)ϕ(q 2 )ϕ 2 (q 14 ) M 2 (Γ 0 (56), χ 5 ). Theorem 3.4.2. C k (q) (1 k 6) given by (3.4.3) (3.4.8) are in S 2 (Γ 0 (56), χ 5 ). Proof. We will check conditions (L1), (L2) and (L4) of Theorem 3.1.1. We have N = 56. First we consider C 1 (q) = η3 (2z)η(7z)η 2 (8z)η(28z). η(z)η 2 (4z)

CHAPTER 3. QUATERNARY QUADRATIC FORMS 45 Table 3.4.6(a) 1 2 4 7 8 28 r 1 3 2 1 2 1 It can be seen from Table 3.4.6(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.6(b) d 56 1 2 4 7 8 14 28 56 3/7 30/7 12/7 9 96/7 18 36 48 From Table 3.4.6(b) the condition (L4) is also satisfied. Thus C 1 (q) S 2 (Γ 0 (56), χ 5 ). Secondly we consider C 2 (q) = η(2z)η2 (7z)η(8z)η 3 (28z). η 2 (14z)η(56z) Table 3.4.7(a) 2 7 8 14 28 56 r 1 2 1 2 3 1 It can be seen from Table 3.4.7(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.7(b) d 56 1 2 4 7 8 14 28 56 6/7 18/7 36/7 12 72/7 6 60 24 From Table 3.4.7(b) the condition (L4) is also satisfied. Thus C 2 (q) S 2 (Γ 0 (56), χ 5 ). Thirdly we consider C 3 (q) = η2 (z)η 3 (4z)η(14z)η(56z). η 2 (2z)η(8z)

CHAPTER 3. QUATERNARY QUADRATIC FORMS 46 Table 3.4.8(a) 1 2 4 8 14 56 r 2 2 3 1 1 1 It can be seen from Table 3.4.8(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.8(b) d 56 1 2 4 7 8 14 28 56 12/7 6/7 60/7 6 24/7 18 36 72 From Table 3.4.8(b) the condition (L4) is also satisfied. Thus C 3 (q) S 2 (Γ 0 (56), χ 5 ). Fourthly we consider C 4 (q) = η6 (2z)η(8z)η 4 (28z) η 2 (z)η 3 (4z)η(14z)η(56z). Table 3.4.9(a) 1 2 4 8 14 28 56 r 2 6 3 1 1 4 1 It can be seen from Table 3.4.9(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.9(b) d 56 1 2 4 7 8 14 28 56 3/7 54/7 12/7 3 48/7 18 84 48 From Table 3.4.9(b) the condition (L4) is also satisfied. Thus C 4 (q) S 2 (Γ 0 (56), χ 5 ). Fifthly we consider C 5 (q) = η4 (2z)η(7z)η 6 (28z) η(z)η(4z)η 3 (14z)η 2 (56z).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 47 Table 3.4.10(a) 1 2 4 7 14 28 56 r 1 4 1 1 3 6 2 It can be seen from Table 3.4.10(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.10(b) d 56 1 2 4 7 8 14 28 56 6/7 6 36/7 6 24/7 6 108 24 From Table 3.4.10(b) the condition (L4) is also satisfied. Thus C 5 (q) S 2 (Γ 0 (56), χ 5 ). Sixthly we consider C 6 (q) = η4 (4z)η 6 (14z)η(56z) η(2z)η 2 (7z)η(8z)η 3 (28z). Table 3.4.11(a) 2 4 7 8 14 28 56 r 1 4 2 1 6 3 1 It can be seen from Table 3.4.11(a) that conditions (L1) and (L2) are satisfied. 1 56 gcd(d, ) 2 r Table 3.4.11(b) d 56 1 2 4 7 8 14 28 56 3/7 18/7 12 3 48/7 54 12 48 From Table 3.4.11(b) the condition (L4) is also satisfied. Thus C 6 (q) S 2 (Γ 0 (56), χ 5 ). Theorem 3.4.3. (a) {C 1 (q),..., C 6 (q)} is a basis for S 2 (Γ 0 (56), χ 5 ). (b) {E 2,χ5,χ 0 (q t ), E 2,χ0,χ 5 (q t ) t = 1, 7} is a basis for E 2 (Γ 0 (56), χ 5 ).

