Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ



Σχετικά έγγραφα
ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Α ΘΕΡΜΟΤΗΤΑ ΣΤΟ ΥΠΕΔΑΦΟΣ ΚΑΤΑΛΛΗΛΗ ΓΙΑ: ΘΕΡΜΑΝΣΗ & ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ ΜΕΣΩ ΤΟΥ ΑΤΜΟΥ, ΟΠΩΣ ΜΕ ΤΗΝ ΣΥΜΒΑΤΙΚΗ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗ

Γεωθερμική έρευνα - Ερευνητικές διαδικασίες

Η γεωθερμική ενέργεια είναι η ενέργεια που προέρχεται από το εσωτερικό της Γης. Η θερμότητα αυτή προέρχεται από δύο πηγές: από την θερμότητα του

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, Ιουνίου Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας

Φωτογραφία του Reykjavik το 1932, όταν τα κτίρια θερμαίνονταν με συμβατικά καύσιμα.

Ταξινόμηση γεωθερμικών συστημάτων σε σχέση με το είδος των γεωθερμικών πόρων

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερμική Ενέργεια

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

«Γεωθερμική ενέργεια με τη μέθοδο της τηλεθέρμανσης στη περιοχή του Πολιχνίτου Λέσβου»

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος

Εισαγωγή στην Ενεργειακή Τεχνολογία. Γεωθερμική ενέργεια

ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ

Η Γεωθερμία στην Ελλάδα

ΕΡΓΑΣΙΑ: ΓΕΩΡΘΕΜΙΚΗ ΕΝΕΡΓΕΙΑ

ΓΕΩΘΕΡΜΙΑ ΕΝΑΣ ΦΥΣΙΚΟΣ ΕΝΕΡΓΕΙΑΚΟΣ ΠΛΟΥΤΟΣ

Διδάσκοντες Ομότιμος Καθηγητής Ιωάννης Διαμαντής Καθηγητής Φώτιος-Κων/νος Πλιάκας και συνεργάτες

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

ΕΓΚΑΤΑΣΤΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΓΕΩΘΕΡΜΙΑΣ

Γεωθερμία. Ενότητα 3: Η Γεωθερμική Ενέργεια. Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Τμήμα Πολιτικών Μηχανικών ΑΠΘ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy

Γεωθερμικό πεδίο ποσότητα θερμοκρασία βάθος των γεωθερμικών ρευστών γεωθερμικό πεδίο Γεωθερμικό πεδίο 3175/2003 άρθρο 2 (ορισμοί)

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ

Ήπιες και νέες μορφές ενέργειας

ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΣΙΑ ΤΟΥ PROJECT

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΠΜΣ «Περιβάλλον και Ανάπτυξη των Ορεινών Περιοχών» Υδατικό Περιβάλλον και Ανάπτυξη

ΘΕΡΜΟΔΥΝΑΜΙΚΗ - ΝΟΜΟΙ

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010

Ανανεώσιμες Πηγές Ενέργειας

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό;

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ

Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία και παραδείγματα εφαρμογών

ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΓΙΑ ΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΚΑΡ ΙΑΚΟΣ ΧΡΗΣΤΟΣ

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ. Εισαγωγικά

ΤΕΧΝΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΚΑΤΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ

ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΕ ΓΕΩΘΕΡΜΙΚΟ ΠΕΔΙΟ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝ/ΜΙΟΥ ΠΑΤΡΑΣ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

Γεωθερμία. ογές εγκαταστάσεων στην πράξη 18/1/2013. Σαββανής Παναγιώτης, Μηχανολόγος Μηχανικός ΤΕ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ

ΓΕΩΧΗΜΕΙΑ Δ ΕΞΑΜΗΝΟ ΕΙΣΑΓΩΓΗ- ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ. Χριστίνα Στουραϊτη

Ετήσια απόδοση συστημάτων θέρμανσης

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός

Το Γεωθερμικό Δυναμικό της Ελλάδας

Αξιοποίηση του Γεωθερμικού πεδίου Αρίστηνου από το Δήμο Αλεξανδρούπολης

Χρήσεις γεωθερμικής ενέργειας

ΧΡΗΣΕΙΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ: ΣΗΜΕΡΙΝΗ ΚΑΤΑΣΤΑΣΗ ΚΑΙ ΠΡΟΟΠΤΙΚΕΣ

Εισαγωγή στην Ενεργειακή Τεχνολογία

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

ΚΛΙΜΑΤΙΣΜΟΣ ΔΗΜΑΡΧΕΙΟΥ ΚΑΛΑΜΑΤΑΣ ΜΕ ΣΥΣΤΗΜΑTA ΓΕΩΘΕΡΜΙΑΣ

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος

Αντλία Θερμότητας με Θερμική Συμπίεση και Παραγωγή Ενέργειας από Θερμότητα

Αντίστροφη Μέτρηση για Κατοικίες Χαμηλού Άνθρακα Κτίρια Σχεδόν Μηδενικής Κατανάλωσης Ενέργειας. Γιώργος Κούρρης 18 η Φεβρουαρίου

Η συµβολή των Ανανεώσιµων Πηγών Ενέργειας στην επίτευξη Ενεργειακού Πολιτισµού

ΣΥΜΠΑΡΑΓΩΓΗ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΕΡΓΟΥ

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ: Η ΣΥΜΒΟΛΗ ΤΟΥ ΙΓΜΕ στην ΕΡΕΥΝΑ και ΑΞΙΟΠΟΙΗΣΗ της ΔΕΘ 2016


Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΧΗΜΕΙΑ

Προϊόν Παραπροϊόν Υποπροϊόν

Εργασία Γεωλογίας και Διαχείρισης Φυσικών Πόρων

Ανανεώσιμες Πηγές Ενέργειας

Προϊόν Παραπροϊόν Υποπροϊόν

Γεωθερμία. Ενότητα 6: Θερμά άνυδρα πετρώματα. Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Τμήμα Πολιτικών Μηχανικών ΑΠΘ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Β ΨΥΚΤΙΚΩΝ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΓΤΖΙΔΟΥ ΠΑΝΑΓΙΩΤΑ ΚΟΥΡΟΥΣ ΣΠΥΡΙΔΩΝ

Εναλλακτικές λύσεις θέρμανσης & δροσισμού στα δημοτικά κτίρια με συστήματα γεωθερμίας

Εφαρµογές Γεωθερµικών Αντλιών Θερµότητας

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks )

ΓΕΩΘΕΡΜΙΑ & ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓΩΝ: Yr host 4 today: Νικόλαος Ψαρράς

ΓΕΩΦΥΣΙΚΕΣ ΚΑΤΑΓΡΑΦΕΣ

ΦΥΣΙΚΟ ΑΕΡΙΟ. Εργασία των μαθητριών: Μπουδαλάκη Κλεοπάτρα, Λιολιοσίδου Χριστίνα, Υψηλοπούλου Δέσποινα.

ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΘΕΡΜΟΤΗΤΑΡΥΘΜΙΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ. Δρ. Λυκοσκούφης Ιωάννης

1. Εναλλάκτες θερµότητας (Heat Exchangers)

Κώστας Κωνσταντίνου Τμήμα Γεωλογικής Επισκόπησης

Το νερό στο φυσικό περιβάλλον συνθέτει την υδρόσφαιρα. Αυτή θα μελετήσουμε στα επόμενα μαθήματα.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δημήτριος Γ. Ανωγειανάκης A.M :4038 ΘΕΡΜΑΝΣΗ - ΨΥΞΗΣ ΚΑΤΟΙΚΙΑΣ ΜΕ ΧΡΗΣΗ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ

4.1 Εισαγωγή. Μετεωρολογικός κλωβός

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Έρευνα και αξιοποίηση του γεωθερμικού δυναμικού: O ρόλος του γεωλόγου

ΕΝΣΩΜΑΤΩΣΗ Α.Π.Ε. ΣΤΑ ΚΤΙΡΙΑ. Ν. ΚΥΡΙΑΚΗΣ, καθηγητής ΑΠΘ Πρόεδρος ΙΗΤ

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος

GEO POWER, Ημερίδα 16 Ο ΕΘΝΙΚΟ Γεωθερμίας ΣΥΝΕΔΡΙΟ ΕΝΕΡΓΕΙΑΣ, «ΕΝΕΡΓΕΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ 2011»

Ηλιακή Θέρμανση Ζεστό Νερό Χρήσης Ζ.Ν.Χ

Αυτόνομο σύστημα τηλε- κλιματισμού από Γεωθερμία Χαμηλής Ενθαλπίας (ΓΧΕ)

ΓΕΩΘΕΡΜΙΑ ΚΑΙ ΤΥΠΟΠΟΙΗΣΗ

Transcript:

Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΦΟΡΑ ΣΕ ΚΤΙΡΙΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΣΤΗΝ ΠΟΛΗ ΤΗΣ ΛΑΜΙΑΣ ΣΠΟΥΔΑΣΤΗΣ : ΣΤΑΜΑΤΙΑ ΠΛΙΑΚΟΥ ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ : ΔΗΜΗΤΡΙΟΣ ΜΑΡΜΑΝΗΣ Εκπονηθείσα πτυχιακή εργασία απαραίτητη για την κτήση του βασικού πτυχίου ΜΑΙΟΣ 2012

ΠΕΡΙΛΗΨΗ H θερμότητα είναι μια μορφή ενέργειας και η γεωθερμική ενέργεια είναι η θερμότητα που περιέχεται στο εσωτερικό της γης, η οποία προκαλεί τη δημιουργία διαφόρων γεωλογικών φαινομένων σε παγκόσμια κλίμακα. Συνήθως όμως, ο όρος «γεωθερμική ενέργεια» χρησιμοποιείται σήμερα για να δηλώσει εκείνο το τμήμα της γήινης θερμότητας που μπορεί να ανακτηθεί και να αξιοποιηθεί από τον άνθρωπο, και με την έννοια αυτή θα χρησιμοποιήσουμε τον όρο από τώρα και στο εξής. 1

ΠΕΡΙΕΧΟΜΕΝΑ ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ... 4 ΚΑΤΟΛΟΓΟΣ ΕΙΚΟΝΩΝ... 5 ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ... 5 ΚΕΦΑΛΑΙΟ : ΓΕΩΘΕΡΜΙΑ... 6 1.1. ΕΙΣΑΓΩΓΗ... 6 1.2. ΣΥΝΤΟΜΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ... 8 1.3. ΣΗΜΕΡΙΝΟ ΚΑΘΕΣΤΩΣ ΧΡΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ... 13 1.4. ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ... 14 1.5. Η ΘΕΡΜΙΚΗ ΜΗΧΑΝΗ ΤΗΣ ΓΗΣ... 15 1.6. ΣΤΑΔΙΑ ΓΕΩΘΕΡΜΙΚΗΣ ΈΡΕΥΝΑΣ... 18 1.7. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΔΥΝΑΜΙΚΟΥ... 19 1.8. ΓΕΩΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ... 21 1.9. ΟΡΙΣΜΟI ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ... 27 1.10. ΆΜΕΣΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ... 29 1.11. ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ... 37 1.11.1. ΤΙ ΕΙΝΑΙ Η ΑΒΑΘΗΣ ΓΕΩΘΕΡΜΙΑ... 37 1.12. ΣΥΣΤΗΜΑΤΑ ΑΞΙΟΠΟΙΗΣΗΣ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ 39 ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ... 41 2.1. Η ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ... 41 2.2. ΣΗΜΕΡΑ - ΧΡΗΣΗ ΓΕΩΘΕΡΜΙΑΣ ΣΕ ΚΤΙΡΙΑ... 43 2.2.1. ΆΓΝΩΣΤΗ ΣΤΗΝ ΕΛΛΑΔΑ... 43 2.3. ΕΦΑΡΜΟΓΗ ΚΑΤΑΚΟΡΥΦΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΣΤΟ ΔΗΜΑΡΧΕΙΟ ΤΗΣ ΠΥΛΑΙΑΣ ΣΤΗ ΘΕΣΣΑΛΟΝΙΚΗ.... 43 2.4. ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑΚΗ ΕΓΚΑΤΑΣΤΑΣΗ... 47 ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ... 50 2

