ΠΑΝ ΠΙΣ ΜΙΟΝΠ ΙΡΑΙΩ ΧΟΛ ΝΧΡ ΜΑΣΟΟΙΚΟΝΟΜΙΚ Ν & ΣΑΣΙΣΙΚ ΣΜΗΜΑΝΣΑΣΙΣΙΚΗ & ΑΦΑΛΙΣΙΚΗΝ ΠΙΣΗΜΗ ΠΡΟΓΡΑΜΜΑΝΜ ΣΑΠΣΤΧΙΑΚΩΝΝΠΟΤ ΩΝΝ ΣΗΝΝΑΝΑΛΟΓΙΣΙΚΗΝ ΠΙΣΗΜΗ ΚΑΙ

Σχετικά έγγραφα
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A summation formula ramified with hypergeometric function and involving recurrence relation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ ΣΖ ΓΗΟΗΚΖΖ ΔΠΗΥΔΗΡΖΔΩΝ. Γηπισκαηηθή Δξγαζία ΑΠΟΣΙΜΗΗ ΑΞΙΑ ΣΗ ΔΣΑΙΡΙΑ JUMBO ΒΑΔΙ ΣΑΜΔΙΑΚΧΝ ΡΟΧΝ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Arbitrage Analysis of Futures Market with Frictions

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

High order interpolation function for surface contact problem

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Μ. Κορφιατη - Π. Γεωργίου ΒΙΒΛΙΟΘΗΚΗ & ΥΠΗΡΕΣΙΑ ΠΛΗΡΟΦΟΡΗΣΗΣ ΠΑΝ. ΠΑΤΡΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝ ΟΨΕΙ ΤΟΥ ΝΕΟΥ ΟΙΚΟΝΟΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ» Σπουδαστές Μαραβελάκης Γρηγόριος Α.Μ Μαυρομήτρος Δημήτριος Α.Μ.

Βιογραφικό Σημείωμα. Διδακτορικό Δίπλωμα, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιά, 3/2009

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Σεμινάριο Κατάρτισης Financial Econometric Modelling with R Οικονομικό Πανεπιστήμιο Αθηνών, Μαΐου 2017

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΟ ΤΡΑΠΕΖΙΚΟ ΣΥΣΤΗΜΑ- ΟΙ ΣΥΓΧΡΟΝΕΣ ΤΡΑΠΕΖΙΚΕΣ ΥΠΗΡΕΣΙΕΣ- ΧΡΗΜΑΤΟΙΚΟΝΟΜΙΚΉ ΑΝΑΛΥΣΗ ΤΩΝ ΤΕΣΣΑΡΩΝ ΣΥΣΤΗΜΙΚΩΝ ΤΡΑΠΕΖΩΝ

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Research on Economics and Management

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Additional Results for the Pareto/NBD Model

Επίδραση της Συμβολαιακής Γεωργίας στην Χρηματοοικονομική Διοίκηση των Επιχειρήσεων Τροφίμων. Ιωάννης Γκανάς

Mean-Variance Analysis

2 Composition. Invertible Mappings

OLS. University of New South Wales, Australia

Approximation of distance between locations on earth given by latitude and longitude

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exercises to Statistics of Material Fatigue No. 5

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

Other Test Constructions: Likelihood Ratio & Bayes Tests

Bayesian modeling of inseparable space-time variation in disease risk

Second Order Partial Differential Equations

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Section 8.3 Trigonometric Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξένη Ορολογία. Ενότητα 5 : Financial Ratios

5.4 The Poisson Distribution.

Probability and Random Processes (Part II)

Global energy use: Decoupling or convergence?

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Eaton 1987 Roldos Eaton Roldos Galor and Lin Shimomura 1993 Nakanishi Turnovsky 1997, Chap. 4

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

On Generating Relations of Some Triple. Hypergeometric Functions

ADVANCED STRUCTURAL MECHANICS

The k-α-exponential Function

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homomorphism in Intuitionistic Fuzzy Automata

D Alembert s Solution to the Wave Equation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΙΣΗ ΚΙΝΔΥΝΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΓΡΑΜΜΑΤΩΝ ΣΕ ΕΠΙΛΕΓΜΕΝΟΥΣ ΤΡΑΠΕΖΙΚΟΥΣ ΟΡΓΑΝΙΣΜΟΥΣ

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Part III - Pricing A Down-And-Out Call Option

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

Θεοδωράκη Ελένη Μαρία

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

EE 570: Location and Navigation

Solution Series 9. i=1 x i and i=1 x i.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Wishart α-determinant, α-hafnian

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SPECIAL FUNCTIONS and POLYNOMIALS

ΠΩΣ ΣΥΚΡΙΝΟΝΤΑΙ ΤΑ ΤΡΑΠΕΖΙΚΑ ΜΕ ΤΑ ΑΣΦΑΛΙΣΤΙΚΑ ΑΠΟΤΑΜΙΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ.

