Supporting Information

Σχετικά έγγραφα
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Electronic Supplementary Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information

Supporting information. Palladium nanoparticles generated in situ used as catalysts in carbonylative cross-coupling in aqueous medium

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting information

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information. Experimental section

Supporting Information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Electronic Supplementary Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

multicomponent synthesis of 5-amino-4-

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supporting Information

Supporting Information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Available online at

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Supporting Materials

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting information

Supporting Information. Experimental section

Electronic Supplementary Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

One-pot β-substitution of enones with alkyl groups to β-alkyl enones

phase: synthesis of biaryls, terphenyls and polyaryls

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting information for

Supporting Information. Direct Heptafluoroisopropylation of Arylboronic Acids via. Hexafluoropropene (HFP)

SUPPORTING INFORMATION

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Experimental procedure

Supporting Information

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

A novel 4-aminoantipyrine-Pd(II) complex catalyzes. Suzuki Miyaura cross-coupling reactions of aryl

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information for

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Supporting Information

Supporting information

Supporting information

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supporting Information for

Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Acylative Suzuki coupling of amides: Acyl-nitrogen activation via synergy of independently modifiable activating groups

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Cu-catalyzed stereoselective conjugate addition of arylboronic acids to alkynoates

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Supporting Information

Supporting Information

Transcript:

Supporting Information Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts S. M. A. Hakim Siddiki, [a] Abeda Sultana Touchy, [b] Kenichi Kon, [b] [a, b] and Ken-ichi Shimizu* chem_201505109_sm_miscellaneous_information.pdf

Supporting Information Direct Olefination of Alcohols with Sulfones by Heterogeneous Platinum Catalysts S. M. A. Hakim Siddiki, a Abeda Sultana Touchy, b Kenichi Kon, b Ken-ichi Shimizu* a,b a Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan b Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan *Corresponding author Ken-ichi Shimizu Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan E-mail: kshimizu@cat.hokudai.ac.jp, Fax: +81-11-706-9163 NMR and GC/MS analysis 1 H and 13 C NMR spectra for olefins of Table-4 and Table-5 were assigned and reproduced to the corresponding literature. 1 H and 13 C NMR spectra were recorded using at ambient temperature on JEOL-ECX 600 operating at 600.17 and 150.92 MHz, respectively with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks 77.00 ppm chloroform. Abbreviations used in the NMR experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra was taken by SHIMADZU QP2010. Vinyl-benzene: GC-MS m/e 104.065. 1-Methyl-4-vinyl-benzene : [1] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.28 (d, J = 8.22 Hz, 2H), 7.10 (d, J = 7.62 Hz, 2H), 6.80 (dd, J = 17.82, 10.98 Hz, 1H), 5.68 (d, J = 17.82 Hz, 1H), 5.16 (d, J = 11.04 Hz, 1H), 2.33 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 137.57, 136.68, 134.75, 129.17 (C 2), 126.08 (C 2), 112.71, 21.17; GC-MS m/e 118.075. 1

1-Methoxy-4-vinyl-benzene : [1] MeO 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.33 (d, J = 8.94 Hz, 2H), 7.10 (d, J = 8.94 Hz, 2H), 6.64 (dd, J = 17.52, 10.92 Hz, 1H), 5.61 (d, J = 17.60 Hz, 1H), 5.12 (d, J = 10.36 Hz, 1H), 3.78 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 159.30, 136.17, 130.36, 127.23, 126.08 (C 2), 113.84, 111.50, 55.20; GC-MS m/e 134.075. 1-(tert-Butyl)-4-vinyl-benzene : [2] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.34 (s like, 4H), 6.68 (dd, J = 17.88, 10.98 Hz, 1H), 5.70 (d, J = 17.22 Hz, 1H), 5.18 (d, J = 10.98 Hz, 1H), 1.31 (s, 9H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 150.82, 136.56, 134.80, 125.90, 125.40, 125.14, 125.09, 112.97, 34.54, 31.27 (C 3); GC-MS m/e 160.130. 1-Fluoro-4-vinyl-benzene: GC-MS m/e 122.055. F 1-Chloro-4-vinyl-benzene: GC-MS m/e 138.025. Cl 1-Trifluoromethyl-4-vinyl-benzene: GC-MS m/e 172.055. F 3 C 4-Vinyl-biphenyl : [1] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.59-7.58 ( m, 2H), 7.56-7.54 (m, 2H), 7.48-7.46 (m, 2H), 7.43-7.40 (m, 2H), 7.34-7.31 (m, 1H), 6.74 (dd, J = 17.16, 10.98 Hz, 1H), 5.78(d, J = 17.16 Hz, 1H), 5.25 (d, J = 10.98 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 140.67, 140.53, 136.54, 136.36, 128.75(C 2), 127.28 (C 2), 127.19, 126.92 (C 2), 126.61(C 2), 113.87; GC-MS m/e 180.015. 2