3.1. ΚΤΙΡΙΟ ΜΕ ΕΦΑΡΜΟΓΗ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΠΟΛΗ ΤΗΣ ΛΑΜΙΑΣ... 50 3.1.1. ΓΕΝΙΚΑ... 50 3.2. ΓΕΩΛΟΓΙΚΑ ΣΤΟΙΧΕΙΑ ΠΕΡΙΟΧΗΣ... 52 3.3. ΚΑΘΟΡΙΣΜΟΣ ΚΑΙ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΤΥΧΟΝ ΑΠΑΙΤΟΥΜΕΝΩΝ ΓΕΩΤΡΗΣΕΩΝ... 54 3.4. ΠΕΡΙΓΡΑΦΗ ΚΛΙΜΑΤΙΖΟΜΕΝΩΝ ΧΩΡΩΝ... 55 3.5. ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ:... 56 Α. ΕΚΣΚΑΦΕΣ ΚΑΙ ΓΕΩΘΕΡΜΙΚΟΙ ΕΝΑΛΛΑΚΤΕΣ... 57 Β. ΣΥΛΛΕΚΤΕΣ ΠΡΟΣΑΓΩΓΗΣ /ΕΠΙΣΤΡΟΦΗΣ... 57 Γ. ΚΕΝΤΡΙΚΑ ΔΙΚΤΥΑ ΔΙΑΝΟΜΗΣ... 58 Δ. ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ... 58 E. ΑΝΤΛΙΕΣ ΚΥΚΛΟΦΟΡΗΤΕΣ... 59 ΣΤ. ΧΡΟΝΙΚΗ ΑΛΛΗΛΟΥΧΙΑ ΕΡΓΑΣΙΩΝ... 59 Ζ. ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΣΚΕΥΗΣ / ΠΑΡΑΛΑΒΗΣ ΕΡΓΟΥ... 60 3.6. ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ... 61 ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΖΟΝΤΙΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΕΝΑΛΛΑΚΤΩΝ... 62 ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ... 63 4.1. ΜΕΤΡΑ ΓΙΑ ΤΗΝ ΥΓΙΕΙΝΗ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΚΑΙ ΤΗΝ ΑΣΦΑΛΕΙΑ ΕΡΓΑΣΙΩΝ, ΚΑΤΑ ΤΗΝ ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΤΑΣΚΕΥΗ - ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ.... 63 4.2. ΔΗΛΩΣΕΙΣ ΥΠΟΓΡΑΦΟΝΤΩΝ... 64 4.3. ΠΕΡΙΒΑΛΛΟΝ... 66 4.3.1. ΕΠΙΠΤΩΣΕΙΣ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ... 66 ΒΙΒΛΙΟΓΡΑΦΙΑ... 71 ΠΑΡΑΡΤΗΜΑ... 72 3

ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ Σχήμα 1 - Ο Φλοιός, ο Μανδύας και ο Πυρήνας της γης. Πάνω δεξιά: τομή του φλοιού και του ανώτερου μανδύα... 10 Σχήμα 2 - Σχηματική τομή που δείχνει τις διεργασίες που λαμβάνουν χώρα στις τεκτονικές πλάκες.... 16 Σχήμα 3 - Τεκτονικές πλάκες, μεσωκεάνιες ράχες, ωκεάνιες τάφροι, ζώνες καταβύθισης και γεωθερμικά πεδία. Τα βέλη δείχνουν την κατεύθυνση κίνησης των λιθοσφαιρικών πλακών προς τις ζώνες καταβύθισης.... 17 Σχήμα 4 - Σχηματική αναπαράσταση ενός ιδανικού γεωθερμικού συστήματος... 23 Σχήμα 5 - Πρότυπο (μοντέλο) ενός γεωθερμικού συστήματος Η γραμμή (1) είναι η καμπύλη αναφοράς του σημείου ζέσεως του καθαρού νερού. Η καμπύλη (2) δείχνει τη θερμοκρασιακή κατανομή κατά μήκος μια τυπικής διαδρομής κυκλοφορίας του ρευστού από το σημείο Α (τροφοδο... 24 Σχήμα 6 - Σχηματική αναπαράσταση ενός συστήματος Θερμών Ξηρών Πετρωμάτων σε οικονομική κλίμακα (από Richards et al., 1994)... 27 Σχήμα 7 - Γραφική παράσταση που δίνει τις διάφορες κατηγορίες των γεωθερμικών πόρων (Από Muffler & Cataldi, 1978). Ο κάθετος άξονας παριστάνει το βαθμό της οικονομικής επιτευξιμότητας, ενώ ο οριζόντιος το βαθμό της γεωλογικής βεβαιότητας... 29 Σχήμα 8 - Απλοποιημένο διάγραμμα ροής του συστήματος τηλεθέρμανσης του Reykjavik (Από Gudmundsson, 1988_... 30 Σχήμα 9 - Επίδραση της θερμοκρασίες στην ανάπτυξη κάποιων φυτών (Beall and Samuels, 1971)... 32 Σχήμα 10 - Συστήματα θέρμανσης σε γεωθερμικά θερμοκήπια. Εγκαταστάσεις θέρμανσης με φυσική κίνηση του αέρα (φυσική συναγωγή): (α) εναέριοι σωλήνες θέρμανσης (β) θέρμανση πάγκων (γ) σωλήνες θέρμανσης που είναι τοποθετημένοι χαμηλά (δ) θέρμανση εδάφους Εγκαταστάσεις θέρμανσης με εξαναγκασμένη κίνηση του αέρα (εξαναγκασμένη συναγωγή) (ε) πλευρική 4

τοποθέτηση σωλήνων (στ) εναέρια αερόθερμα (ζ) αγωγοί τοποθετημένοι ψηλά (η) αγωγοί τοποθετημένοι χαμηλά (von Zabeltitz, 1986... 34 Σχήμα 11 - Επίδραση της θερμοκρασίας στην ανάπτυξη ή παραγωγή ζώων που εκτρέφονται για κατανάλωση (Beall and Samuels, 1971)... 35 Σχήμα 12 - Παράδειγμα κατακόρυφου γεωεναλλάκτη... 45 ΚΑΤΟΛΟΓΟΣ ΕΙΚΟΝΩΝ Εικόνα 1 - Η καλυμμένη «λιμνούλα» (covered lagoon), που χρησιμοποιούνταν κατά το πρώτο μισό του 19ου αιώνα στην περιοχή του Larderello, για τη συλλογή των βοριούχων υδάτων και την παραγωγή βορικού οξέος.... 11 Εικόνα 2 - Η μηχανή που χρησιμοποιήθηκε στο Larderello το 1904 κατά την πρώτη πειραματική απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό. Διακρίνεται επίσης ο εφευρέτης της, πρίγκιπας Piero Ginori Conti.... 12 Εικόνα 3 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικηής Επιχείρησης Λαμιέων... 51 Εικόνα 4 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικής Επιχείρησης Λαμιέων... 52 Εικόνα 5 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικής Επιχείρησης Λαμιέων... 53 ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ Πίνακας 1 - Σύνοψη των διαφόρων τύπων νερού στα γεωθερμικά συστήματα.... 21 5

ΚΕΦΑΛΑΙΟ : ΓΕΩΘΕΡΜΙΑ 1.1. ΕΙΣΑΓΩΓΗ Ο ορισμός της Γεωθερμικής Ενέργειας, σύμφωνα με το ASTM E-957 (Standard Terminology Relating to Geothermal Energy), είναι αρκετά ευρύς: «η θερμική ενέργεια που περιέχεται στα πετρώματα και στα ρευστά της γης». Όμως με τον όρο «γεωθερμική ενέργεια», που συνήθως χρησιμοποιούμε, εννοούμε το τμήμα της γήινης θερμότητας που βρίσκεται αποθηκευμένο με τη μορφή θερμού νερού, ατμού ή θερμών πετρωμάτων σε ευνοϊκές γεωλογικές συνθήκες, δηλαδή περιορίζεται στα πρώτα τρία περίπου χιλιόμετρα από την επιφάνεια της γης (Φυτίκας & Ανδρίτσος, 2004). Η ενέργεια αυτή βρίσκεται συνήθως περιορισμένη σε μία γεωθερμική περιοχή ή πεδίο με συγκεκριμένα επιφανειακά όρια. Ως γεωθερμική χρήση αναφέρεται η οικονομική εκμετάλλευση του ατμού ή των θερμών νερών, είτε αυτά ρέουν φυσικά, είτε βγαίνουν στην επιφάνεια μέσω γεώτρησης. Οι γεωθερμικές χρήσεις ακόμη περιλαμβάνουν την αξιοποίηση της θερμότητας των πετρωμάτων ή του εδάφους. Οι γεωθερμικές χρήσεις ταξινομούνται σε ηλεκτρικές (για παραγωγή ηλεκτρικής ισχύος) και σε άμεσες. 6

Η πλέον εντυπωσιακή απόδειξη της θερμότητας που υπάρχει στο εσωτερικό της γης αποτελεί η ηφαιστειακή δραστηριότητα. Άλλες γεωθερμικές ενδείξεις είναι οι ατμοί, τα θερμά νερά και τα αέρια που σχηματίζουν θερμοπίδακες (γκέιζερ), θερμές πηγές και ατμίδες. Ο ρυθμός αύξησης της θερμοκρασίας με το βάθος από την επιφάνεια της γης είναι γνωστός με το όνομα γεωθερμική βαθμίδα. Η γεωθερμική βαθμίδα κυμαίνεται από 5 μέχρι 70 C/km, με μέση τιμή τους 30 C/km. Η γεωθερμική ενέργεια είναι μια σχετικά ήπια, εναλλακτική μορφή ενέργειας η οποία με τα σημερινά τεχνολογικά δεδομένα μπορεί να καλύψει σημαντικό μέρος των αναγκών μας σε ενέργεια. Οι χρήσεις και οι εφαρμογές της γεωθερμικής ενέργειας, η οποία απαντά σε αρκετές περιοχές της γης, ποικίλλουν σε μεγάλο βαθμό και περιλαμβάνουν την παραγωγή ηλεκτρικής ενέργειας, τις αγροτικές διεργασίες (π.χ. ξήρανση σιτηρών), τη θέρμανση οικιών, τη δημιουργία ψύξης κτλ. Η περιοχή των θερμοκρασιών των θερμών νερών που μπορούν να χρησιμοποιηθούν εκτείνεται από τους 20 C (για θέρμανση χώρων με τη χρήση γεωθερμικών αντλιών θερμότητας) μέχρι τους 280 C (για παραγωγή ηλεκτρικής ισχύος). Επιπλέον, αρκετά γεωθερμικά ρευστά εκτός από τη θερμότητά τους περιέχουν και αξιοποιήσιμες διαλυμένες ποσότητες στερεών ή αέριων ουσιών (κοινό αλάτι, διοξείδιο του άνθρακα, πολύτιμα μέταλλα), τα οποία μπορούν να ανακτηθούν με οικονομικό τρόπο. Ενώ το δυναμικό της γεωθερμικής ενέργειας σε όλο τον κόσμο (αλλά και στην Ελλάδα) είναι σημαντικό, υπάρχουν αρκετοί περιορισμοί στο να χρησιμοποιηθεί αποτελεσματικά αυτό το δυναμικό. Οι τύποι των περιορισμών φύσεως (εκπομπές τοξικών αερίων, θερμική ρύπανση) και οικονομικής φύσεως. Οι οικονομικοί περιορισμοί παίζουν σπουδαίο ρόλο σε κάθε είναι τεχνικής φύσεως (διάβρωση, δημιουργία επικαθίσεων), περιβαλλοντικής προσπάθεια αξιοποίησης της γεωθερμικής ενέργειας. 7