CHAPTER 3. QUATERNARY QUADRATIC FORMS 48 (c) {E 2,χ5,χ 0 (q t ), E 2,χ0,χ 5 (q t ) t = 1, 7} together with C k (q) (1 k 6) constitute a basis for M 2 (Γ 0 (56), χ 5 ). Proof. (a) By Theorem 3.4.2, C k (q) (1 k 6) S 2 (Γ 0 (56), χ 5 ). There is no linear relationship among them. By Example 2.3.3, we have dims 2 (Γ 0 (56), χ 5 ) = 6. Thus C k (q) (1 k 6) constitute a basis for S 2 (Γ 0 (56), χ 5 ). (b) By Example 2.3.3, we have dime 2 (Γ 0 (56), χ 5 ) = 4. By Theorem 2.2.3, {E 2,χ5,χ 0 (q t ), E 2,χ0,χ 5 (q t ) t = 1, 7} constitute a basis for E 2 (Γ 0 (56), χ 5 ). (c) By Example 2.3.3, we have dimm 2 (Γ 0 (56), χ 5 ) = 10. Therefore, by (2.1.1) {E 2,χ5,χ 0 (q t ), E 2,χ0,χ 5 (q t ) t = 1, 7} together with C k (q) (1 k 6) constitute a basis for M 2 (Γ 0 (56), χ 5 ). Theorem 3.4.4. Let χ 0 be the trivial character and χ 5 be as in (3.1.4). Then (a) ϕ(q)ϕ(q 2 )ϕ 2 (q 7 ) = 4 3 E 2,χ 5,χ 0 (q) 28 3 E 2,χ 5,χ 0 (q 7 ) + 1 3 E 2,χ 0,χ 5 (q) 7 3 E 2,χ 0,χ 5 (q 7 ) 4C 1 (q) 2 3 C 2(q) + 4 3 C 3(q) + 3C 4 (q) + C 5 (q) C 6 (q), (b) ϕ 2 (q)ϕ(q 7 )ϕ(q 14 ) = 4 3 E 2,χ 5,χ 0 (q) 28 3 E 2,χ 5,χ 0 (q 7 ) + 1 3 E 2,χ 0,χ 5 (q) 7 3 E 2,χ 0,χ 5 (q 7 ) + 4C 1 (q) + 10 3 C 2(q) + 4 3 C 3(q) 3C 4 (q) C 5 (q) + C 6 (q), (c) ϕ 2 (q 2 )ϕ(q 7 )ϕ(q 14 ) = 2 3 E 2,χ 5,χ 0 (q) 14 3 E 2,χ 5,χ 0 (q 7 ) + 1 3 E 2,χ 0,χ 5 (q) 7 3 E 2,χ 0,χ 5 (q 7 ) 2C 1 (q) 3C 2 (q) C 3 (q) + 5 3 C 4(q) + 2C 5 (q) + 2 3 C 6(q), (d) ϕ(q)ϕ(q 2 )ϕ 2 (q 14 ) = 2 3 E 2,χ 5,χ 0 (q) 14 3 E 2,χ 5,χ 0 (q 7 ) + 1 3 E 2,χ 0,χ 5 (q) 7 3 E 2,χ 0,χ 5 (q 7 ) + 2C 1 (q) + 3C 2 (q) + C 3 (q) 1 3 C 4(q) 2C 5 (q) + 2 3 C 6(q). Proof. Let (a 1, a 2, a 3, a 4 ) be one of the quadratic forms listed in the third column of Table 3.1.1. By Theorem 3.4.1, ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) (M 2 (Γ 0 (56), χ 5 ). Therefore by Theorem 3.4.3 (c), ϕ(q a 1 )ϕ(q a 2 )ϕ(q a 3 )ϕ(q a 4 ) must be a linear combina-