1,2-Dimethoxy-4-vinyl-benzene : [1] MeO OMe 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 6.96-6.92 ( m, 2H), 6.80 (d, J = 8.22 Hz, 1H), 6.64 (dd, J = 17.82, 11.04 Hz, 1H), 5.60 (d, J = 17.82 Hz, 1H), 5.14 (d, J = 11.04 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 148.84, 148.82, 136.35, 130.56, 119.32, 111.66, 110.86, 108.33, 55.75, 55.64; GC-MS m/e 164.085. 2-Vinylnapthalene : [1] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.72-7.69 (m, 3H), 7.66 (s, 1H), 7.57 (dd, J = 8.94, 2.04 Hz, 1H), 7.38-7.36 (m, 2H), 6.80 (dd, J = 17.62, 10.98 Hz, 1H), 5.78(d, J = 17.62 Hz, 1H), 5.25 (d, J = 10.98 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 136.86, 134.94, 133.50, 133.10, 128.09, 127.98, 127.60, 126.35, 126.15, 125.83, 123.06, 114.07; GC-MS m/e 154.075. 1-Vinylnapthalene : [1] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 8.07 (d, J = 7.56 Hz, 1H), 7.80 (d, J = 8.22 Hz, 1H), 7.73 (d, J = 8.22 Hz, 1H), 7.58 (d, J = 7.56 Hz, 1H), 7.48-7.40 (m, 4H), 5.75 (dd, J = 17.62, 1.38 Hz, 1H), 5.43 (dd, J = 10.68, 1.38 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 135.50, 134.28, 133.50, 131.02, 128.44, 128.03, 125.98, 125.67, 125.56, 123.67, 123.54, 117.01; GC-MS m/e 154.075. 2-Vinyl-furan: GC-MS m/e 94.045. O 2-Vinyl-thiophene: GC-MS m/e 110.015. S 3

2-Vinylpyridine : [3] N 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 8.57 (d like s, 1H), 7.64 (t, J = 7.56 Hz, 1H), 7.34 (d, J = 7.56 Hz, 1H), 7.15 (m, 1H), 6.82 (dd, J = 17.88, 10.98 Hz, 1H), 6.20 (d, J = 17.88 Hz, 1H), 5.48 (d, J = 10.98 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 155.72, 149.49, 136.91, 136.44, 122.41, 121.18, 118.16 ; GC-MS m/e 105.045. 5-Vinyl-benzo[1,3]dioxole: [4] O O 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 6.95 (s, 1H), 6.80 (dd, J = 8.37, 1.38 Hz, 1H), 6.75 (d, J = 7.65 Hz, 1H), 6.60 (dd, J = 17.24, 10.98 Hz, 1H), 5.94 (s, 2H), 5.56 (d, J = 17.24 Hz, 1H), 5.12 (d, J = 10.98 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 147.96, 147.32, 136.31, 132.08, 120.98, 111.93, 108.15, 105.35, 101.01; GC-MS m/e 148.065. Non-1-ene: GC-MS m/e 126.145. n-c 7 H 15 Vinyl-cyclohexane: GC-MS m/e 110.105. 4-Methyl-penta-1,3-diene:GC-MS m/e 82.075. Buta-1,3-dienyl-benzene : [5] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.39 (d, J = 8.22 Hz, 2H), 7.31-7.28 ( m, 2H), 7.22-7.20 (m, 1H), 6.80 (dd, J = 18.48, 10.98 Hz, 1H), 6.51(dd, J = 17.16, 9.60 Hz, 2H), 5.32 (d, J = 17.16 Hz, 1H), 5.16 (d, J = 9.60 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 137.13, 137.05, 132.80, 129.56, 128.56 (C 2), 127.58, 126.38 (C 2), 117.58; GC-MS m/e 130.085. 4