Μπορεί να λεχθεί ότι η χώρα μας είναι ιδιαίτερα ευνοημένη γεωθερμικά και τα τελευταία 30 χρόνια έχει γίνει (κυρίως από το IΓME) συστηματική βασική έρευνα για τον εντοπισμό και χαρακτηρισμό των γεωθερμικών πεδίων. Η Ελλάδα μαζί με την Ιταλία (και την Πορτογαλία στις Αζόρες Νήσους) είναι οι μόνες χώρες της Ευρωπαϊκής Ένωσης στις οποίες υπάρχουν πεδία υψηλής ενθαλπίας, δηλαδή περιοχές στις οποίες μπορούν να παραχθούν ρευστά με θερμοκρασία μεγαλύτερη των 150 C, τα οποία χρησιμοποιούνται για παραγωγή ηλεκτρικής ισχύος. Επίσης η χώρα μας διαθέτει πληθώρα περιοχών, κυρίως στην Κεντρική και Βόρεια Ελλάδα, με θερμοκρασίες ταμιευτήρων που ξεπερνούν τους 90 C 1.2. ΣΥΝΤΟΜΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Η παρουσία ηφαιστείων, θερμών πηγών και άλλων επιφανειακών εκδηλώσεων θερμότητας είναι αυτή που οδήγησε τους προγόνους μας στο συμπέρασμα ότι το εσωτερικό της γης είναι ζεστό. Όμως, μόνο κατά την περίοδο μεταξύ του 16ου και 17ου αιώνα, όταν δηλαδή κατασκευάστηκαν τα πρώτα μεταλλεία που ανορύχθηκαν σε βάθος μερικών εκατοντάδων μέτρων κάτω από την επιφάνεια του εδάφους, οι άνθρωποι, με τη βοήθεια κάποιων απλών φυσικών παρατηρήσεων, κατέληξαν στο συμπέρασμα ότι η θερμοκρασία της γης αυξάνεται με το βάθος. Οι πρώτες μετρήσεις με θερμόμετρο έγιναν κατά πάσα πιθανότητα το 1740, σε ένα ορυχείο κοντά στο Belfort της Γαλλίας (Bullard, 1965). Ήδη από το 1870, για τη μελέτη της θερμικής κατάστασης του εσωτερικού της γης χρησιμοποιούνταν κάποιες προχωρημένες για την εποχή επιστημονικές μέθοδοι, ενώ η θερμική κατάσταση που διέπει τη γη, η θερμική ισορροπία και εξέλιξή της κατανοήθηκαν καλύτερα τον 20ο αιώνα, με την ανακάλυψη του ρόλου της «ραδιενεργής θερμότητας». Πράγματι, σε όλα τα σύγχρονα πρότυπα (μοντέλα) της θερμικής κατάστασης του εσωτερικού της γης πρέπει να συμπεριλαμβάνεται η θερμότητα που συνεχώς παράγεται από τη διάσπαση των μακράς διάρκειας ζωής ραδιενεργών 8

ισοτόπων του ουρανίου (U238, U235), του θορίου (Th232) και του καλίου (Κ40), τα οποία βρίσκονται στο εσωτερικό της γης (Lubimova, 1968). Εκτός από τη ραδιενεργό θερμότητα, δρουν αθροιστικά, σε απροσδιόριστες όμως ποσότητες, και άλλες δυνητικές πηγές θερμότητας, όπως είναι η «αρχέγονη ενέργεια» από την εποχή δημιουργίας και μεγέθυνσης του πλανήτη. Μέχρι τη δεκαετία του 1980 τα μοντέλα αυτά δεν βασίζονταν σε κάποιες ρεαλιστικές θεωρίες. Τότε όμως αποδείχθηκε ότι αφενός δεν υπάρχει ισοζύγιο μεταξύ της ραδιενεργής θερμότητας που δημιουργείται στο εσωτερικό της γης και της θερμότητας που διαφεύγει από τη γη προς στο διάστημα, και αφετέρου ότι ο πλανήτης μας ψύχεται με αργό ρυθμό και στο εσωτερικό του. Ως μια γενική ιδέα της φύσης και της κλίμακας του εμπλεκόμενου φαινομένου, μπορεί να αναφερθεί η λεγόμενη «θερμική ισορροπία», όπως διατυπώθηκε από τους Stacey and Loper (1988). Σύμφωνα με αυτήν, η ολική ροή θερμότητας από τη γη (αγωγή, συναγωγή και ακτινοβολία) εκτιμάται ότι ανέρχεται στα 42x1012 W. Από αυτά, 8x1012 W προέρχονται από το φλοιό, που αντιπροσωπεύει μόνο το 2% του συνολικού όγκου της γης αλλά είναι πλούσιος σε ραδιενεργά ισότοπα, 32,3x1012 W προέρχονται από το μανδύα, ο οποίος αντιπροσωπεύει το 82% του συνολικού όγκου της γης, και 1,7x1012 W προέρχονται από τον πυρήνα, ο οποίος αντιπροσωπεύει το 16% του συνολικού όγκου της γης και δεν περιέχει ραδιενεργά ισότοπα (βλέπε Σχήμα 1, ένα σχήμα της εσωτερικής δομής της γης). Αφού η ραδιενεργή θερμότητα του μανδύα εκτιμάται σε 22x1012 W, η μείωση της θερμότητας στο συγκεκριμένο τμήμα της γης είναι 10,3x1012 W. Σύμφωνα με πιο πρόσφατες εκτιμήσεις και υπολογισμούς, που βασίζονται σε μεγαλύτερο αριθμό δεδομένων, η ολική θερμική ροή της γης είναι περίπου 6% υψηλότερη από τις τιμές που χρησιμοποίησαν οι Stacey and Loper το 1988. Ούτως ή άλλως όμως, η διαδικασία δροσισμού παραμένει αργή. Η θερμοκρασία του μανδύα δεν έχει μειωθεί περισσότερο από 300-350 C τα τελευταία 3 δισεκατομμύρια χρόνια, παραμένοντας περίπου στους 4000 C 9

στη βάση του. Έχει υπολογιστεί ότι το συνολικό θερμικό περιεχόμενο της γης (για θερμοκρασίες πάνω από τη μέση επιφανειακή των 15 C) είναι της τάξης των 12,6x1024 MJ και του φλοιού 5,4x1021 MJ. Σχήμα 1 - Ο Φλοιός, ο Μανδύας και ο Πυρήνας της γης. Πάνω δεξιά: τομή του φλοιού και του ανώτερου μανδύα Σε πολλούς τομείς της ανθρώπινης ζωής οι πρακτικές εφαρμογές προηγούνται της επιστημονικής έρευνας και της τεχνολογικής ανάπτυξης. Η γεωθερμία αποτελεί χαρακτηριστικό παράδειγμα του φαινομένου αυτού. Αξιοποίηση του ενεργειακού περιεχόμενου των γεωθερμικών ρευστών γινόταν ήδη από τις αρχές του 19ου αιώνα. Εκείνη την περίοδο, στην Τοσκάνη της Ιταλίας, και συγκεκριμένα στην περιοχή του Larderello, λειτουργούσε μια χημική βιομηχανία για την παραγωγή βορικού οξέος από τα βοριούχα θερμά νερά που ανέβλυζαν από φυσικές πηγές ή αντλούνταν από ρηχές γεωτρήσεις. Η παραγωγή του βορικού οξέος γινόταν με εξάτμιση των βοριούχων νερών μέσα 10

σε σιδερένιους «λέβητες», χρησιμοποιώντας ως καύσιμη ύλη ξύλα από τα κοντινά δάση. Το 1827, ο Francesco Larderel, ιδρυτής της βιομηχανίας αυτής, αντί να καίγονται ξύλα από τα διαρκώς αποψιλούμενα δάση της περιοχής, ανέπτυξε ένα σύστημα για τη χρήση της θερμότητας των βοριούχων ρευστών στη διαδικασία εξάτμισης (Σχήμα 2). Εικόνα 1 - Η καλυμμένη «λιμνούλα» (covered lagoon), που χρησιμοποιούνταν κατά το πρώτο μισό του 19ου αιώνα στην περιοχή του Larderello, για τη συλλογή των βοριούχων υδάτων και την παραγωγή βορικού οξέος. Η εκμετάλλευση της μηχανικής ενέργειας του φυσικού ατμού ξεκίνησε περίπου την ίδια περίοδο. Ο γεωθερμικός ατμός χρησιμοποιήθηκε για την ανέλκυση των ρευστών, αρχικά με κάποιους πρωτόγονους αέριους ανυψωτήρες και στη συνέχεια με παλινδρομικές και φυγοκεντρικές αντλίες και βαρούλκα. Ανάμεσα στο 1850 και 1875, οι εγκαταστάσεις του Larderello κατείχαν το μονοπώλιο παραγωγής βορικού οξέος στην Ευρώπη. Μεταξύ του 1910 και του 1940, στην περιοχή αυτή της Τοσκάνης, ο χαμηλής πίεσης ατμός άρχισε να χρησιμοποιείται για τη θέρμανση βιομηχανικών κτιρίων, κατοικιών και θερμοκηπίων. Εν τω μεταξύ, ολοένα και περισσότερες χώρες άρχισαν να 11

αναπτύσσουν τους γεωθερμικούς τους πόρους σε βιομηχανική κλίμακα. Το 1892, το πρώτο γεωθερμικό σύστημα τηλε-θέρμανσης (district heating) τέθηκε σε λειτουργία στο Boise του Άινταχο των Η.Π.Α.. Το 1928, μια άλλη πρωτοπόρος χώρα στην εκμετάλλευση της γεωθερμικής ενέργειας, η Ισλανδία, ξεκίνησε επίσης την εκμετάλλευση των γεωθερμικών ρευστών (κυρίως θερμών νερών) για τη θέρμανση κατοικιών. Το 1904, έγινε η πρώτη απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό, και πάλι στο Larderello της Ιταλίας (Σχήμα 3). Η επιτυχία της αυτής πειραματικής προσπάθειας έδωσε μια ξεκάθαρη ένδειξη για τη βιομηχανική αξία της γεωθερμικής ενέργειας και σηματοδότησε την έναρξη μιας μορφής εκμετάλλευσης, που επρόκειτο έκτοτε να αναπτυχθεί σημαντικά. Η παραγωγή ηλεκτρικής ενέργειας στο Larderello αποτέλεσε πράγματι μια εμπορική επιτυχία. Το 1942, η εγκατεστημένη γεωθερμοηλεκτρική ισχύς ανερχόταν στα 127.650 kwe. Σύντομα, πολλές χώρες ακολούθησαν το παράδειγμα της Ιταλίας. Το 1919 κατασκευάστηκαν οι πρώτες γεωθερμικές γεωτρήσεις στο Beppu της Ιαπωνίας, ενώ το 1921 ακολούθησαν εκείνες στο The Geysers της Καλιφόρνιας των ΗΠΑ. Το 1958 ένα μικρό εργοστάσιο παραγωγής ηλεκτρικής ενέργειας τέθηκε σε λειτουργία στη Νέα Ζηλανδία, ένα άλλο στο Μεξικό το 1959, στις ΗΠΑ το 1960 και ακολούθησαν πολλά άλλα σε διάφορες χώρες. Εικόνα 2 - Η μηχανή που χρησιμοποιήθηκε στο Larderello το 1904 κατά την πρώτη πειραματική απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό. Διακρίνεται επίσης ο εφευρέτης της, πρίγκιπας Piero Ginori Conti. 12

