arxiv: v1 [math.dg] 11 Oct 2017

Σχετικά έγγραφα
arxiv: v2 [math.dg] 14 Oct 2017

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

8.324 Relativistic Quantum Field Theory II

Journal of Theoretics Vol.4-5

α & β spatial orbitals in

On Curvature Tensors in Absolute Parallelism Geometry

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

A Class of Orthohomological Triangles

Extended Absolute Parallelism Geometry

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Congruence Classes of Invertible Matrices of Order 3 over F 2

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

8.323 Relativistic Quantum Field Theory I

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Other Test Constructions: Likelihood Ratio & Bayes Tests

A summation formula ramified with hypergeometric function and involving recurrence relation

1 Complete Set of Grassmann States

Non polynomial spline solutions for special linear tenth-order boundary value problems

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Every set of first-order formulas is equivalent to an independent set

Reminders: linear functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Nonlinear problem with subcritical exponent in Sobolev space

Quantum ElectroDynamics II

Geometry of Parallelizable Manifolds in the Context of Generalized Lagrange Spaces

2 Lagrangian and Green functions in d dimensions

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Uniform Convergence of Fourier Series Michael Taylor

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Fractional Colorings and Zykov Products of graphs

Geometry of parallelizable manifolds in the context of generalized Lagrange spaces

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Jordan Form of a Square Matrix

Example Sheet 3 Solutions

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Homomorphism in Intuitionistic Fuzzy Automata

Higher spin gauge field cubic interactions.

A General Note on δ-quasi Monotone and Increasing Sequence

Generating Set of the Complete Semigroups of Binary Relations

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

Finite Field Problems: Solutions

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

EE512: Error Control Coding

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Constant Elasticity of Substitution in Applied General Equilibrium

Homomorphism of Intuitionistic Fuzzy Groups

Quantum annealing inversion and its implementation

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

On homeomorphisms and C 1 maps

Estimators when the Correlation Coefficient. is Negative

LECTURE 4 : ARMA PROCESSES

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

On the Galois Group of Linear Difference-Differential Equations

Higher Derivative Gravity Theories

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. Introduction and Preliminaries.

The challenges of non-stable predicates

The one-dimensional periodic Schrödinger equation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Commutative Monoids in Intuitionistic Fuzzy Sets

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Homework 8 Model Solution Section

Section 7.6 Double and Half Angle Formulas

The Simply Typed Lambda Calculus

arxiv: v2 [math.ap] 6 Dec 2015

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Space-Time Symmetries

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

C.S. 430 Assignment 6, Sample Solutions

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Lecture 21: Properties and robustness of LSE

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and Determinants

Transcript:

NONUNIQUE INVARIANTS of Thrd Type Almost Geodesc Mappngs arxv:1710.04504v1 [math.dg] 11 Oct 2017 Nenad O. Vesć Abstract Famles of nvarants of specal almost geodesc mappngs of the thrd type are obtaned n ths paper. Motvated by results presented n L. B. Ćrć, [3] and H. H. Alsulam, E. Karapnar, V. Rakočevć, [1], t s examned unqueness of these famles. Key words: rule of transformaton, lnear ndependence, nvarant 2010 Math. Subj. Classfcaton: 53C15, 47A15, 58C30, 55C99, 53A55, 35R01 1 Introducton Dfferent mappngs of Remannan and generalzed Remannan spaces as well as ther nvarants have been nvestgated see [2,4,8 28,30,31]. Motvated by Ensten s works [5 7], geodesc mappngs of these spaces and ther generalzatons became subjects of nvestgatons of many authors. The Ensten s theory of general Relatvty motvated dfferent authors to nvestgate spaces of non-symmetrc lnear connectons [12,16,17], specally generalzed Remannan spaces. Invarants of nvarants between these spaces are mportant n the theory of gravty [9 11, 31], In ths paper, we wll examne nvarants of almost geodesc mappngs [21 23] defned on a generalzed Remannan space n the sense of Esenhart [8]. 1.1 Generalzed Remannan space An N-dmensonal dfferentable manfold M N endowed wth a metrc tensor gx,y, gx,y gy,x, of the type 0,2 s the generalzed Remannan space GR N. Coordnately, the metrc tensor has the form g j such that g j g j [8,16 18]. Chrstoffel symbols of the frst and the second knd of the space GR N are.jk = 1 2 g j,k g jk, +g k,j and jk = g.jk. 1.1 The Chrstoffel symbols jk are affne connecton coeffcents of the space GR N. The symmetrc and ant-symmetrc parts of Chrstoffel symbol jk are jk = 1 2 jk + kj and jk = 1 2 jk kj. 1.2 Ths paper s fnancally supported by Serban Mnstry of Educaton, Scence and Technologcal Development, Grant No. 174012 1