Isopropenyl-benzene : [6] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.47-7.45 (m, 2H), 7.34-7.31 (m, 2H)), 7.27-7.25 (m, 1H), 5.36 (s, 1H), 5.08 (s, 1H), 2.15 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 143.24, 141.17, 128.19 (C 2), 127.37, 125.45 (C 2), 112.38, 21.80; GC-MS m/e 118.075 1-Isopropenyl-4-methyl-benzene : [6] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.37 (d, J = 8.22 Hz, 2H), 7.13 (d, J = 8.22 Hz, 2H), 5.33 (s, 1H), 5.02 (s, 1H), 2.33 (s, 3H), 2.13 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 143.05, 138.31, 137.12, 128.88 (C 2), 125.33 (C 2), 111.53, 21.83, 21.04; GC-MS m/e 132.015. 1-Isopropenyl-4-methoxy-benzene: [7] MeO 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.41 (d, J = 8.61 Hz, 2H), 6.85 (d, J = 8.61 Hz, 2H), 5.28 (s, 1H), 4.98 (s, 1H), 3.80 (s, 3H), 2.12 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 159.02, 142.51, 133.70, 126.56 (C 2), 113.50 (C 2), 110.62, 55.24, 21.88; GC-MS m/e 148.165. 2-Isopropenyl-naphthalene : [8] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.84-7.77 (m, 4H), 7.66 (dd, J = 8.64, 2.04 Hz, 1H), 7.46-7.43 (m, 2H), 5.53 (s, 1H), 5.19 (s, 1H), 2.26 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 142.96, 138.30, 133.35, 132.76, 128.21, 127.66, 127.47, 126.08, 125.79, 124.23, 123.86, 113.00, 21.86; GC-MS m/e 168.115. 1,1-Diphenyl-ethene : [9] 5

1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.33-7.31 (m, 10H), 5.45 (s, 2H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 150.01, 141.44 (C 2), 128.24 (C 4), 128.13 (C 4), 127.68 (C 2), 114.26; GC-MS m/e 180.105. Propenyl-benzene: GC-MS m/e 118.075. 1-Methyl-4-propenyl-benzene: [1] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.21 (d, J = 8.22 Hz, 2H), 7.08 (d, J = 7.56 Hz, 2H), 6.35 (d, J = 15.78 Hz, 1H), 6.19-6.17 (m, 1H), 2.31 (s, 3H), 1.86 (d, J = 6.90 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 136.35, 135.11, 130.80, 129.13 (C 2), 125.67 (C 2), 124.58, 21.10, 18.44; GC-MS m/e 132.095. 1-Methoxy-4-propenyl-benzene: [1] MeO 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.24 (d, J = 8.28 Hz, 2H), 6.81 (d, J = 8.28 Hz, 2H), 6.32 (d, J = 15.24 Hz, 1H), 6.09-6.07 (m, 1H), 3.77 (s, 3H), 1.84 (d, J = 6.90 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 158.51, 130.76, 130.28, 126.83 (C 2), 123.45, 113.85 (C 2), 55.22, 18.40; GC-MS m/e 148.085. 1-tert-Butyl-4-propenyl-benzene: [10] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.31 (d like, 2H), 7.27 (d like, 2H), 6.37 (d, J = 15.84 Hz, 1H), 6.19-6.18 (m, 1H), 1.86 (d, J = 4.80 Hz, 3H), 1.30 (s, 9H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 149.65, 135.16, 130.68, 125.49 (C 2), 125.35 (C 2), 124.85, 34.45, 31.30 (C 3), 18.48; GC-MS m/e 174.145. 1-Chloro-4-propenyl-benzene:GC-MS m/e 152.035. Cl 6