1.3. ΣΗΜΕΡΙΝΟ ΚΑΘΕΣΤΩΣ ΧΡΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Μετά το 2ο Παγκόσμιο Πόλεμο, η αξιοποίηση της γεωθερμικής ενέργειας έγινε ελκυστική σε πολλές χώρες, επειδή ήταν ανταγωνιστική ως προς άλλες μορφές ενέργειας. Επιπλέον, η ενέργεια αυτή δε χρειαζόταν να εισαχθεί από άλλες χώρες, όπως συμβαίνει με τα ορυκτά καύσιμα ενώ σε πολλές περιπτώσεις αποτελούσε τον μοναδικό διαθέσιμο εγχώριο ενεργειακό πόρο. Η χρησιμοποίηση της γεωθερμικής ενέργειας στις αναπτυσσόμενες χώρες παρουσιάζει ενδιαφέρουσες τάσεις με το χρόνο. Μεταξύ των ετών 1975 και 1979 η εγκατεστημένη γεωθερμική ηλεκτρική ισχύς σ αυτές τις χώρες αυξήθηκε από 75 σε 462 MWe. Στο τέλος της επόμενης πενταετίας (1984) έφτασε στα 1.495 MWe, παρουσιάζοντας ένα ρυθμό αύξησης κατά τη διάρκεια των δύο αυτών περιόδων 500% και 223% αντίστοιχα (Dickson and Fanelli, 1988). Στα επόμενα 16 χρόνια, από το 1984 έως το 2000, υπήρξε μια περαιτέρω αύξηση της τάξης του 150%.Η γεωθερμική ενέργεια συμμετέχει σημαντικά στο ενεργειακό ισοζύγιο αρκετών περιοχών. Για παράδειγμα, το 2001 η ηλεκτρική ενέργεια που παράχθηκε από γεωθερμικούς πόρους αντιπροσώπευε το 27% της συνολικής ηλεκτρικής ενέργειας στις Φιλιππίνες, το 12,4 % στην Κένυα, το 11,4% στην Κόστα Ρίκα και το 4,3% στο Ελ Σαλβαδόρ. Η πιο συνηθισμένη μη-ηλεκτρική χρήση της γεωθερμίας παγκόσμια είναι οι αντλίες θερμότητας (heat-pumps) (34,80%) και ακολουθούν η λουτροθεραπεία (26,2%), η θέρμανση χώρων (21,62%), η θέρμανση θερμοκηπίων (8,22%), οι υδατοκαλλιέργειες (3.93%) και οι βιομηχανικές χρήσεις (3,13%) (Lund and Freeston, 2001). Η πιο συνηθισμένη μη-ηλεκτρική χρήση της γεωθερμίας παγκόσμια είναι οι αντλίες θερμότητας (heat-pumps) (34,80%) και ακολουθούν η λουτροθεραπεία (26,2%), η θέρμανση χώρων (21,62%), η θέρμανση θερμοκηπίων (8,22%), οι 13

υδατοκαλλιέργειες (3.93%) και οι βιομηχανικές χρήσεις (3,13%) (Lund and Freeston, 2001). 1.4. ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τα γεωθερμικά συστήματα μπορούν να ταξινομηθούν με διάφορα κριτήρια, όπως είναι το είδος των γεωθερμικών πόρων, ο τύπος και η θερμοκρασία των ρευστών, ο τύπος του πετρώματος που φιλοξενεί τα ρευστά, το είδος της εστίας θερμότητας, αν κυκλοφορούν ή όχι ρευστά στον ταμιευτήρα κ.ά. Σε σχέση με το είδος των γεωθερμικών πόρων διακρίνονται πέντε κατηγορίες συστημάτων (Σχήμα 1), που περιγράφονται συνοπτικά ως εξής: Γεωθερμική Ενέργεια Υδροθερμική Ενέργεια Αβαθής Γεωθερμία Προχωρημένα συστήματα Γεωπεπιεσμένη ενέργεια Ενέργεια μάγματος Γράφημα 1 - Μορφές γεωθερμικής ενέργειας κατά σειρά ενδιαφέροντος χρήσεων σήμερα και προοπτικής στο εγγύς μέλος, από αριστερά προς τα δεξιά. α) Τα υδροθερμικά συστήματα ή πόροι, δηλ. τα φυσικά υπόγεια θερμά ρευστά που βρίσκονται σε έναν ή περισσότερους ταμιευτήρες, θερμαίνονται από μία εστία θερμότητας και συχνά εμφανίζονται στην επιφάνεια της γης με τη μορφή θερμών εκδηλώσεων. Τα συστήματα αυτά συχνά ταυτίζονται με το σύνολο σχεδόν των γεωθερμικών πεδίων, αφού σήμερα ουσιαστικά είναι τα μόνα συστήματα που αξιοποιούνται. 14

β) Αβαθής γεωθερμία (earth energy), κατά την οποία λαμβάνονται (ή και απορρίπτονται) ποσότητες ενέργειας από μικρά βάθη με την ανακυκλοφορία νερού στα πρώτα 100 m από την επιφάνεια της γης ή με την κυκλοφορία υπόγειων νερών ή νερών από λίμνες, ποτάμια και τη θάλασσα. Αποτελεί την ταχύτερα αναπτυσσόμενη μορφή της γεωθερμικής ενέργειας. γ) Τα προχωρημένα γεωθερμικά συστήματα (enhanced geothermal systems) αναφέρονται στα θερμά πετρώματα σε βάθος από 2 μέχρι 10 km, από τα οποία μπορεί να ανακτηθεί ενέργεια χρησιμοποιώντας νερό που διοχετεύεται από την επιφάνεια, μέσω κατάλληλων γεωτρήσεων, και ανακτάται αρκετά θερμότερο με τη μορφή νερού ή ατμού μέσω άλλων γεωτρήσεων (Σχήμα 2). δ) Τα γεωπεπιεσμένα συστήματα (geopressured systems) αποτελούνται από ρευστά εγκλεισμένα σε μεγάλο βάθος, βρίσκονται περιορισμένα από μη περατά πετρώματα και η πίεσή u964 τους υπερβαίνει την υδροστατική. 1.5. Η ΘΕΡΜΙΚΗ ΜΗΧΑΝΗ ΤΗΣ ΓΗΣ Η γεωθερμική βαθμίδα ορίζεται ως ο ρυθμός αύξησης της θερμοκρασίας της γης σε συνάρτηση με το βάθος, μέσα στο γήινο φλοιό. Σε βάθη που είναι προσβάσιμα με τις σύγχρονες γεωτρητικές μεθόδους, δηλαδή μέχρι τα 10.000 m, η μέση γεωθερμική βαθμίδα κυμαίνεται περίπου στους 2,5-3 C/100 m. Για παράδειγμα, εάν η θερμοκρασία στα πρώτα μέτρα κάτω από την επιφάνεια του εδάφους ανταποκρίνεται κατά μέσο όρο στη μέση ετήσια θερμοκρασία του ατμοσφαιρικού αέρα, δηλ. στους 15 C, τότε μπορούμε να υποθέσουμε ότι η θερμοκρασία στο βάθος των 2000 m θα είναι περίπου 65-75 C, στα 3000 m 90-105 C, κ.ο.κ. για μερικά ακόμα χιλιάδες μέτρα. Παρόλα αυτά, υπάρχουν πολλές περιοχές στις οποίες η γεωθερμική βαθμίδα αποκλίνει πολύ από τη μέση τιμή. Εκεί όπου το γεωλογικό υπόβαθρο έχει υποστεί πολύ γρήγορη βύθιση και η λεκάνη έχει πληρωθεί με γεωλογικά «πολύ νέα» ιζήματα, η γεωθερμική βαθμίδα μπορεί να είναι μικρότερη και από 1 C/100 m. Αντίθετα, σε μερικές «γεωθερμικές» καλούμενες περιοχές, η τιμή της γεωθερμικής βαθμίδας μπορεί να είναι και δεκαπλάσια της μέσης γήινης. 15

Σχήμα 2 - Σχηματική τομή που δείχνει τις διεργασίες που λαμβάνουν χώρα στις τεκτονικές πλάκες. Λόγω της θερμοκρασιακής διαφοράς ανάμεσα στα διάφορα στρώματα, προκαλείται ροή θερμότητας από τις βαθιές και θερμές ζώνες του υπεδάφους προς τις ρηχές και ψυχρότερες, τείνοντας έτσι στη δημιουργία ομοιόμορφων συνθηκών. Στην πραγματικότητα όμως, όπως πολύ συχνά συμβαίνει στη φύση, κάτι τέτοιο ουδέποτε επιτυγχάνεται πλήρως. Η μέση γήινη ροή θερμότητας στις ηπείρους και τους ωκεανούς είναι 65 και 101 mw/m2 αντίστοιχα, οι οποίες, υπολογίζοντας την έκταση των περιοχών, δίνουν ένα παγκόσμιο μέσο όρο της τάξης των 87 mw/. Οι τιμές αυτές προέκυψαν μετά από 24.774 μετρήσεις σε 20.201 θέσεις, που καλύπτουν το 62% περίπου της γήινης επιφάνειας. Υπάρχουν βέβαια και κάποιοι εμπειρικοί υπολογισμοί που αναφέρονται σε γεωλογικές χαρτογραφικές μονάδες και επιτρέπουν την εκτίμηση της θερμικής ροής χωρίς να προηγηθούν μετρήσεις 16

Σχήμα 3 - Τεκτονικές πλάκες, μεσωκεάνιες ράχες, ωκεάνιες τάφροι, ζώνες καταβύθισης και γεωθερμικά πεδία. Τα βέλη δείχνουν την κατεύθυνση κίνησης των λιθοσφαιρικών πλακών προς τις ζώνες καταβύθισης. 1. Γεωθερμικά πεδία όπου παράγεται ηλεκτρική ενέργεια 2. Μεσωκεάνιες ράχεις που τέμνονται από μεγάλα ρήγματα μετασχηματισμού 3. Ζώνες καταβύθισης, όπου η βυθιζόμενη πλάκα κάμπτεται προς τα κάτω και λιώνει μέσα στην ασθενόσφαιρα. Η θερμοκρασία αυξάνεται με το βάθος, και τα ηφαίστεια, οι θερμοπίδακες, οι θερμές πηγές κλπ, αποτελούν κατά μία έννοια την ορατή εκδήλωση της θερμότητας του εσωτερικού της γης. Η θερμότητα αυτή όμως προκαλεί και τη δημιουργία άλλων φαινομένων, που είναι λιγότερο διακριτά από τον άνθρωπο, τέτοιου μεγέθους όμως ώστε η ύπαρξή τους να οδηγεί στην παρομοίωση της γης με μια τεράστια «θερμική μηχανή». Τα φαινόμενα αυτά αναφέρονται συνοπτικά στη «θεωρία των τεκτονικών πλακών». 17