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

ΕΤΑΙΡΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΥΘΥΝΗ ΣΤΗΝ ΝΑΥΤΙΛΙΑΚΗ ΒΙΟΜΗΧΑΜΙΑ

Η Επίδραση των Events στην Απόδοση των Μετοχών

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΙ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΥΠΟΘΕΣΗΣ ΤΟΥ ΑΝΑΛΟΓΙΚΟΥ ΚΙΝ ΥΝΟΥ

Partial Trace and Partial Transpose

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Προσαρμογή του γνωστικού αντικειμένου «Κοινωνική και Πολιτική Αγωγή» της ΣΤ Δημοτικού, για περιπτώσεις παιδιών με Ειδική Αναπτυξιακή Δυσλεξία.

Transcript:

ΠΑΝΠΙΣΜΙΟΝΠΙΡΑΙΩ ΧΟΛΝΧΡΜΑΣΟΟΙΚΟΝΟΜΙΚΝ & ΣΑΣΙΣΙΚ ΣΜΗΜΑΝΣΑΣΙΣΙΚΗ & ΑΦΑΛΙΣΙΚΗΝΠΙΣΗΜΗ ΠΡΟΓΡΑΜΜΑΝΜΣΑΠΣΤΧΙΑΚΩΝΝΠΟΤΩΝΝ ΣΗΝΝΑΝΑΛΟΓΙΣΙΚΗΝΠΙΣΗΜΗ ΚΑΙ ΙΟΙΚΗΣΙΚΗΝΚΙΝΤΝΟΤ ΑΝΑΛΤΝΚΙΝΤΝΟΤ ΓΙΑ ΧΑΡΣΟΦΤΛΑΚΙΑΝΡΑΝΣΩΝΝΩ ουλέζαμνηηάλδομ δπζωηαδεάνλγαέα Πεδλαδάμ, ΙαθουάλδομΝ2ί16 1

UNIVERSITY OF PIRAEUS SCHOOL OF FINANCE & STATISTICS DEPARTMENT OF STATISTICS & INSURANCE SCIENCE M.SC. IN ACTUARIAL SCIENCE AND RISK MANAGEMENT RISK ANALYSIS FOR OF LIFE ANNUITIES STOCHASTIC PORTFOLIOS OF LIFE ANNUITIES RISKINESS ANALYSIS FOR A LARGE PORTFOLIO Sourilas Dimitrios Dissertation Thesis Piraeus, January 2016 2

Χ,,,.,,.. 3

.. Wiener, Ornstein-Uhlenbeck...,, Wiener Ornstein-Uhlenbeck. 4

Abstract In this paper we will present two stochastic approaches which are used for modeling interest randomness. In particular, we will be modeling the force of interest and the force of interest accumulation function. For the above purpose, we will use the stochastic Wiener process and the Ornstein-Uhlenbeck one. The implicit behavior of the force of interest will be investigated by studying the expected value of the force of interest accumulation function. Further, we will provide upper and lower bounds of the present value of a series of cash flows where the discount is within a specific stochastic discount process. Finally, we will present an application for a temporary life annuity which concerns an individual aged, showing the applicability of the above Wiener and Ornstein-Uhlenbeck stochastic process. 5

Ω,.. Σχαί.... 100%.,. Ά. Έ. Ό. 2008.., ( II)... Panjer & Bellhouse [18] 6

1980. Ά Beekman & Fuelling 1993 [6], Parker [19] 1994, DeSchepper & Goovaerts 1992 [11], o Denuit 1999 [10], Dufresne 1990 [13] Aitchison & Brown 1963 [4]. :...., Σκίνηη BrownΤ. Brown. Girsanov.. (Wiener, Ornstein-Uhlenbeck, White Noise)..,,. 7