4-Propenyl-biphenyl: [11] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.56 (d, J = 6.90 Hz, 2H), 7.50 (d, J = 8.28 Hz, 2H), 7.24-7.36 (m, 4H), 7.32-7.28 (m, 1H), 6.41 (d, J = 15.78 Hz, 1H), 6.27-6.23 (m, 1H), 1.87 (d, J = 6.84 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 140.79, 139.40, 136.93, 130.54, 128.70 (C 2), 127.12 (C 2), 127.07, 126.82 (C 2), 126.18 (C 2), 125.82, 18.54; GC-MS m/e 194.105. 1,2-Dimethoxy-4-propenyl-benzene:GC-MS m/e 178.095. MeO OMe 2-Propenyl-naphthalene: [1] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.76-7.73 (m, 3H), 7.63 (s, 1H), 7.54 (dd, J = 8.64, 2.04 Hz, 1H), 7.43-7.39 (m, 2H), 6.54 (d, J = 15.78 Hz, 1H), 6.37-6.34 (m, 1H), 1.91 (d, J = 4.80 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ, 135.34, 133.68, 132.58, 131.11, 128.01, 127.79, 127.59, 126.15, 126.07, 125.38, 125.15, 123.46, 18.61; GC-MS m/e 168.095. 2-Propenyl-thiophene: [12] S 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.06 (d, J = 5.46 Hz, 1H), 6.91 (t, J = 4.80 Hz, 1H), 6.84 (d, J = 2.76 Hz, 1H), 6.51 (d, J = 15.12 Hz, 1H), 6.08-6.05 (m, 1H), 1.84 (d, J = 6.90 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 143.05, 127.11, 125.70, 124.22, 123.91, 122.91, 18.24 ; GC-MS m/e 124.035. 3-Propenyl-pyridine: [13] N 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 8.55 (s, 1H), 8.42 (s, 1H), 7.64 (d, J = 7.56 Hz, 1H), 7.22-7.20 (m, 1H), 6.38 (d, J = 17.16 Hz, 1H), 6.34-6.39 (m, 1H), 1.91 (d, J = 7.56 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 147.83, 147.79, 133.40, 132.27, 128.24, 127.50, 123.37, 18.62 ; 7

GC-MS m/e 119.075. 5-Propenyl-benzo[1,3]dioxole: [14] O O 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 6.87 (s, 1H), 6.72 (s, 2H), 6.29 (d, J = 15.84 Hz, 1H), 6.07-6.03 (m, 1H), 5.91 (s, 2H), 1.84 (d, J = 6.18 Hz, 3H), 13 C NMR (150.92 MHz, CDCl 3 ): δ 147.86, 146.44, 132.44, 130.49, 123.87, 120.02, 108.15, 105.27, 100.85, 18.30; GC-MS m/e 162.065. Penta-1,3-dienyl-benzene: [15] 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.40 (d, J = 6.90 Hz, 2H), 7.37-7.32 (m, 2H), 7.26-7.23 (m, 1H), 6.80-6.78 (m, 1H), 6.46 (d, J = 15.06 Hz, 1H), 6.28-6.26 (m, 1H), 5.89-5.86 (m, 1H), 1.86 (d, J = 6.18 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 137.60, 131.82, 130.25, 129.68, 129.28, 128.48 (C 2), 127.01, 126.07 (C 2), 18.32; GC-MS m/e 144.095. (E)-1,2-Diphenylethene [16] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.50 (d, J = 7.56 Hz, 4H), 7.34 (t, J = 7.62 Hz, 4H), 7.24 (t, J = 7.56 Hz, 2H), 7.09 (s, 2H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 137.26 (C 2), 128.64 (C 4), 128.41 (C 2), 128.29, 127.58 (C 4), 126.47 ; GC-MS m/e 180.095. 1-Methyl-4-styryl-benzene: [1] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.49 (d, J = 7.56 Hz, 2H), 7.40 (d, J = 8.28 Hz, 2H), 7.34 (t, J = 7.56 Hz, 2H), 7.23 (t, J = 7.56 Hz, 1H), 7.16 (d, J = 8.22 Hz, 2H), 7.06 (d, J = 4.80 Hz, 2H), 2.35 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 137.49, 137.47, 134.50, 129.37 (C 2), 128.63 (C 2), 128.57, 127.65, 127.37, 126.40 (C 2), 126.37 (C 2), 21.24; GC-MS m/e 194.105. 8