1.6. ΣΤΑΔΙΑ ΓΕΩΘΕΡΜΙΚΗΣ ΈΡΕΥΝΑΣ Η αναζήτηση των γεωθερμικών περιοχών με ρευστά που να σχηματίζουν ένα εκμεταλλεύσιμο κοίτασμα, γίνεται με κατάλληλη γεωθερμική έρευνα, η οποία πραγματοποιείται κυρίως στην επιφάνεια με τις μικρότερες κατά το δυνατόν δαπάνες. Αν η επιφανειακή έρευνα δείξει θετικά αποτελέσματα ακολουθεί ανόρυξη ερευνητικών και κατόπιν παραγωγικών γεωτρήσεων, οι οποίες στις περισσότερες περιπτώσεις είναι ιδιαίτερα δαπανηρές. Η γεωθερμική έρευνα διακρίνεται σε τέσσερα κύρια τυποποιημένα (ή τυπικά) στάδια: 1) Γενική επισκόπηση μεγάλης κλίμακας. Χρήση όσο το δυνατόν περισσότερων στοιχείων (γεωλογικοί και τεκτονικοί χάρτες, αεροφωτογραφίες, βιβλιογραφική ανασκόπηση, αναγνωριστικές επισκέψεις, θερμομετρήσεις, δειγματοληψίες-αναλύσεις νερών κτλ.) για την στην επιλογή και υπόδειξη των περιοχών με τις ευνοϊκότερες συνθήκες. 2) Λεπτομερής και συστηματική έρευνα των πιθανότερων γεωθερμικών περιοχών. Ερευνώνται με λεπτομέρεια εκείνοι οι παράγοντες (γεωλογικοί, τεκτονικοί, ηφαιστειολογικοί, στρωματογραφικοί, λιθολογικοί, υδρογεωλογικοί, γεωχημικοί, γεωφυσικοί, θερμοδυναμικοί κτλ.) που μπορούν να χαρακτηρίσουν μια γεωθερμική περιοχή. Τελικός στόχος του σταδίου αυτού είναι ο προσδιορισμός του γεωθερμικού μοντέλου κάθε γεωθερμικού κοιτάσματος και η γνώση της θέσης και κατάστασης στην οποία βρίσκονται τα γεωθερμικά ρευστά ή θερμά πετρώματα. Συγχρόνως προτείνεται η σειρά, το βάθος και τα χαρακτηριστικά των ερευνητικών-παραγωγικών γεωτρήσεων. 3) Εντοπισμός-περιχάραξη των γεωθερμικών πεδίων και μελέτη των χαρακτηριστικών. Το στάδιο αυτό καταλήγει στον προσδιορισμό των πιθανότερων γεωθερμικών περιοχών και των θέσεων στις οποίες προτείνεται η εκτέλεση των πρώτων βαθιών γεωτρήσεων έρευνας και παραγωγής. Στη συνέχεια καταρτίζεται το λεπτομερές πρόγραμμα γεωτρήσεων. 18

Οι γεωθερμικές γεωτρήσεις διακρίνονται, αναφορικά με το σκοπό της ανόρυξής τους, σε ερευνητικές, παραγωγικές ή επανεισαγωγής, και σε σχέση με την ενθαλπία των ρευστών, σε χαμηλής, μέσης ή υψηλής ενθαλπίας. 4) Ανάπτυξη και διαχείριση των γεωθερμικών πεδίων. Αναφέρεται στα σπουδαιότερα προβλήματα διαχείρισης και λειτουργίας ενός γεωθερμικού πεδίου. Τα παραπάνω τυποποιημένα (ή τυπικά) στάδια ισχύουν σε όλες τις περιπτώσεις της γεωθερμικής έρευνας, αν και οι επί μέρους γεωλογικές συνθήκες καθορίζουν την ξεχωριστή διάρθρωση και ανάπτυξη του κάθε σταδίου. Μπορεί να αλλάζει η λεπτομερής διάρθρωση και η ανάπτυξη των επί μέρους σταδίων, γενικά όμως οι εργασίες ακολουθούν την προαναφερθείσα τυπική σειρά. Σε κάθε φάση απαιτείται υποχρεωτικά η συνεργασία και ο συντονισμός των διαφόρων επιστημόνων και τεχνικών που εμπλέκονται στην όλη έρευνα. 1.7. ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΔΥΝΑΜΙΚΟΥ Πρωταρχικός σκοπός ενός προγράμματος έρευνας και αποτίμησης σε μία γεωθερμική περιοχή είναι να προσδιορίσει ταχύτατα, αξιόπιστα και με το λιγότερο δυνατό κόστος τα χαρακτηριστικά των γεωθερμικών ρευστών και την ικανότητα του πεδίου για την παραγωγή αξιοποιήσιμων ποσοτήτων ρευστών. Η γεωχημεία παίζει σημαντικό ρόλο στην γεωθερμική έρευνα και αναζήτηση, αφού μπορεί να απαντήσει σε μεγάλο αριθμό ερωτημάτων με τη μελέτη του χημισμού των γεωθερμικών ρευστών και των πετρωμάτων του ταμιευτήρα. Η γεωθερμική έρευνα περιλαμβάνει τη συλλογή δειγμάτων και την ανάλυση των γεωθερμικών ρευστών από φυσικές εκδηλώσεις και από γεωτρήσεις της περιοχής που ερευνάται. Τα γεωχημικά δεδομένα που συγκεντρώνονται βοηθούν στον εντοπισμό του γεωθερμικού συστήματος, στην εκτίμηση της θερμοκρασίας του ταμιευτήρα, στον προσδιορισμό του χημικού χαρακτήρα των ρευστών και του μηχανισμού 19

τροφοδοσίας του πεδίου, στην εκτίμηση του πιθανού αξιοποιήσιμου δυναμικού κ.α. Οι γεωχημικές μέθοδοι που εφαρμόζονται στα διάφορα στάδια της έρευνας είναι απολύτως απαραίτητες, προτού χρησιμοποιηθούν περισσότερο δαπανηρές μέθοδοι, όπως οι γεωφυσικές και ή ανόρυξη ερευνητικών γεωτρήσεων. Αν και δεν υπάρχει κάποια γενικά αποδεκτή ταξινόμηση των γεωθερμικών νερών, συχνά τα γεωθερμικά νερά διαχωρίζονται σε σχέση με το κυρίαρχο ανιόν, όπως παρουσιάζεται στον Πίνακα 1 (Henley et al, 1984). Στα γεωθερμικά συστήματα νερού ο συνηθέστερος τύπος που συναντάται σε κάποιο βάθος είναι τα χλωριούχα νερά, με συγκεντρώσεις που φτάνουν τα 10000 mg/l (Ellis & Mahon, 1977). Σπανιότερα, η συγκέντρωση των χλωριόντων μπορεί να υπερβεί και τα 120000 mg/l. Οι δύο κυριότερες φυσικοχημικές παράμετροι που χρησιμοποιούνται για το χαρακτηρισμό ενός γεωθερμικού νερού είναι η περιεκτικότητά του σε άλατα (Total dissolved solids-tds) και το ph. Συνήθως, τα γεωθερμικά ρευστά χαμηλής θερμοκρασίας έχουν μικρότερο TDS από ότι τα ρευστά σε υψηλή θερμοκρασία, αν και υπάρχουν εξαιρέσεις αυτού του κανόνα. Οι τιμές του TDS των γεωθερμικών ρευστών κυμαίνονται από λίγες δεκάδες μέχρι και εκατοντάδες χιλιάδες mg/l. 20

Το μέγεθος της αλατότητας ενός νερού προσεγγίζεται στο ύπαιθρο με τη μέτρηση της ηλεκτρικής αγωγιμότητας του νερού Πίνακας 1 - Σύνοψη των διαφόρων τύπων νερού στα γεωθερμικά συστήματα. Τύπος νερού Περιοχή ph Κύρια ιόντα Υπόγεια 6 7,5 Λίγα Πλούσια σε χλωριόντα 4 9 Πλούσιο σε ανθρακικά 7 8,5 Πλούσιο σε θειικά ιόντα 1 3 Πλούσιο σε θειικά - χλωριόντα 1 5 Πλούσιο σε όξινα ανθρακικά 5 7 Αραιά χλωριούχα 6,5 7,5 1.8. ΓΕΩΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Τα γεωθερμικά συστήματα εντοπίζονται στις περιοχές με κανονική ή λίγο μεγαλύτερη από τη μέση γήινη γεωθερμική βαθμίδα, και κυρίως στις περιοχές γύρω από τα περιθώρια των τεκτονικών πλακών, όπου η βαθμίδα μπορεί να είναι σημαντικά υψηλότερη της μέσης τιμής. Στην πρώτη περίπτωση, τα γεωθερμικά συστήματα χαρακτηρίζονται από χαμηλές θερμοκρασίες, που συνήθως δεν ξεπερνούν τους 100ºC σε οικονομικά και προσβάσιμα βάθη. Στη δεύτερη περίπτωση, οι θερμοκρασίες μπορεί να καλύπτουν ένα ευρύ φάσμα, από σχετικά χαμηλές τιμές μέχρι και μεγαλύτερες από 400ºC. Τι είναι όμως ένα «γεωθερμικό σύστημα» και τι συμβαίνει μέσα σε αυτό; Σχηματικά μπορεί να περιγραφεί ως «ένα σύστημα» που βρίσκεται σε περιορισμένο χώρο στον ανώτερο φλοιό της γης και αποτελείται από «κινούμενο νερό» το οποίο μεταφέρει θερμότητα από μια «πηγή» σε μια «δεξαμενή» θερμότητας, που συνήθως είναι μια ελεύθερη επιφάνεια (Hochstein, 1990). Έτσι λοιπόν, ένα γεωθερμικό σύστημα αποτελείται από 21