The ant-symmetrc part jk of the coeffcent jk s called the torson tensor of the space GR N. The Remannan space R N, endowed wth affne connecton coeffcents jk s the assocated space of GR N [4,24 28]. Covarant dfferentaton wth regard to the affne connecton of space R N s defned as a j;k = a j,k + k a j jk a, 1.3 for a tensor a j of the type 1,1. Curvature tensor R jmn of the assocated space R N s R jmn = jm,n jn,m + jm n jn m. 1.4 Four knds of covarant dfferentaton wth regard to affne connecton of the space GR N are [16]: a j 1 a j 3 k = a j,k + k a j jk a a j k = a j,k + k a j kj a, 1.5 2 k = a j,k + k a j kj a a j k = a j,k + k a j kj a. 1.6 There are twelve curvature tensors of the space GR N. They are elements of the famly Kjmn = R jmn +u jm;n +u jn 4 ;m +v jm n +v jn m +w mn j, 1.7 for real constants u,u,v,v,w. Fve of these curvature tensors are lnearly ndependent [17]. 1.2 Almost geodesc mappngs of space GR N In attempt to generalze the term of geodescs, N. S. Snyukov defned the terms of almost geodesc lnes and almost geodesc mappngs of a symmetrc affne connecton space [20]. Hs work has been contnued by a lot of authors see for example [13 15]. These results are generalzed for the case of a non-symmetrc affne connecton space [21 23]. Generalzed Remannan space GR N s a non-symmetrc affne connecton space. A mappng f : GR N GR N determned by the equatons jk π3 : = jk +ψ jk +ψ kj +2σ jkϕ +ξjk, s ϕ j + 1s 1 ξj ϕ = ν j ϕ +µj, 1.8 s s = 1,2, for tensor ξjk ant-symmetrc by ndces j and k, covarant vectors ψ j,ν j, contravarant vector ϕ and scalar functon µ, s the almost geodesc mappng of the s-th knd. The almost geodesc mappng f has the property of recprocty f ts nverse mappng s almost geodesc mappng of the thrd type and the same knd as the mappng f. In ths paper, we wll pay attenton to nvarants of thrd type almost geodesc mappngs whch satsfy the property of recprocty and preserve the torson tensor jk. These mappngs are the equtorson thrd type almost geodesc mappngs whch satsfy the property of recprocty. 2

1.3 Motvaton The research presented n ths paper s motvated by the results from papers L. B. Ćrć, [3] and H. H. Alsulam, E. Karapnar, V. Rakočevć, [1]. In these papers, t s obtaned that lnear mappngs do not need to have unque nvarants. Almost geodesc mappngs of the thrd type are lnear mappngs. The man purposes of ths paper are: To obtan transformaton-rules of covarant dervatve of torson tensor jk wth regard to the affne connecton of the assocated space R N under equtorson thrd type almost geodesc mappngs whch have the property of recprocty, To obtan nvarants of equtorson thrd type almost geodesc mappngs whch have the property of recprocty from change of the famly of curvature tensors Kjmn gven by the equaton 1.7 under these mappngs, To examne unqueness of these transformaton-rules and nvarants. 2 Man results Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd s = 1,2, whch satsfes the property of recprocty. Basc equatons of ths mappng are jk π3 : = jk +ψ jk +ψ kj +2σ jkϕ, s ϕ j = ν jϕ +µj, 2.1 s for scalar functon µ, covarant vectors ψ j,ν j, contravarant vector ϕ and tensor σ jk of the type 0,2 symmetrc by ndces j and k. It s obtaned n [29] that the geometrcal objects jmn = Rjmn + j 1 1 [mn] m j;n jn +µσ jn 1 n j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ, jmn = Rjmn + j 2 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm n ϕ +σ jn m ϕ, 2.2 2.3 for j and j gven by the followng equatons: 1 2 3