ΠΡΙΧΟΜΝΑ ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..ΙΙΙΙΙ4 ΙΙΙΙΙΙΙΙΙΙΙ.ΙΙΙΙΙΙ..ΙΙΙΙΙ...6 1 Έ Χ 1.1 Π ΙΙΙΙΙΙΙ10 1.2 Έ ΙΙΙΙΙΙΙΙ.ΙΙΙΙ11 1.3 ΙΙΙΙΙΙΙΙΙΙΙΙ13 1.4 ΙΙΙΙΙΙΙΙΙ.ΙΙΙΙΙΙ..14 1.5 Έ ΧΙΙΙΙΙΙΙΙΙΙΙΙΙ.Ι.18 1.5.1 Χ ΩΙΙΙΙΙΙΙΙΙΙΙΙΙ18 1.5.2 ΙΙΙΙΙΙ..19 2 Π Έ 2.1 Π & Ι..21 2.2 Χ Ι.Ι23 2.2.1 ΙΙΙΙΙΙΙ...Ι24 2.2.2 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ.24 2.3 ΙΙΙΙΙΙΙΙΙ25 2.4 BrownΙΙΙΙΙΙΙΙΙΙΙΙΙΙ.ΙΙΙ26 2.4.1 Brown W(t)ΙΙΙΙΙΙΙΙ29 2.5 BrownΙΙΙΙΙΙΙΙ..ΙΙΙ31 2.5.1 ΙΙΙΙΙΙΙΙΙΙΙΙΙ...ΙΙ33 2.6 Ornstein-UhlenbeckΙΙΙΙΙ..ΙΙ33 2.7 BrownΙΙΙΙΙΙΙΙΙΙΙ..34 2.8 GirsanovΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..ΙΙΙ.36 8

3 3.1 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..39 3.2 ΙΙΙΙΙΙΙ.ΙΙΙΙΙΙΙ.ΙΙΙ41 3.3 Έ ΙΙΙΙΙΙΙΙΙΙΙ..ΙΙ42 3.3.1 WienerΙΙΙΙΙΙ.ΙΙΙ42 3.3.2 Ornstein-UhlenbeckΙΙΙ..42 3.4 Έ ΙΙΙΙ.43 3.4.1 White Noise ( )ΙΙΙ.Ι43 3.4.2 WienerΙΙΙΙΙΙΙΙΙΙΙΙΙ..Ι44 3.4.3 Ornstein-UhlenbeckΙΙΙΙΙΙ..ΙΙ45 3.5 ΙΙΙΙΙΙΙΙΙΙΙΙ..Ι45 3.6 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ...Ι..47 3.7 Έ ΙΙΙΙ.Ι50 3.7.1 Έ Ornstein-UhlenbeckΙΙ.ΙΙΙΙΙΙΙΙΙ..ΙΙΙΙ50 3.7.2 Έ Ornstein-Uhlenbeck ΙΙ..ΙΙΙΙΙΙ...51 3.8 Ά Ό ΙΙΙΙ.ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..54 3.9 Χ ΙΙΙ...61 3.10 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..Ι63 9

ΕΦΑΑΙΟ 1 ασικές αθηατικές Έοιες στη ρηατοοικοοική,..,. 1.1 Π...,. (Present Value (PV))... : = +.. 10

2000ά 3 3% : = =. +. 1830.28ά 3% 3 2000ά. 2000ά 3 1830.28. ω (Accumulated Value (AV)). (1.1). : = +.. n n. 1.2 Έ ( ) (Accumulative Value).,.. : = = ( )... 11

: =.... Έ : =. H, 200ά 200ά 500ά. Έ : 1.1 ( ) =. ( =. H : = = = () = [ln ] = = 12

= =.. 1.3, (fixed interest rate) (variable interest rate). ( ) (,,...),.,.,. (1.3) : = 13

1.4. (annuity).. : (immediate annuity). (due annuity). (unit annuity). (perpetuity).,, (.χ. ). : = = + = = = + +. (1.4),.. Έ. () n = + + + +. 14

=. (1.5). 1.1 n = + + + + + + +. =. (1.6). 1.2 = n = n.. n n. Έ. 15

n = + + + +. 1.3. 1.3 : n = + + + + + + + +. (1.8) 1.4.. Ό.. ( ). 16

1.5. = + + + + +. = + + + + + + 17

1.5 Έ.Χ.. 1.5.1 Χ Ω 1.2 Έ.. ( )... 1.1. = {,,,,,}. {}, {}, {}, {}, {}, {}.. 18

1.5.2 Έ. : 1.3 : = < = : i. ii. iii. lim = lim = : =.. : 1.4 Έ,.,,,, =,. 19

lim,, =, +.... 20

ΦΑΑ 2 Έ,. Brown. Brown., Girsanov. 2.1 Π & EUR/CHF 5 6. Χt. = 7. 5 6.. Έ. : 2.1 ( ) (..) (..)., =,, 21