τρία στοιχεία: την εστία θερμότητας, τον ταμιευτήρα και το ρευστό, το οποίο λειτουργεί ως μέσο μεταφοράς της θερμότητας. Η εστία θερμότητας μπορεί να είναι είτε μια πολύ υψηλής (>600ºC) θερμοκρασίας μαγματική διείσδυση που έχει φτάσει σε σχετικά μικρά βάθη (5-10 km) ή, στα χαμηλής θερμοκρασίας συστήματα, η κανονική θερμοκρασία των πετρωμάτων του εσωτερικού της γης, η οποία όπως αναφέρθηκε αυξάνεται με το βάθος. Ο ταμιευτήρας είναι ένας σχηματισμός από θερμά υδατοπερατά πετρώματα, που επιτρέπει την κυκλοφορία των ρευστών μέσα σε αυτόν και από τον οποίο τα ρευστά αντλούν θερμότητα. Πάνω από τον ταμιευτήρα βρίσκεται συνήθως ένα κάλυμμα αδιαπέρατων πετρωμάτων. Ο ταμιευτήρας πολλές φορές συνδέεται με μια επιφανειακή περιοχή τροφοδοσίας, δια μέσου της οποίας μετεωρικό ή επιφανειακό γενικά νερό κατεβαίνει και αντικαθιστά μερικώς ή ολικώς τα ρευστά που φεύγουν από τον ταμιευτήρα και εξέρχονται στην επιφάνεια με τη μορφή θερμών πηγών ή αντλούνται από γεωτρήσεις. Το γεωθερμικό ρευστό συνήθως είναι νερό, στις περισσότερες περιπτώσεις μετεωρικής προέλευσης, το οποίο, ανάλογα με τις συνθήκες πίεσης και θερμοκρασίας που επικρατούν στον ταμιευτήρα, βρίσκεται σε υγρή ή αέρια κατάσταση. Συχνά το ρευστό είναι εμπλουτισμένο σε χημικά στοιχεία και αέρια, όπως CO2, H2S, κλπ. Στο Σχήμα αποτυπώνεται σε πολύ απλουστευμένη μορφή ένα πρότυπο γεωθερμικό σύστημα. Ο μηχανισμός που διέπει τη λειτουργία των γεωθερμικών συστημάτων εν γένει ελέγχεται από τη μεταφορά θερμότητας μέσω της (συναγωγής/κυκλοφορίας) των ρευστών (fluid convection). Στο Σχήμα 2 παριστάνεται σχηματικά ο μηχανισμός στην περίπτωση ενός υδροθερμικού συστήματος ενδιάμεσης θερμοκρασίας. Η θερμική συναγωγή λαμβάνει χώρα λόγω της θέρμανσης και, κατ επέκταση, της θερμικής διαστολής των ρευστών σε ένα πεδίο βαρύτητας. Η ενέργεια που προκαλεί το συγκεκριμένο φαινόμενο είναι ουσιαστικά η θερμότητα που προσφέρεται από την εστία στη βάση του συστήματος κυκλοφορίας. Η πυκνότητα των ρευστών που θερμαίνονται μειώνεται, οπότε αυτά παρουσιάζουν τάσεις ανόδου προς μικρότερα βάθη, ενώ αντικαθίστανται 22

στη συνέχεια από ρευστά μικρότερης θερμοκρασίας και μεγαλύτερης πυκνότητας, που προέρχονται από τα περιθώρια του γεωθερμικού συστήματος. Λόγω της θερμικής συναγωγής προκαλείται λοιπόν θερμοκρασιακή αύξηση στο ανώτερο τμήμα του γεωθερμικού συστήματος, καθώς οι θερμοκρασίες στα κατώτερα τμήματα μειώνονται (White, 1973) Σχήμα 4 - Σχηματική αναπαράσταση ενός ιδανικού γεωθερμικού συστήματος 23

Σχήμα 5 - Πρότυπο (μοντέλο) ενός γεωθερμικού συστήματος Η γραμμή (1) είναι η καμπύλη αναφοράς του σημείου ζέσεως του καθαρού νερού. Η καμπύλη (2) δείχνει τη θερμοκρασιακή κατανομή κατά μήκος μια τυπικής διαδρομής κυκλοφορίας του ρευστού από το σημείο Α (τροφοδο Οι διεργασίες που μόλις περιγράφηκαν πιθανώς να φαίνονται πολύ απλές, όμως η κατασκευή ενός καλού προτύπου (μοντέλου), το οποίο να αντιστοιχεί σε ένα πραγματικό γεωθερμικό σύστημα, είναι πολύ δύσκολο να πραγματοποιηθεί. Μια τέτοια εργασία απαιτεί πολύπλευρες ικανότητες, ειδικές γνώσεις και μεγάλη εμπειρία, ιδιαίτερα όταν αφορά συστήματα υψηλής θερμοκρασίας. Εξάλλου, τα γεωθερμικά συστήματα εμφανίζονται στη φύση με πάρα πολλές ιδιαιτερότητες και ιδιομορφίες, οι οποίες σχετίζονται με διάφορους συνδυασμούς γεωλογικών, φυσικών και χημικών χαρακτηριστικών που μπορεί να οδηγήσουν σε διάφορους τύπους συστημάτων. Από τα τρία στοιχεία ενός γεωθερμικού συστήματος, η εστία θερμότητας είναι το μόνο που απαραιτήτως πρέπει να έχει φυσική προέλευση. Εάν οι συνθήκες είναι ευνοϊκές, τα άλλα δύο στοιχεία μπορεί να είναι και «τεχνητά». Για παράδειγμα, τα γεωθερμικά ρευστά που αντλούνται από τον ταμιευτήρα και χρησιμοποιούνται ως η κινητήρια δύναμη ενός γεωθερμικού ατμοστρόβιλου για την παραγωγή ηλεκτρικής ενέργειας, μπορούν μετά την ενεργειακή εκμετάλλευσή τους να επανεισαχθούν στον ταμιευτήρα μέσω συγκεκριμένων 24

γεωτρήσεων επανεισαγωγής (injection wells). Έτσι λοιπόν, η φυσική τροφοδοσία ενός ταμιευτήρα μπορεί να συνοδευθεί και να συμπληρωθεί από μια τεχνητή επανατροφοδοσία. Εδώ και αρκετά χρόνια, η τεχνική επανεισαγωγής των ρευστών στον ταμιευτήρα εφαρμόζεται σε πολλές περιοχές του κόσμου, ως ένα μέσο δραστικής μείωσης των περιβαλλοντικών επιπτώσεων από τη λειτουργία των γεωθερμικών εγκαταστάσεων. Η χρήση των γεωτρήσεων επανεισαγωγής για τεχνητή επανατροφοδοσία μπορεί επίσης να βοηθήσει στην ανανέωση και συντήρηση κάποιων «παλιών» ή «εξαντλημένων» γεωθερμικών πεδίων. Ως παράδειγμα αναφέρεται η περίπτωση του γεωθερμικού πεδίου «The Geysers» της Καλιφόρνιας (ΗΠΑ), ενός από τα μεγαλύτερα γεωθερμικά πεδία στον κόσμο, όπου παρατηρήθηκε δραστική μείωση της παραγωγής στα τέλη της δεκαετίας του 1980, λόγω ακριβώς της έλλειψης ρευστών στον ταμιευτήρα. Το 1997 ξεκίνησε ένα πρόγραμμα, το Southeast Geysers Effluent Recycling Project, που αποσκοπούσε στη μεταφορά επεξεργασμένων αστικών αποβλήτων στο γεωθερμικό πεδίο από μια απόσταση 48 km. Το πρόγραμμα αυτό οδήγησε στην επαναλειτουργία αρκετών εργοστασίων παραγωγής ηλεκτρικής ενέργειας, τα οποία είχαν εγκαταλειφθεί εξαιτίας της έλλειψης ρευστών. Σε άλλη περίπτωση, και στα πλαίσια του Santa Rosa Geysers Recharge Project, 41,5 εκατομμύρια λίτρα επεξεργασμένων αστικών αποβλήτων θα αντλούνται κάθε μέρα από τους τοπικούς σταθμούς επεξεργασίας της Santa Rosa και άλλων γειτονικών πόλεων και θα μεταφέρονται μέσω ενός δικτύου σωληνώσεων συνολικού μήκους 66 km στο γεωθερμικό πεδίο «The Geysers», όπου θα χρησιμοποιηθούν για την επανατροφοδοσία του ταμιευτήρα διαμέσου ειδικά διατρηθέντων γεωτρήσεων. Στα Προγράμματα των αποκαλούμενων Θερμών Ξηρών Πετρωμάτων (Hot Dry Rocks), για τα οποία έγιναν για πρώτη φορά πειραματικές δοκιμές το 1970 στο Los Alamos του Νέου Μεξικού (ΗΠΑ), τόσο τα ρευστά όσο και ο ταμιευτήρας είναι τεχνητά. Στην περίπτωση λοιπόν των HDR γίνεται, μέσω ειδικών γεωτρήσεων, τεχνητή εισαγωγή νερού με μεγάλη πίεση σε ένα θερμό 25

και συμπαγές πέτρωμα, το οποίο βρίσκεται σε μεγάλο βάθος. Η εισπίεση αυτή προκαλεί στο πέτρωμα «υδραυλική διάρρηξη». Το νερό διαπερνά τις τεχνητές διαρρήξεις και λόγω της επαφής του με μεγάλες επιφάνειες θερμού πετρώματος αντλεί θερμότητα από αυτόν τον μεγάλο σε όγκο σχηματισμό, ο οποίος λειτουργεί ως ένας φυσικός ταμιευτήρας. Στη συνέχεια, ο «ταμιευτήρας» διαπερνάται από μια δεύτερη γεώτρηση, μέσα από την οποία αντλείται το νερό που θερμάνθηκε. Έτσι λοιπόν, το συγκεκριμένο γεωθερμικό σύστημα αποτελείται (i) από τη γεώτρηση που χρησιμοποιείται για την υδραυλική διάρρηξη, μέσω της οποίας εισπιέζεται κρύο νερό στον (ii) τεχνητό ταμιευτήρα και (iii) από τη γεώτρηση άντλησης του θερμού νερού. Όλο αυτό το σύστημα, μαζί με τις εγκαταστάσεις στην επιφάνεια, σχηματίζουν ένα κλειστό κύκλωμα (loop) (Garnish, 1987) (βλέπε Σχήμα 3). To ερευνητικό Πρόγραμμα του Los Alamos αποτέλεσε πρόδρομο για άλλες παρόμοιες εφαρμογές στην Αυστραλία, Γαλλία, Γερμανία, Ιαπωνία και Μεγ. Βρετανία. Μετά από μια περίοδο όπου κανείς δεν τις έδινε σημασία, οι εφαρμογές αυτές απέκτησαν νέα ώθηση, λόγω της ανακάλυψης σε πρώτη φάση ότι τα βαθιά πετρώματα έχουν ήδη κάποιες περιορισμένες φυσικές διαρρήξεις και στη συνέχεια ότι οι τεχνικές και η μεθοδολογία που πρέπει να χρησιμοποιηθεί εξαρτώνται κατά πολύ από τις τοπικές γεωλογικές συνθήκες. Οι πιο εξελιγμένες επιστημονικά και τεχνολογικά έρευνες στον τομέα των Θερμών Ξηρών Πετρωμάτων πραγματοποιήθηκαν στην Ιαπωνία και στο Ευρωπαϊκό Πρόγραμμα της Αλσατίας (Γαλλία). Πολλά προγράμματα που ξεκίνησαν στην Ιαπωνία τη δεκαετία του 1980 (στις περιοχές Hijiori, Ogachi και Yunomori), είχαν σημαντική χρηματοδότηση από την Ιαπωνική κυβέρνηση και τη βιομηχανία και κατέληξαν σε ενδιαφέροντα αποτελέσματα, τόσο από επιστημονική όσο και από βιομηχανική άποψη. 26