1-Methoxy-4-styryl-benzene: [1] Ph MeO 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.48 (d, J = 7.56 Hz, 2H), 7.44 (d, J = 8.22 Hz, 2H), 7.33 (t, J = 7.56 Hz, 2H), 7.22 (t, J = 7.56 Hz, 1H), 7.06 (d, J = 15.78 Hz, 1H), 6.97 (d, J = 15.78 Hz, 1H), 6.89 (d, J = 8.22 Hz, 2H), 3.82 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 159.30, 137.64, 130.14, 128.62 (C 2), 128.20, 127.69 (C 2), 127.20, 126.61, 126.23 (C 2), 114.13 (C 2), 55.32; GC-MS m/e 210.105. 1-tert-Butyl-4-styryl-benzene: [16] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.49 (d, J = 7.56 Hz, 2H), 7.45 (d, J = 8.22 Hz, 2H), 7.36 (d, J = 8.22 Hz, 2H), 7.34 (t, J = 7.56 Hz, 2H), 7.23 (t, J = 7.56 Hz, 1H), 7.08 (d, J = 5.52 Hz, 2H), 1.31 (s, 9H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 150.75, 137.50, 134.52, 128.63 (C 2), 128.46, 127.89, 127.39, 126.39 (C 2), 126.22 (C 2), 125.60 (C 2), 34.60, 31.27; GC-MS m/e 236.160. 1-Fluoro-4-styryl-benzene: [16] Ph F 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 750-7.46 (m, 4H), 7.35 (t, J = 7.56 Hz, 2H), 7.26 (t, J = 7.56 Hz, 1H), 7.08-7.02 (m, 4H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 162.30 (d, J = 247.59 Hz, 4-F-C ), 137.13, 133.46, 128.69, 128.44, 127.95 (d, J = 8.06 Hz, meta to 4-F, C 2 ), 127.65, 127.44, 126.41, 115.60 (d, J = 8.06 Hz, ortho to 4-F, C 2 ); GC-MS m/e 198.085. 1-Chloro-4-styryl-benzene: [1] Ph Cl 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.49 (d, J = 7.56 Hz, 2H), 7.42 (d, J = 8.22 Hz, 2H), 7.35 (t, J = 7.56 Hz, 2H), 7.31 (d, J = 8.22 Hz, 2H), 7.26 (t, J = 7.56 Hz, 1H), 7.06 (d, J = 5.46 Hz, 2H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 136.93, 135.79, 133.13, 129.26, 128.81 (C 2), 128.71 (C 2), 127.84, 127.63 (C 2), 127.31, 126.52 (C 2); GC-MS m/e 214.055. 9

4-Styryl-biphenyl: [1] Ph Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.62-7.58 (m, 3H), 7.45 (d, J = 8.22Hz, 2H), 7.41 (t, J = 7.56 Hz, 2H), 7.34-7.29 (m, 4H), 7.24 (t, J = 7.56 Hz, 2H), 7.21 (m, 1H) 6.62 (s, 2H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 140.67, 139.71, 137.32, 136.21, 130.39, 129.78, 129.32 (C 2), 128.86 (C 2), 128.74 (C 2), 128.26 (C 2), 127.25, 127.14, 126.87 (C 2), 126.80 (C 2) ; GC-MS m/e 256.135. 1,2-Dimethoxy-4-styryl-benzene: [17] Ph MeO OMe 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.49 (d, J = 7.56 Hz, 2H), 7.34 (t, J = 7.56 Hz, 2H), 7.23 (t, J = 7.56 Hz, 1H), 7.06-7.03 (m, 3H), 6.97 (d, J = 15.84 Hz, 1H), 6.84 (d, J = 8.28 Hz, 1H), 3.93 (s, 3H), 3.88 (s, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 149.02, 148.83, 137.42, 130.34, 128.59 (C 2), 128.37, 127.21, 126.71, 126.19 (C 2), 119.81, 111.10, 108.62, 55.84, 55.71; GC-MS m/e 240.115. 2-Styryl-naphthalene: [18] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.85-7.80 (m, 4H)), 7.74 (d, J = 8.22 Hz, 1H), 7.56 (d, J = 8.22 Hz, 2H), 7.48-7.43 (m, 2H), 7.37 (t, J = 6.18 Hz, 2H), 7.29-7.23 (m, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 137.31, 134.78, 133.67, 133.01, 128.98, 128.73, 128.71 (C 2), 128.28, 127.97, 127.67 (C 2), 126.62, 126.52 (C 2), 126.31, 125.88, 123.47 ; GC-MS m/e 230.110. 1-Styryl-naphthalene: [1] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 8.20 (d, J = 8.22 Hz, 1H), 7.88-7.84 (m, 2H), 7.78 (d, J = 8.22 Hz, 1H), 7.72 (d, J = 7.56 Hz, 1H), 7.58 (d, J = 7.56 Hz, 2H), 7.53-7.46 (m, 3H), 7.38 ( t, J = 7.56 Hz, 2H), 7.28 ( t, J = 7.56 Hz, 1H), 7.13 (d, J = 15.78 Hz, 1H); 13 C NMR (150.92 MHz, 10