jk = 1 jk = 2 1 2 ϕ σ jk β β +σ βϕ β j +σ j ϕ β kβ +σ kβϕ β σj;k ϕ +σ jk µ+σ j ν k ϕ βkϕ β, 1 2 ϕ σ jk β β +σ βϕ β j +σ j ϕ β kβ +σ kβϕ β σj;k ϕ +σ jk µ+σ j ν k ϕ + βkϕ β, 2.4 2.5 scalar functon µ and antsymmetrzaton wthout dvson denoted by square brackets, are nvarants of the mappng f. 2.1 Transformatons of covarant dervatve of torson tensor Let f : GR N GR N be an equtorson thrd type almost geodesc mappng of an s-th knd, s = 1,2, whch has the property of recprocty. Based on the equaton 1.3 and the nvarance jk = jk, we obtan that s jm;n jm ;n = n jm = jm jn m mn j n jm n n m jn jn j + jn m + mn j 2.6 mn mn Because the mappng f has the property of recprocty, t s got n [29] that s.e. ψ j = ψ j and σ jk ϕ = σ jk ϕ, 2.7 jk jk = 1 j +σ j ϕ k + k +σ k ϕ j σjk ϕ j +σ j ϕ k + k +σ kϕ j +σjk ϕ. p qr jk jk = p qr jk p qr jk = p = j q = r = = σ jmn σjmn jm n n : σjmn = 1 m jn jn : σjmn = j mn mn : σjmn = jm n +n jm β β + jmϕ σ n +n jmϕ β σ β jm ϕ σ n jm n mn j + jmϕ σ n mnϕ σ j + m ϕ σ jn jm n + jn m + jmϕ σ n + jnϕ σ m + j ϕ σ mn th regard to the expressons 2.6, 2.8, we obtan that t holds jm;n jm 2.8 ;n = σ jmn σ jmn, 2.9 p p 4

p = 1,...,8, for σ jmn = 1 jm n m jn j mn, 2.10 σ jmn = jm n + mϕ σ jn + jϕ σ mn 2 2 jm ϕ σ n + jn σ jmn = jm n m jn + jϕ σ mn 3 σ jmn = 4 jm jm n + jn n j mn + mϕ σ jn jm n mn σ jmn = jmϕ σ n m jn j 5 n jm β β + jm 2 jm n + jn m mn j ϕ σ m mn ϕ σ j, 2.11 m + jmϕ σ n + jnϕ 2.12 σ m, j + jmϕ σ n mnϕ 2.13 σ j, mn σ jmn = jmϕ σ n + mϕ σ jn + jϕ σ mn 6 n jm n jm β β jm ϕ β σ β jm n +n jmϕ β σ β + jmϕ 2.14 σ n, n jn σ jmn = jmϕ σ n m jn + jϕ σ mn 7 n jm β β jn m + mn j ϕ σ n jnϕ σ m + mnϕ σ j, m 1 + σ jmn = jmϕ σ n j mn + mϕ σ jn 8 n jm β β + mn 1 j + and the correspondng σ p jmn. Let be n jm ϕ β σ β jn 2.15 ϕ σ m, 2.16 n jmϕ β σ β + mnϕ 2.17 σ j, U = jm 1 n, U = jn 2 m, U = m 3 jn, U = n 4 jm, U = j 5 mn, U = jm 6 U = jn 7 m, U = mn 8 j, U = mϕ σ jn, U = nϕ σ jm, U = jϕ σ mn, 9 10 11 U 12 = jm U 17 = n jm ϕ σ n, U = jnϕ σ m, U = mnϕ σ j, U = n jm β 13 14 15 β, U = 16 m jn β β, ϕ β σ β, U = m jnϕ β σ β, U = jmϕ σ n, U = jnϕ σ m. 18 19 20 It holds the followng lemma: 5 n,

Lemma 1. Let f : GR N GR N be an equtorson thrd type almost geodesc mappng whch has the property of recprocty. a Covarant dervatves jm satsfy the equatons ;n and jm ;n of the torson tensor of the spaces GR N and GR N jm;n = jm ;n + σ jmn σ jmn, 2.18 p = 1,...,8, for σ jmn gven by the equatons 2.10 2.17 and ther mages σ jmn under the p p mappng f. b Covarant dervatves jm satsfy the equaton ;n and jm p p ;n of the torson tensor of the spaces GR N and GR N jm ;n = jm 8 20 ;n + ρ=1 θ=1 u ρ θ Uθ U θ, 2.19 for real constants u ρ θ, the geometrcal objects U θ gven above and ther transformatons U θ under the mappng f. c The rank of matrx [ u ρ θ] of the type 8 20 s 4,.e. there are four lnearly ndependent transformatons of the transformatons from 2.18. Corollary 1. Geometrcal objects ρ T jm;n = jm ;n 20 θ=1 u ρ θ U θ jmn, 2.20 ρ {1,...,8}, for the correspondng real constants u ρ θ, are nvarants of an equtorson almost geodesc mappng f : GR N GR N whch has the property of recprocty. Four of these nvarants are lnearly ndependent. Remark 1. The geometrcal objects σ p jmn,p {1,...,8}, have the form 8 20 σ jmn = p ρ=1 θ=1 for the above defned geometrcal objects U θ. u ρ θ U jmn, 2.21 θ 2.2 Transformatons of curvature tensors under almost geodesc mappngs Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd, s = 1,2, whch has the property of recprocty. From the nvarance of the geometrcal objects 1 jmn and 2 jmn gven by the equatons 2.2, 2.3, we drectly obtan that s 6