Σχήμα 6 - Σχηματική αναπαράσταση ενός συστήματος Θερμών Ξηρών Πετρωμάτων σε οικονομική κλίμακα (από Richards et al., 1994) 1.9. ΟΡΙΣΜΟI ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ Δεν υπάρχει δυστυχώς κάποια διεθνώς καθιερωμένη ορολογία που να χρησιμοποιείται από το σύνολο της γεωθερμικής κοινότητας, ώστε να διευκολύνεται η αμοιβαία κατανόηση και συνεννόηση. Στη συνέχεια του κεφαλαίου παρατίθενται μερικοί από τους πλέον κοινώς χρησιμοποιούμενους ορισμούς και ταξινομήσεις σχετικά με τη γεωθερμία. Σύμφωνα με τους Muffler & Cataldi (1978), ο γενικός όρος «γεωθερμικός πόρος» αναφέρεται στην προσβάσιμη βασική πηγή (accessible resource base). Η προσβάσιμη βασική πηγή είναι ουσιαστικά όλη η θερμική ενέργεια που βρίσκεται αποθηκευμένη κάτω από συγκεκριμένη περιοχή μεταξύ της επιφάνειας της γης και ενός συγκεκριμένου βάθους στο φλοιό. Αυτή η ενέργεια ξεκινά από την τοπική μέση ετήσια θερμοκρασία. Η προσβάσιμη πηγή περιλαμβάνει τον ωφέλιμο προσβάσιμο πόρο (useful accessible resource 27

base), εκείνο δηλαδή το τμήμα της γεωθερμικής ενέργειας που μπορεί να ανακτηθεί με οικονομικά συμφέροντα και νόμιμο τρόπο, κάποια στιγμή στο σχετικά άμεσο μέλλον (μέσα σε λιγότερο από 100 χρόνια). Αυτή η κατηγορία περιλαμβάνει τους ταυτοποιημένους οικονομικά συμφέροντες πόρους (identified economic resources), οι οποίοι είναι γνωστοί και ως αποθέματα (reserves) και αναφέρονται στις ποσότητες της γεωθερμικής ενέργειας μιας συγκεκριμένης περιοχής που μπορούν να αξιοποιηθούν με ανταγωνιστικό κόστος σε σχέση με τις άλλες πηγές ενέργειας, και οι οποίοι πόροι είναι γνωστό ότι υπάρχουν και έχουν προκύψει ως αποτέλεσμα γεωτρητικών, γεωχημικών, γεωφυσικών και άλλων γεωλογικών ερευνών-μελετών. Το Σχήμα 4 παρουσιάζει σε γραφική μορφή τους παραπάνω και άλλους όρους, που μπορούν να χρησιμοποιούνται από τους ειδικούς στη γεωθερμία. Το πλέον συνηθισμένο κριτήριο για την ταξινόμηση των γεωθερμικών πόρων είναι αυτό που βασίζεται στην ενθαλπία των γεωθερμικών ρευστών, τα οποία λειτουργούν ως ο φορέας «μεταφοράς» της θερμότητας από τα βαθιά και θερμά πετρώματα προς την επιφάνεια. Η ενθαλπία, η οποία σε γενικές γραμμές θεωρείται ότι είναι ανάλογη της θερμοκρασίας, χρησιμοποιείται για να εκφράσει την περιεχόμενη θερμική ενέργεια των ρευστών και δίνει μια γενική εικόνα της ενεργειακής «αξίας» τους. Οι γεωθερμικοί πόροι διακρίνονται σε χαμηλής, μέσης και υψηλής ενθαλπίας (ή θερμοκρασίας), σύμφωνα με το ενεργειακό τους περιεχόμενο και τις πιθανές μορφές αξιοποίησής τους. Στον Πίνακα 3 αναφέρονται οι χαρακτηριστικοί τρόποι ταξινόμησης, όπως αυτοί προτάθηκαν από διάφορους συγγραφείς. Όπως ακριβώς και για την ορολογία, μια κοινώς αποδεκτή μέθοδος ταξινόμησης θα βοηθούσε στην αποφυγή συγχύσεων και παρανοήσεων. Όμως, μέχρι να γίνει αυτό, θα πρέπει κάθε φορά και κατά περίπτωση να δηλώνουμε τις τιμές των θερμοκρασιών ή το εύρος τους, διότι όροι όπως «χαμηλή», «ενδιάμεση» ή «υψηλή» δεν έχουν πάντα την ίδια ερμηνεία και πολλές φορές είναι παραπλανητικοί. 28

Σχήμα 7 - Γραφική παράσταση που δίνει τις διάφορες κατηγορίες των γεωθερμικών πόρων (Από Muffler & Cataldi, 1978). Ο κάθετος άξονας παριστάνει το βαθμό της οικονομικής επιτευξιμότητας, ενώ ο οριζόντιος το βαθμό της γεωλογικής βεβαιότητας 1.10. ΆΜΕΣΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Οι άμεσες χρήσεις της θερμότητας των γεωθερμικών ρευστών για θέρμανση είναι οι παλαιότερες, οι πιο πολύπλευρες και οι πλέον συνηθισμένες μορφές αξιοποίησης της γεωθερμικής ενέργειας. Η λουτροθεραπεία, η θέρμανση χώρων και η τηλεθέρμανση, οι αγροτικές εφαρμογές, οι υδατοκαλλιέργειες και κάποιες βιομηχανικές χρήσεις είναι οι πιο γνωστές μορφές χρήσεις, όμως οι αντλίες θερμότητας αποτελούν την πιο διαδεδομένη μορφή αξιοποίησης (12,5 % της συνολικής χρήσης της γεωθερμικής ενέργειας κατά το έτος 2000). Υπάρχουν φυσικά και κάποιοι άλλοι μικρότερης κλίμακας τρόποι εκμετάλλευσης της γεωθερμίας, οι οποίοι όμως δεν είναι τόσον συνηθισμένη θέρμανση χώρων και η τηλεθέρμανση (space and district heating) παρουσίασαν μεγάλη ανάπτυξη στην Ισλανδία, όπου η συνολική ισχύς του γεωθερμικού συστήματος τηλεθέρμανσης ανέρχονταν στα τέλη του 1999 σε περίπου 1200 MWt (Σχήμα 5). Αποτελούν επίσης ιδιαίτερα διαδεδομένες 29

εφαρμογές και στις χώρες της Ανατολικής Ευρώπης, καθώς και τις Η.Π.Α., Κίνα, Ιαπωνία, Γαλλία, κλπ. Σχήμα 8 - Απλοποιημένο διάγραμμα ροής του συστήματος τηλεθέρμανσης του Reykjavik (Από Gudmundsson, 1988_ Τα γεωθερμικά συστήματα τηλεθέρμανσης είναι έντασης κεφαλαίου, δηλαδή απαιτούν μεγάλα αρχικά κεφάλαια. Το κύριο κόστος αφορά την αρχική επένδυση για την κατασκευή των γεωτρήσεων παραγωγής και επανεισαγωγής, την αγορά των συστημάτων άντλησης και μεταφοράς των ρευστών, την κατασκευή των δικτύων και των σωληνώσεων, την προμήθεια του εξοπλισμού ελέγχου και παρακολούθησης των εγκαταστάσεων, την κατασκευή των σταθμών διανομής και των δεξαμενών αποθήκευσης. Παρόλα αυτά, τα λειτουργικά έξοδα, τα οποία αφορούν στην ενέργεια που καταναλώνεται για την άντληση των ρευστών, τη συντήρηση του συστήματος και τη διαχείριση της εγκατάστασης, είναι σημαντικά μικρότερα σε σύγκριση με αυτά μιας συμβατικής μονάδας. Ένας κρίσιμος παράγοντας για τον υπολογισμό του αρχικού κόστους του συστήματος είναι η πυκνότητα του θερμικού φορτίου ή, αλλιώς, οι απαιτήσεις σε θέρμανση δια την επιφάνεια που καλύπτει η περιοχή που πρόκειται να θερμανθεί. Η υψηλή θερμική πυκνότητα καθορίζει την οικονομική βιωσιμότητα-σκοπιμότητα του έργου τηλεθέρμανσης, αφού το 30

δίκτυο διανομής απορροφά μεγάλα κεφάλαια. Κάποια οικονομικά οφέλη θα μπορούσαν να προκύψουν από το συνδυασμό θέρμανσης και ψύξης σε περιοχές όπου οι κλιματικές συνθήκες επιτρέπουν τέτοιες εφαρμογές. Ο συντελεστής φορτίου σε ένα τέτοιο σύστημα ψύξης-θέρμανσης θα πρέπει να είναι μεγαλύτερος από αυτόν που αντιστοιχεί μόνο στη θέρμανση, και η τιμή της ενεργειακής μονάδας πρέπει να είναι κατά συνέπεια χαμηλότερη (Gudmundsson, 1988).Η ψύξη χώρων αποτελεί μια αρκετά εφικτή και βιώσιμη επιλογή, στην περίπτωση όπου μπορούν να χρησιμοποιηθούν μηχανές απορρόφησης, οι οποίες βρίσκονται εύκολα στο εμπόριο και η τεχνολογία τους είναι ευρέως γνωστή. Ο κύκλος της απορρόφησης είναι μια διαδικασία που χρησιμοποιεί ως πηγή ενέργειας τη θερμότητα έναντι του ηλεκτρισμού. Η ψύξη επιτυγχάνεται με τη χρήση δύο υγρών: ενός ψυκτικού, το οποίο κυκλοφορεί, εξατμίζεται και συμπυκνώνεται, και ενός δευτερεύοντος ρευστού ή απορροφητικού (absorbent). Για εφαρμογές πάνω από 0ºC, ο κύκλος χρησιμοποιεί βρωμίδιο του λιθίου ως απορροφητικό και νερό ως ψυκτικό υγρό. Για εφαρμογές κάτω από τους 0ºC χρησιμοποιείται ο κύκλος αμμωνίας/νερού, με την αμμωνία στο ρόλο του ψυκτικού και του νερού στο ρόλο του απορροφητικού μέσου. Τα γεωθερμικά ρευστά παρέχουν την απαιτούμενη ενέργεια για την κίνηση αυτών των μηχανών, όμως η αποτελεσματικότητά τους μειώνεται όταν οι θερμοκρασίες είναι χαμηλότερες των 105ºC. Ο γεωθερμικός κλιματισμός (θέρμανση και ψύξη) χώρων άρχισε να αναπτύσσεται σημαντικά από τη δεκαετία του 1980, ακολουθώντας την εμφάνιση και την ευρεία διάδοση των αντλιών θερμότητας (heat pumps). Οι πολλοί διαθέσιμοι τύποι αντλιών θερμότητας επιτρέπουν την απόληψη και χρήση με οικονομικό τρόπο του θερμικού περιεχομένου των σωμάτων χαμηλής θερμοκρασίας, όπως είναι το έδαφος ή οι ρηχοί υδροφόροι, τεχνητές ή φυσικές συγκεντρώσεις νερού (ponds), κλπ. (Sanner, 2001) (Σχήμα 6). 31

Η πιο συνηθισμένη γεωθερμική εφαρμογή στον αγροτικό τομέα είναι η θέρμανση θερμοκηπίων, η οποία αναπτύχθηκε ιδιαίτερα σε πολλές χώρες. Η εκτός εποχής καλλιέργεια κηπουρικών, οπωρικών και ανθοκομικών προϊόντων ή η ανάπτυξή τους σε περιοχές με μη ευνοϊκές κλιματολογικές συνθήκες, μπορεί σήμερα να βασιστεί σε μια ευρέως εφαρμοσμένη τεχνολογία. Υπάρχουν ποικίλες λύσεις για την επίτευξη των βέλτιστων συνθηκών ανάπτυξης των φυτών, οι οποίες βασίζονται στη χρήση της καλύτερης θερμοκρασίας για το κάθε είδος (Σχήμα 7), στη σωστή ένταση του φωτός, στην ιδανική συγκέντρωση CO2 μέσα στο θερμοκήπιο, στην κατάλληλη υγρασία του εδάφους και του αέρα και στην κίνηση του αέρα μέσα στα θερμοκήπια Σχήμα 9 - Επίδραση της θερμοκρασίες στην ανάπτυξη κάποιων φυτών (Beall and Samuels, 1971) Το υλικό κάλυψης των τοιχωμάτων ενός θερμοκηπίου μπορεί να αποτελείται από γυαλί, fiberglass, πλάκες σκληρού πλαστικού ή πλαστικά φύλλα. Το γυαλί 32