[, ], [, [, ) < ( )....... 2.2., = ω, ω, Χ = (), (path) Χ. 2.2 : 22

5, [,]. 5. 2 =.,.,,..,.,,.9. (, ).,. 2.2 Χ,.... =, Υ,. :,. ( [24]). 2.1,,,,.,,.,. 23

2.2.1 =,, =,, =,,, =,,. =,,,,.,.. : = =, H :, =, = [ ],, : =, =, 2.2.2 Έ...... 24

2.3 Έ Χ =, R. : +h +h, h + h, + h < <,, Ι, 2.3 Έ 0 1. = =,,,, : = + + +,,,..,,,,,, : = + + + Ό. Beekman & Fuelling ( [6]), Parker ( [19]-[21]), Dufrense ( [13]) Goovaerts & De Schepper ( [11]). 3.8 Goovaerts. 25

2.4 Brown H Brown ( ). Brown. = {}. Έ Brown =. Wt : i. =. ii., > + 0 s. iii.. iv. H t. Ό w = 0 Brown Brown Wiener. 2.1. Ό = + (ii). 2.2 [ + ] =.,, + = + =. Χ [ + = [ + + ] 26

= [ + ] + [ ] = + = (ii) [ + ]. martingale, ( [16] ). 2.4 martingale : [ + ] =. 2.3 [ ] =. Χ martingale [ ] = [ + ] = = 2.4 W Brown [] = {, }, t, s. >. Brown = 2.1 [] = [ ] = & [] = [ ] = =. : [] = [ ] [] = = [ ] =. = [ + ] = [ ] + +[ ] = + [ ][] = + = {, } 27

= ( 3). Brown. h + h : + h = + h h. [, Τ] h =. : = [h ( h)] = h h = [ h ] = [h] = : = = [ h ] = = h = = [h] = : [ h ] = = = Brown 0 h. lim h,. : = Τ = Ά 0. : = 28

=. ω. h : =. 2.4.1 Brown W(t) Χ Brown. ω.. {} ( [16]). 2.5 Χ [, ]... {}, =,, : [ ] = [] =. Brown : [h h] = = = (h h) = = h h = < 29

2.5 Έ Brown : [h h] = = Έ : [h h] = = h h = = h h = = h =, [h h] = = = = h = h = h = = = = Brown [, ]. Brown. Brown. = 30

2.5 Brown Brown 0 1. -. : + h = h + + h h (binomial). h h. Χ [, ] h =. : = + h = + ( h ) = (..) h = (normal) 0. Ω : = + Brown. : = = + (2.2) Brown. = = + =. 31

H., +. Brown. 2.6 Έ Brown. = + +,. (2.1) = + +. 2.7 Έ Brown =. <.... Έ : [] = + = +. =. [] = =. =. Ά < = <. = <. =. 2.8. Brown : =. +. =. 32

=. =. 2.5.1 (2.2) : -.. Ornestein-Uhlenbeck 2.9.. Brown 0 =. =.. Έ ( ) =. =. =.. Ά :..... < <. = ( ) ( ) =.. =.. = == =. 2.6 Ornstein-Uhlenbeck.. Ό. Brown. (2.2). Έ (2.2) : = ( ) + (2.3) 33

( ),, Brown. (2.3), (2.3) ( ),., R + Ornestein-Uhlenbeck. (2.3) : =. Έ : : = + + = [ ] = : = = + : = + ( ) +. (2.3) Brown Brown. 2.7 Brown Brown Brown. Ό Brown :.. 34

. Brown. Ό Brown = +. = = : = + = + H ω Brown. 2.10 Brown: =. +. =. =.. =. =. =. 2.11 Brown 0.10. h = 22.926. Έ h h =0.12. =.. =. h = 35

2.8 Girsanov. : = +. martingale.. ( [24]). 2.6 Q ( ). ( [24]). 2.7 Έ = + Brown martingale. 36

= + Έ Girsanov Brown martingale. : = (2.4) : = +... 2.12 =. + =. + =.. =. =.. =. =. =.. 37

2.13 : =. +. 0.14. Έ =. =.. : =. +. =. 38

ΦΑΑ 3.., ( )... 3.1 - t 0 [ ] (3.1) [ ] (3.2) Έ,,,,,,. = + + + (3.1) : =,,, { [ < ], } = 39