R jmn = Rjmn j 1 [mn] n m j;n 1 j;m jm +µσ jm 1 jn +µσ jn + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +j 1 [mn] m j;n jn +µσ jn 1 n j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ, R jmn = Rjmn j 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +j 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm n ϕ +σ jn m ϕ. 3.1.1 3.1.2 Hence, based on these transformatons and the equaton 2.18 we establsh the followng equatons: 7

K jmn = Kjmn j 1 [mn] n m j;n 1 j;m jm +µσ jm 1 jn +µσ jn + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +j 1 [mn] m j;n jn +µσ jn 1 n j;m jm +µσ jm 1 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +uσ jmn +u σ jnm uσ jmn u σ jnm, p q p q K jmn = Kjmn j 2 [mn] m n j;m jm +µσ jm 2 j;n jn +µσ jn 2 + σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ +j 2 [mn] m j;n jn +µσ jn 2 n j;m jm +µσ jm 2 σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ +uσ jmn +u σ jnm uσ jmn u σ jnm. p q p q 2.22 2.23 Based on these transformatons, we obtan that s p,q 1 jmn = jmn and p,q 1 p,q 2 jmn = jmn, p,q 2 for p,q {1,...,8} 2 and 8

p,q 1 p,q 2 jmn = K jmn + j 1 [mn] m j;n n j;m jm +µσ jm 1 1 jn +µσ jn σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ +σ jm nϕ σ jn mϕ uσ jmn u σ jnm, p q jmn = K jmn + j 2 [mn] m j;n n j;m jm +µσ jm 2 2 jn +µσ jn σ jm;n σ jn;m σ jm σ n σ jn σ m ϕ ϕ σ jm nϕ +σ jn mϕ uσ jmn u σ jnm. p q 2.24 2.25 Theorem 1. Let f : GR N GR N be an equtorson almost geodesc mappng of the thrd type and s-th knd, s = 1,2, whch has the property of recprocty. Famles p,q 1 jmn and jmn gven by the equatons 2.24, 2.25 are famles of nvarants of mappng of the correspondng knd. Corollary 2. The famles jmn p,q s p,q 2,s = 1,2, of nvarants of an equtorson almost geodesc mappng f : GR N GR N whch has the property of recprocty and the nvarants s jmn gven by the equatons 2.2, 2.3 satsfy the equatons p,q s for p,q {1,...,8} 2. jmn = jmn uσ jmn u σ s p +u jm;n +u jn q jnm ;m +v jm n +v jn m +w mn j, 2.26 Corollary 3. The rank of matrx = [ 1 u ρ 1... u ρ 20 u u v v w ] 2.27 of the type 64 26 s equal 6,.e. there are sx lnearly ndependent famles p,q {1,...,8} 2, of nvarants gven by the equatons 2.24, 2.25. jmn p,q s,s {1,2}, 9