CDCl 3 ): δ 137.60, 135.01, 133.72, 131.75, 131.39, 128.73 (C 2), 128.59, 128.02, 127.76, 126.67 (C 2), 126.07, 125.81, 125.67, 125.67, 123.76, 123.61; GC-MS m/e 230.110. 2-Styryl-furan: [19] O Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): 7.46 (d, J = 7.56 Hz, 2H), 7.40 (d, J = 1.32 Hz, 1H), 7.33 (t, J = 7.56 Hz, 2H), 7.23 (t, J = 7.56 Hz, 1H), 7.03 (d, J = 16.50 Hz, 1H), 6.89 (d, J = 16.50 Hz, 1H), 6.41 (d, J = 4.8 Hz, 1H), 6.35 (d, J = 4.8 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 153.25, 142.10, 137.02, 128.65 (C 2), 127.54, 127.12, 126.30 (C 2), 116.52, 111.61, 108.52; GC-MS m/e 170.075. 2-Styryl-thiophene: [16] S Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.43 (d, J = 7.56 Hz, 2H), 7.32 (t, J = 7.56 Hz, 2H), 7.22 (t, J = 7.56 Hz, 1H), 7.20 (d, J = 16.50 Hz, 1H), 7.15 (d, J = 4.80 Hz, 1H), 7.04 (d, J = 3.48 Hz, 1H), 6.97 (t, J = 3.48 Hz, 1H), 6.91 (d, J = 18.15 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 142.83, 136.91, 128.65 (C 2), 128.30, 127.54 (C 2), 126.26 (C 2), 126.05, 124.28, 121.74; GC-MS m/e 186.050. 3-Styryl-pyridine: [20] Ph N 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 8.72 (s, 1H), 8.48 (d, J = 2.04 Hz, 1H), 7.83 (t like, 1H), 7.53 (d, J = 7.56 Hz, 2H), 7.38 (t, J = 7.56 Hz, 2H), 7.31-7.25 (m, 2H), 7.16 (d, J = 16.50 Hz, 1H), 7.07 (d, J = 16.60 Hz, 1H); 13 C NMR (150.92 MHz, CDCl 3 ) δ 148.56 (C 2), 136.51, 132.88, 132.62, 130.81, 128.78 (C 2), 128.20, 126.65 (C 2), 124.89, 123.48; GC-MS m/e 181.080. 5-Styryl-benzo[1,3]dioxole: [21] O Ph O 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.47 (d, J = 7.56 Hz, 2H), 7.33 (t, J = 7.56 Hz, 2H), 7.23 11

(t, J = 7.56 Hz, 1H), 7.06 (d, J = 1.38 Hz, 1H), 7.01 (d, J = 15.84 Hz, 1H), 6.93-6.91 (m, 2H ), 6.79 (d, J = 7.56 Hz, 1H), 5.95 (s, 2H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 148.10, 147.27, 137.35, 131.82, 128.62 (C 2), 128.29, 127.32, 126.95, 126.27 (C 2), 121.44, 108.37, 105.49, 101.09; GC-MS m/e 224.080. (1E,3E)-1,4-Diphenylbuta-1,3-diene: [1] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.43 (d, J = 7.56 Hz, 4H), 7.32 (t, J = 7.56 Hz, 4H), 7.22 (t, J = 7.56 Hz, 2H), 6.94 (dd, J = 11.70, 2.76 Hz, 2H), 6.66 (dd, J = 11.70, 2.76 Hz, 2H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 137.30 (C 2), 132.78 (C 2), 129.21 (C 2), 128.63 (C 4), 127.53 (C 2), 126.34 (C 4); GC-MS m/e 206.110. (2-Cyclohexyl-vinyl)-benzene: [22] Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.34-7.26 (m, 3H), 7.18-7.15 (m, 3H), 5.26 (t, J = 7.56 Hz, 1H), 3.34 (d, J = 6.84 Hz, 2H), 2.24 ( (d, J = 5.28 Hz, 2H), 2.11 (d, J = 5.28 Hz, 2H), 1.81-1.67 (m, 1H), 1.59-1.54 (m, 3H), 1.32-1.16 (m, 1H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 141.95, 140.57, 128.32 (C 2), 128.30 (C 2), 125.63, 119.72, 37.17, 33.38, 28.73, 28.61, 27.85, 26.91; GC-MS m/e 186.145. Non-1-enyl-benzene: [23] C 6 H 13 Ph 1 H NMR (600.17 MHz, CDCl 3, TMS): δ 7.33-7.16 (m, 3H), 7.18-7.15 (m, 3H), 5.51 (m, 1H), 3.32 (d, J = 6.18 Hz, 2H), 2.01 (d, J = 6.18 Hz, 2H), 1.28-1.25 (m, 8H), 0.89-0.86 (t, J = 6.18 Hz, 3H); 13 C NMR (150.92 MHz, CDCl 3 ): δ 132.27, 128.75, 128.57 (C 2), 128.41(C 2), 125.99, 125.93, 39.17, 32.63, 31.84, 29.55, 28.97, 22.75, 14.20; GC-MS m/e 202.175. 5-Phenyl-pent-4-enylamine: GC-MS m/e 161.125. H 2 N Ph 12