=,,, {, } = = {,,, R + + + = t}, t R (3.1) (3.2),,,. [21].,,,. Έ G :,,, [,,, ],, R (3.3) : [ >, >,, > ],,,,, R (3.4) ( [10]),,,, (3.5),,,,,, R. (3.3) (3.4),,, =,,, = = =. POD (Positive Orthant Dependent)., =,,,., =,,,. 40

3.2 Έ. = (3.6) =. (Lognormal) [ ] [] - : [( ) ] = [ ] = { [ ] + [] (3.7) O (3.7) [4]. 0 1. = =,,,, : = + + + (3.8) =,,,,. (3.8). (3.8). Ω, (,,, )..,,,,,, : = + + + (3.9). = {, } {, },. 41

3.3 Gaussian 3.4 Gaussian. 3.3 Έ. : Wiener Ornstein-Uhlenbeck 3.3.1 Wiener Έ : = + (3.10), R Wiener. : : [ ] = (3.11) [, ] =, (3.12) (3.11) (3.12) [15]. 3.3.2 Ornstein-Uhlenbeck Έ : = + (3.13) R, Ornstein-Uhlenbeck =. = + (3.14) 42

Χ [5] (3.13) : [, ] = [] = (3.15) +, (3.16) = (3.17) : [, ] = +, (3.18) 3.4 Έ. : White Noise Wiener Ornstein-Uhlenbeck.. 3.4.1 White Noise ( ) R + : ~, (3.19)., R + White Noise.. White Noise Wiener 43

( [5] [10]). ( (3.6)) Wiener [] = (3.20) [, ] =, (3.21) ( (3.20) (3.21) [5]). 3.4.2 Wiener Έ Wiener. : = +, (3.22) Χ 3.3.1 : : [ ] = (3.23) [, ] =, (3.24) ( (3.6)) : [] = (3.25) [, ] = [, ] (3.26) : [, ] = (3.27) 44

3.4.3 Ornstein-Uhlenbeck Ό Ornstein-Uhlenbeck : = + > (3.28) = ( [5]). [, ] = [ ] = (3.29) +, (3.30) = ( (3.16)) ( ) Gaussian : [] = (3.31) [, ] =, + [ + + + ] (3.32) (3.31) (3.32) [19] 3.3 3.4 ([] = ).. 3.5 Έ - n. = =. 45

. ( [7]). n : [ ] = [ = ] = = [ ] (3.34) (3.2) [ ] = { [] + [] } (3.35) : [ ] = [ ] = = = = = [ ] (3.36) = [ ] (3.37) : Ό ~, (3.38) = [] [] [] (3.39) = [] + [] + [] + [, ] + [, ] + [, ]. (3.2) : [ ] = { + } (3.41) 46

3.6, ( [15] ). 1. ( =. =. ). Wiener White Noise... Ornstein-Uhlenbeck. ( [6])........ ( [6]).,.... 47

( ). Wiener. 2... 48

3.. 49

3.7 Έ. Ό,.. ( ). Έ s < t. 3.7.1 Έ Ornstein-Uhlenbeck. (3.12) [ =, = ] = [ + + =, = ] = + [ =, = ] (3.41) 50

Ό < (3.41) : [ =, = ] = + [ = ] (3.42) (3.42) [6]. [ =, = ] = +, < (3.43) 3.7.2 Έ Ornstein-Uhlenbeck (3.1) [ =, = ] = [ =, = ] = [ + =, = ] (3.44) =, (3.44) : [ =, = ] = + [ =, = ] = + [ =, = ] (3.45) u < s : [ =, = ] = + [ = ] (3.46) Ornstein-Uhlenbeck ( [5]) (3.46) : [ =, = ] = + + = + + (3.47) Wiener Ornstein- Uhlenbeck.. 51

. 4 [ =, = ]. [ =, = ]........ Χ, > =. =.. 3.1 =.. 52

3.2, > =. =.... 53

3.8 Ά Ό 3.1 =. Χ Wiener. Ό ( (3.9)) : = + 54

. Goovaerts et al (1999) = =. 0. : = exp{ } =. [0,1]. : : [ > ] = = (3.50) exp( ) = =. (3.1) (3.5) (3.9). (3.5) =, =. =.. =. (3.49). 2 4 POD.. [, ] < < < + ( [10] ). = + POD. 55