References [1] H. H. Alsulam, E. Karapnar, V. Rakočevć, Ćrć Type Nonunque Fxed Pont Theorems on b-metrc Spaces, Flomat 31:11 2017, 3147 3156. [2] V. Berezovsk, J. Mkeš, On a Classfcaton of Almost Geodesc Mappngs of Affne Connecton Spaces, Acta Unv. Palack. Olomuc, Fac. rer. nat., Mathematca 35 1996 21 24. [3] L. B. Ćrć, On some maps wth a nonunque fxed pont, Publ. Inst. Math., 17, 1974, 52 58. [4] M. S. Ćrć, M. Lj. Zlatanovć, M. S. Stankovć, Lj. S. Velmrovć, On geodesc mappngs of equdstant generalzed Remannan spaces, Appled Mathematcs and Computaton 21812, 2012, 6648 6655. [5] A. Ensten, A generalzaton of the relatvstc theory of gravtaton, Ann. of. Math., 45 1945, No. 2, 576 584. [6] A. Ensten, Banch denttes n the generalzed theory of gravtaton, Can. J. Math., 1950, No. 2, 120 128. [7] A. Ensten, Relatvstc Theory of the Non-symmetrc Feld, Prnceton Unversty Press, New Jersey, 1954, 5th edton. [8] L. P. Esenhart, Non-Remannan Geometry, vol 8, Amer. Math. Soc. Colloq. Publ., New York, 1927. [9] E. Goulart, M. Novello, Cosmologcal Stablty of eyl Conformal Tensor, Gravtaton and Cosmology, 2008, Vol. 14, No. 4, pp. 321-326. [10] G. Hall, Projectve relatedness and conformal flatness, Cent. Eur. J. Math., 10 2012, 1763 1770. [11] G. Hall, On the converse of eyl s conformal and projectve theorems, Publ. Inst. Math. Beograd N.S., 108 2013, No. 94, 55 65. [12] S. Ivanov, M. Lj. Zlatanovć, Connectons on a non-symmetrc generalzed Remannan manfold and gravty, Class. Quantum Grav., 33 2016, No. 7. [13] J. Mkeš, V. Kosak, A. Vanžurová, Geodesc Mappngs of Manfolds wth Affne Connecton, Palacký Unversty, Olomouc, 2008. [14] J. Mkeš, E. Stepanova, A. Vanžurová, et all, Dfferental Geometry of Specal Mappngs, Palacký Unversty, Olomouc, 2015. [15] J. Mkeš, A. Vanžurova, I. Hnterletner, Geodesc Mappngs and Some Generalzatons, Palacký Unversty, Olomouc, 2009. [16] S. M. Mnčć, On curvature tensors and pseudotensors of the spaces wth non-symmetrc affne connecton, Math. Balkanca N.S., 76 1974, No. 4,427 430. 10

[17] S. M. Mnčć, Independent curvature tensors and pseudotensors of spaces wth nonsymmetrc affne connexon, Colloqua Mathematca Socetats János Bolaya, 31 1979, 445 460. [18] S. M. Mnčć, M. S. Stankovć, On geodesc mappngs of general affne connexon spaces and of generalzed Remannan spaces, Mat. Vesn., 49 1997, No. 2, 27 33. [19] S. M. Mnčć, M. S. Stankovć, Equtorson geodesc mappngs of generalzed Remannan spaces, Publ. Inst. Math. Beograd N. S 61 75 1997, 97-104. [20] N. S. Snyukov, Geodesc Mappngs of Remannan Spaces n Russan, Nauka, Moscow, 1979. [21] Mća S. Stankovc, Frst type almost geodesc mappngs of general affne connecton spaces, Nov Sad J. Math. 29, No. 3 1999, 313-323. [22] Mća S. Stankovć, On a canonc almost geodesc mappngs of the second type of affne spaces, FILOMAT 13, 1999, 105-114. [23] M. S. Stankovć On a Specal Almost Geodesc Mappngs of Thrd TYpe of Affne Spaces, Nov Sad J. Math. Vol. 31, No. 2, 2001, 125 135. [24] M. S. Stankovć, S. M. Mnčć, New specal geodesc mappngs of generalzed Remannan space, Publ. Inst. Math. Beograd N. S 6781 2000, 92 102. [25] M. S. Stankovć, S. M. Mnčć, Lj. S. Velmrovć, On Holomorphcally Projectve Mappngs of Generalzed Kahleran Spaces, Matematck vesnk 542002, 195 202. [26] M. S. Stankovć, S. M. Mnčć, Lj. S. Velmrovć, On equtorson holomorphcally projectve mappngs of generalsed Kahleran spaces, Czechoslovak Mathematcal Journal, 54 129 2004, No. 3, 701-715. [27] M. S. Stankovć, Lj. S. Velmrovć, S. M. Mnčć, M. Lj. Zlatanovć, Equtorson conform mappngs of generalzed Remannan spaces, Matematck vesnk, 61 2009, 119 129. [28] M. S. Stankovć, M. Lj. Zlatanovć, Lj. S. Velmrovć, Equtorson holomorphcally projectve mappngs of generalzed Kahleran space of the second knd, Internatonal Electronc Journal of Geometry, Vol. 3, No. 2 2010, 26 39. [29] N. O. Vesć, Invarants of Thrd Type Almost Geodesc Mappngs of Generalzed Remannan Space, submtted. [30] N. O. Vesć, Lj. S. Velmrovć, M. S. Stankovć, Some Invarants of Equtorson Thrd Type Almost Geodesc Mappngs, Medterranean Journal of Mathematcs, Vol. 13, 6 2016, 4581 4590. [31] H. Zhang, Y. Zhang, X-Z. L, Dynamcal spacetmes n conformal gravty, Nuclear Physcs B 921 2017 522 537. 11