Ethyl-benzene: GC-MS m/e 106.075. 1-Ethyl-4-methoxy-benzene: GC-MS m/e 136.085. MeO 4-Ethyl-biphenyl: GC-MS m/e 182.105. Ph 4-Ethyl-1,2-dimethoxy-benzene: GC-MS m/e 166.095. MeO OMe 2-Ethyl-naphthalene: GC-MS m/e 156.095. 3-Ethyl-pyridine: GC-MS m/e 107.075. N Propyl-benzene: GC-MS m/e 120.095. 1,2-Diphenylethane: GC-MS m/e 182.105. Ph 13

References: [1] D. Srimani, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2014, 53, 11092 11095. [2] W. Su, S. Urgaonkar, P. A. McLaughlin, J. G. Verkade, J. Am. Chem. Soc. 2004, 126, 16433 16439. [3] E. Alacid, C. Najera, J. Org. Chem. 2008, 73, 2315 2322. [4] T. M. Gogsig, S. L. Sobjerg, T. A. Lindhardt, J. Org. Chem. 2008, 73, 3404 3410. [5] A. Lishchynskyi, K. Muniz, Chem. Eur. J. 2013, 19, 14416 14419. [6] C. B. Tripathi, S. Mukherjee, Angew. Chem. Int. Ed. 2013, 52, 8450 8453. [7] C. B. Tripathi, S. Mukherjee, Org. Lett. 2014, 16, 3368 3371. [8] M. Y. Lin, A. Das, R. S. Liu, J. Am. Chem. Soc. 2006, 128, 9340 9341. [9] C. H. Oh, H. H. Hyung, K. S. Kim, N. Kim, Angew. Chem. Int. Ed. 2003, 42, 805 808. [10] Y. Wang, L. Zhang, Y. Yang, P. Zhang, Z. Du, C. Wang, J. Am. Chem. Soc. 2013, 135, 18048 18051. [11] R. N. MacCoss, E. P. Balskus, S. V. Ley, Tetrahedron Lett. 2003, 44, 7779 7781. [12] B. Singaram, M. V. Rangaishenvi, H. C. Brown, C. G. Goralski, D. L. Hasha, J. Org. Chem. 1991, 56,1543 1549. [13] R. Tomita, Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 2014, 53, 7144 7148. [14] A. Sharma, B. P. Joshi, A. K. Sinha, Bull.Chem. Soc. Jpn. 2004, 77, 2231 2235. [15] B. C. Ranu, S. Banerjee, Eur, J. Org. Chem. 2006, 3012 3015. [16] Z. Chen, M. Luo, Y. Wen, G. Luo, L. Liu, Org. Lett. 2014, 16, 3020 3023. [17] M. Cushman, D. Nagarathnam, D. Gopal, A. K. Chakraborti, C. M. Lin, E. Hamel, J. Med. Chem. 1991, 34, 2579 2588. [18] S. Wu, H. Ma, X. Jia, Y. Zhong, Z. Lei, Tetrahedron 2011, 67, 250 256. [19] R. Cella, H. A. Stefani, Tetrahedron 2006, 62, 5656 5662. [20] K. Kanagaraj, K. Pitchumani, Chem. Eur. J. 2013, 19, 14425 14431. [21] T. Wang, Y. Hu, S. Zhang, Org. Bio. Chem. 2010, 8, 2312 2315. [22] Q. Yao, E. P. Kinney, Z. Yang, J. Org. Chem. 2003, 68, 7528 7531. [23] A. Krasovskiy, C. Duplais, B. H. Lipshutz, Org. Lett. 2010, 12, 4742 4744. 14