56

57

: = (3.52), - = δ, {, t } (3.53) Ornstein-Uhlenbeck {, t } Gaussian : = + (3.54), [, ], (3.55), =, + { + + ( ) ( + )} (3.56) : = =.,. ( Goovaerts et al (1999)) : = exp{, } =. [,]. 5 =., =., =. =.. 7 = 1 3. 6 8 POD. 58

59

60

3.9 Χ. [ < + ] = [ > ] =,,,, + + + +. : ; = [ ; ] ; = {, =, =,,, (3.8).,.. : ; = [ ] = + [ ] ; : [ ; ] = + [ ] = + [ ] [ ; ] ;. [ ; ] 45 (3.10) =. =.. (3.52) =., =,, =. =.. 61

: Ά [ ;. =. ] (3.10) =, = : Ά [ ;., =,, =. =. ] (3.52) =, = 62

Makeham ( [7]).. 3.10. Wiener Ornstein-Uhlenbeck. Χ,,.. White Noise,, Wiener.,, [ =, = ]. [ =, = ]. Έ.,., 63

. 64

ΙΙΟΡΑΙΑ [1] A. N. Χ, 1. (2003) [2] Χ... (2006) [3] Χ... (2006) [4] AITCHISON, J. and BROWN, J.A.C. the Lognormal Distribution, 176 pp., Cambridge University Press. (1963) [5] ARNOLD, L. Stochastic Differential Equations : Theory and Applications, 228 pp., John Wiley & Sons, New York (1974) [6] BEEKMAN, J.A. and FUELLING, C.P. Interest and Mortality Randomness in Some Annuities Insurance: Mathematics and Economics 9, 185-196. (1990) [7] BOWERS, N.L., GERBER, H.U., HICKMAN, J.C., JONES, O.A. and C.J. NESBITT. Actuarila Mathematics. Society of actuaries, Itasca, Illinois (1996) [8] BUHLMANN, H. Stochastic Discounting Insurance: Mathematics and Economics 1 I, I 13-127. (1992) [9] CANADIAN INSTITUTE OF ACTUARIES Rapport sur les Statistiques Economiques Canadiennes, 1924-1992. (1993) [10] DENUIT, M., GENEST, C. and E. MARCEAU. Stochastic bounds on sums of dependent risks. Insurance: Mathematics & Economics 25, 85-104. (1999) [11] DE SCHEPPER, A. and M.J GOOVAERTS. Some further results on annuities certain with random interest. Insurance: Mathematics & Economics 11, 283-290 (1992) 65

[12] DE SCHEPPER, A. TEUNEN, M. and M.J. GOOVAERTS. An analytical inversion of a Laplace transform related to annuity certain. Insurance: Mathematics & Economics 14, 33-37 (1994) [13] DUFRESNE, D. The distribution of a perpetuity, with applications to risk theory and pension funding. Scandinavian Actuarial Journal 33-79. (1990) [14] FREES, E.W. Stochastic life contingencies with solvency considerations. Transactions of the Society of Actuaries XLII, 91-148. (1990) [15] KARLIN, S. and TAYLOR, H. M. A Second Course in Stochastic Processes, 542 pp., Academic Press, San Diego. (1981) [16] MARCEL B. FINAN A Discussion of Financial Economics in Actuarial Models. Arkansan Tech University (2014) [17] MOOD, A.M., GRAYI3II.L, F.A. and BOES, D.C. Introduction to the Theory of Statistics, 567 pp., McGraw-Hill. (1974) [18] PANJER, H.H and BELLHOUSE, D.R Stochastic Modeling if Interest Rates with Applications to Life Contingencies. Journal of Risk and Insurance 47, 91-110 (1980) [19] PARKER, G. Limiting distribution of the present value of a portfolio. ASTIN Bulletin 94-1, 47-60. (1994) [20] PARKER, G. Two Stochastic approaches for discounting actuarial functions. ASTIN Bulletin 24, 167-181. (1994) [21] PARKER, G. Stochastic analysis of a portfolio of endowment policies. Scandinavian Actuarial Journal, 119-130. (1994) [22] STEPHEN G. KELLISON The Theory of Interest. University of Central Florida (2009) [23] SZEKLI, R. Stochastic Ordering and Dependence in Applied Probability. Lecture Notes in Statistics 97. Springer Verlag Berlin. (1995) [24] HOMAS MIKOSCH Elementary Stochastic Calculus with Finance in View. World Scientific Publishing Company (2009) 66