είναι το πλέον διαφανές υλικό και, σε σχέση με το πλαστικό, επιτρέπει σε μεγαλύτερο βαθμό τη διέλευση φωτός. Από την άλλη, το γυαλί προσφέρει μικρότερη θερμική μόνωση, είναι λιγότερο ανθεκτικό στην κρούση, είναι βαρύτερο και πολύ πιο ακριβό. Τα πιο απλά θερμοκήπια κατασκευάζονται από μονά φύλλα πλαστικού, όμως τελευταίως χρησιμοποιούνται και διπλά στρώματα πλαστικών, μεταξύ των οποίων υπάρχει ένα κενό αέρος. Με το σύστημα αυτό μειώνονται οι θερμικές απώλειες από τα τοιχώματα σε ποσοστό μέχρι και 30-40%, οπότε αυξάνεται σημαντικά η απόδοση του θερμοκηπίου. Η θέρμανση ενός θερμοκηπίου μπορεί επίσης να επιτευχθεί με εξαναγκασμένη κυκλοφορία αέρα στους εναλλάκτες θερμότητας, στους σωλήνες ή τους αγωγούς θερμού νερού που βρίσκονται τοποθετημένοι μέσα ή πάνω στο έδαφος, στα θερμαντικά σώματα κατά μήκος των πλευρικών τοιχωμάτων και κάτω από τους πάγκους ή με συνδυασμό των παραπάνω μεθόδων (Σχήμα 8). Η χρήση των γεωθερμικών ρευστών για τη θέρμανση ενός θερμοκηπίου μειώνει σημαντικά τα λειτουργικά του έξοδα, τα οποία σε κάποιες περιπτώσεις φτάνουν το 35% του κόστους παραγωγής (οπωρικά, άνθη, διακοσμητικά φυτά και δενδρύλλια). Η εκτροφή κτηνοτροφικών ειδών και οι υδρόβιοι οργανισμοί, όπως ακριβώς και τα φυτά, επωφελούνται σημαντικά από τις άριστες συνθήκες της θερμοκρασίας του περιβάλλοντος χώρου, τόσο ως προς την ποιότητα όσο και ως προς την ποσότητα παραγωγής τους (Σχήμα 9). Σε πολλές περιπτώσεις τα γεωθερμικά νερά θα μπορούσαν να αξιοποιηθούν ακόμη επικερδέστερα, μέσα από τη συνδυασμένη χρήση τους σε κτηνοτροφικές μονάδες και γεωθερμικά θερμοκήπια. Η ενέργεια που χρειάζεται για τη θέρμανση μιας μονάδας εκτροφής ζώων είναι περίπου το 50% αυτής που απαιτείται για ένα θερμοκήπιο ίδιας επιφάνειας, οπότε η κλιμακωτή χρήση των γεωθερμικών ρευστών θεωρείται ενδεδειγμένη. Η εκτροφή ζώων σε ένα περιβάλλον ελεγχόμενης θερμοκρασίας συνεισφέρει 33

στη βελτίωση της υγείας τους, ενώ η χρήση των θερμών ρευστών θα μπορούσε να επεκταθεί στον καθαρισμό και την εξυγίανση των χώρων τους, αλλά και στην ξήρανση των αποβλήτων τους (Barbier and Fanelli, 1977). Σχήμα 10 - Συστήματα θέρμανσης σε γεωθερμικά θερμοκήπια. Εγκαταστάσεις θέρμανσης με φυσική κίνηση του αέρα (φυσική συναγωγή): (α) εναέριοι σωλήνες θέρμανσης (β) θέρμανση πάγκων (γ) σωλήνες θέρμανσης που είναι τοποθετημένοι χαμηλά (δ) θέρμανση εδάφους Εγκαταστάσεις θέρμανσης με εξαναγκασμένη κίνηση του αέρα (εξαναγκασμένη συναγωγή) (ε) πλευρική τοποθέτηση σωλήνων (στ) εναέρια αερόθερμα (ζ) αγωγοί τοποθετημένοι ψηλά (η) αγωγοί τοποθετημένοι χαμηλά (von Zabeltitz, 1986 34

Σχήμα 11 - Επίδραση της θερμοκρασίας στην ανάπτυξη ή παραγωγή ζώων που εκτρέφονται για κατανάλωση (Beall and Samuels, 1971) Οι υδατοκαλλιέργειες, οι οποίες στην ουσία αποτελούν την ελεγχόμενη εκτροφή υδρόβιων οργανισμών, αποκτούν σήμερα ολοένα και μεγαλύτερη σπουδαιότητα σε παγκόσμιο επίπεδο, λόγω της αυξημένης ζήτησής τους στην αγορά. Ο έλεγχος της θερμοκρασίας εκτροφής των ειδών αυτών είναι πολύ πιο σημαντικός σε σχέση με τα είδη που αναπτύσσονται στην ξηρά (θηλαστικά και πτηνά), όπως άλλωστε φαίνεται και στο Σχήμα 19, το οποίο δείχνει πόσο πιο διαφορετική είναι η τάση της καμπύλης ανάπτυξης των υδρόβιων ειδών. Διατηρώντας με τεχνητά μέσα τη θερμοκρασία σε βέλτιστα επίπεδα, καθίσταται δυνατή και η εκτροφή εξωτικών ειδών, η βελτίωση της παραγωγής ή ακόμη και ο διπλασιασμός του αναπαραγωγικού κύκλου σε μερικά είδη (Barbier and Fanelli, 1977). 35

Τα είδη που κατά παράδοση εκτρέφονται σε τέτοιες μονάδες είναι: κυπρίνος, γατόψαρο, λαβράκια, κέφαλοι, χέλια, σολωμοί, μουρούνες, γαρίδες, αστακοί, καραβίδες, κάβουρες, στρείδια, μύδια, χτένια κλπ. Οι υδατοκαλλιέργειες περιλαμβάνουν επίσης την εκτροφή κροκοδείλων και αλιγατόρων, που αξιοποιούνται συνήθως ως τουριστικό αξιοθέατο αλλά και για την εκμετάλλευση του δέρματός τους, η οποία μπορεί να αποτελέσει μια πολύ επικερδή δραστηριότητα. Με βάση την εμπειρία από τις Η.Π.Α., φαίνεται ότι, διατηρώντας τη θερμοκρασία ανάπτυξής του σταθερή στους 30ºC, ένας αλιγάτορας μπορεί να μεγαλώσει σε μήκος περίπου 2 μέτρα μέσα σε 3 χρόνια, ενώ εάν ζούσε σε φυσικές συνθήκες η αύξηση του μήκους του δεν θα ξεπερνούσε τα 1,20 μέτρα κατά την ίδια χρονική περίοδο. Τέτοια ερπετά εκτρέφονται εδώ και χρόνια σε ειδικές εγκαταστάσεις στο Κολοράντο και το Άινταχο των Η.Π.Α., ενώ παρόμοιες εφαρμογές σχεδιάζονται και στην Ισλανδία. Οι θερμοκρασίες που απαιτούνται για τα υδρόβια είδη κυμαίνονται κατά βάση μεταξύ 20 και 30ºC. Το μέγεθος των εγκαταστάσεων εξαρτάται από την αρχική θερμοκρασία των ρευστών, τη θερμοκρασία που απαιτείται στις δεξαμενές εκτροφής και από τις θερμικές απώλειες των τελευταίων. Τα γεωθερμικά ρευστά, σε ολόκληρο το θερμοκρασιακό τους εύρος, είτε πρόκειται για ατμό είτε για νερό, μπορούν να αξιοποιηθούν και σε βιομηχανικές εφαρμογές, όπως άλλωστε φαίνεται από το διάγραμμα του Lindal Οι διάφορες δυνατές μορφές αξιοποίησης περιλαμβάνουν θέρμανση κατά τη διεργασία, εξάτμιση, ξήρανση, απόσταξη, αποστείρωση, πλύσιμο, λιώσιμο πάγων και ανάκτηση αλάτων. Η χρήση της γεωθερμικής θερμότητας κατά τη βιομηχανική επεξεργασία διάφορων προϊόντων εφαρμόζεται σε 19 χώρες (Lund and Freeston, 2001), όπου οι εγκαταστάσεις είναι γενικά πολύ μεγάλες και η κατανάλωση ενέργειας 36

υψηλή. Άλλα συγκεκριμένα παραδείγματα βιομηχανικών εφαρμογών είναι η εμφιάλωση νερού και ανθρακούχων ποτών, η παραγωγή χαρτιού, τμημάτων αυτοκινήτων, η ανάκτηση λαδιού, η παστερίωση γάλακτος, η χρήση στη βυρσοδεψία, η χημική ανάκτηση προϊόντων, η παραγωγή με διαχωρισμό του CO2, η χρήση σε πλυντήρια, η ξήρανση γης διατόμων, η επεξεργασία πολτού και χαρτιού και η παραγωγή βορικών αλάτων και βορικού οξέος. Υπάρχουν επίσης εφαρμογές για χρήση των γεωθερμικών ρευστών χαμηλής θερμοκρασίας για λιώσιμο πάγου και αντιπαγετική προστασία πεζοδρομίων, δρόμων και πλατειών, ως και σχέδια για τη διάλυση της ομίχλης σε κάποια αεροδρόμια. Στην Ιαπωνία λειτουργεί μια μικρή βιομηχανία που χρησιμοποιεί τις λευκαντικές ιδιότητες του υδρόθειου (H2S) των γεωθερμικών νερών για την παραγωγή πρωτοποριακών και εξαιρετικής ποιότητας υφασμάτων για γυναικεία ρούχα. Στην ίδια χώρα, εφαρμόζεται σε πειραματικό στάδιο μια τεχνική για τη βιοτεχνική-βιομηχανική παρασκευή ενός ελαφρού «γεωθερμικού ξύλου», το οποίο θεωρείται ιδιαίτερα κατάλληλο για ειδικές κατασκευές. Κατά την επεξεργασία του κανονικού ξύλου με το νερό μιας γεωθερμικής πηγής, τα πολυσακχαρίδιά του υφίστανται υδρόλυση, οπότε το υλικό γίνεται πιο πορώδες και συνεπώς ελαφρύτερο. 1.11. ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ 1.11.1. ΤΙ ΕΙΝΑΙ Η ΑΒΑΘΗΣ ΓΕΩΘΕΡΜΙΑ Είναι γνωστό ότι τα πηγάδια έχουν ζεστό νερό το χειμώνα, ενώ το καλοκαίρι το ίδιο νερό είναι δροσερό. Βέβαια, το νερό δεν αλλάζει θερμοκρασία, όμως στο βάθος που ρέει, η θερμοκρασία της γης είναι περίπου σταθερή ανεξάρτητα αν είναι καλοκαίρι ή χειμώνας. Θα μπορούσαμε να πούμε ότι σε βάθος από 6 μ. έως 100 μ. η θερμοκρασία παραμένει σταθερή και είναι περίπου ίση με την μέση ετήσια θερμοκρασία του αέρα για τον συγκεκριμένο τόπο. Στην χώρα μας αυτό σημαίνει ότι σε τέτοιο βάθος η θερμοκρασία βρίσκεται ανάμεσα στους 18-20 C. 37