Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Reminders: linear functions

Numerical Analysis FMN011

Other Test Constructions: Likelihood Ratio & Bayes Tests

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Determinant and inverse of a Gaussian Fibonacci skew-hermitian Toeplitz matrix

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Congruence Classes of Invertible Matrices of Order 3 over F 2

Jordan Form of a Square Matrix

Fractional Colorings and Zykov Products of graphs

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Lecture 21: Properties and robustness of LSE

Homework 3 Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Wishart α-determinant, α-hafnian

EE512: Error Control Coding

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Statistical Inference I Locally most powerful tests

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Matrices and Determinants

The ε-pseudospectrum of a Matrix

6.3 Forecasting ARMA processes

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

SPECIAL FUNCTIONS and POLYNOMIALS

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

On the Galois Group of Linear Difference-Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

The Jordan Form of Complex Tridiagonal Matrices

New bounds for spherical two-distance sets and equiangular lines

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Iterated trilinear fourier integrals with arbitrary symbols

Solution Series 9. i=1 x i and i=1 x i.

ST5224: Advanced Statistical Theory II

Divergence for log concave functions

Approximation of distance between locations on earth given by latitude and longitude

Every set of first-order formulas is equivalent to an independent set

Abstract Storage Devices

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Concrete Mathematics Exercises from 30 September 2016

C.S. 430 Assignment 6, Sample Solutions

MATRICES

( ) 2 and compare to M.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

4.6 Autoregressive Moving Average Model ARMA(1,1)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Trigonometric Formula Sheet

w o = R 1 p. (1) R = p =. = 1

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Second Order Partial Differential Equations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

5. Choice under Uncertainty

Areas and Lengths in Polar Coordinates

Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 8.3 Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

A General Note on δ-quasi Monotone and Increasing Sequence

Generating Set of the Complete Semigroups of Binary Relations

Distances in Sierpiński Triangle Graphs

The challenges of non-stable predicates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homomorphism of Intuitionistic Fuzzy Groups

The Pohozaev identity for the fractional Laplacian

F19MC2 Solutions 9 Complex Analysis

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

MATRIX INVERSE EIGENVALUE PROBLEM

Areas and Lengths in Polar Coordinates

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Solutions to Exercise Sheet 5

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Cyclic or elementary abelian Covers of K 4

A Hierarchy of Theta Bodies for Polynomial Systems

Commutative Monoids in Intuitionistic Fuzzy Sets

Second Order RLC Filters

12. Radon-Nikodym Theorem

Homework 8 Model Solution Section

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

A Note on Intuitionistic Fuzzy. Equivalence Relation

Transcript:

4th RART, July 17-20 2017, Universidad Complutense de Madrid Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications Ji-Hwan Jung Sungkyunkwan University, Korea jh56k@skku.edu (Joint work with Gi-Sang Cheon and Paul Barry) July 17, 2017 1/28

Outline I. Introduction 1.1 Motivation 1.2 Exponential Riordan matrix 2. Horizontal and vertical formulas for e-riordan matrices 3. Applications 3.1 Determinant of the Hessenberg matrix 3.2 d-orthogonality of Sheffer polynomials 2/28

1. Introduction 3/28

Motivation Eric Temple Bell (1883.02.07-1960.12.21) is the eponym of the Bell polynomials and the Bell numbers of combinatorics. 4/28

An n n matrix A n =[a i,j ] n 1 i,j=0 is called lower Hessenberg matrix if a i,j =0 for j > i + 1, i.e., A n = E.T. Bell in 1923 a 0,0 a 0,1 0 0 a 1,0 a 1,1 a 1,2 0 a 2,0 a 2,1 a 2,2 0.... a n 2,0 a n 2,1 a n 2,2 a n 2,n 1 a n 1,0 a n 1,1 a n 1,2 a n 1,n 1. Let a(z) = k 0 a kz k F 0 with a 0 =1. Ifa i,j = a i j+1 for j i +1 i.e., A n is the Toeplitz matrix then 1 a(z) =1+ ( 1) k det(a k )z k. k 1 5/28

A. Inselberg, On determinants of Toeplitz-Hessenberg matrices arising in power series, J. Math. Anal. Appl., 63(1978), 347-353. W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math, 16(1986), 1-8. J. L. Stuart, Hessenberg L-matrices, Linear Algebra Appl., 167(1992), 261-265. L. Ching, The maximum determinant of an n n lower Hessenberg (0, 1)-matrix, Linear Algebra Appl., 183(1993), 147-153. M. Benhamadou, On the calculation of the multiplicity of a real eigenvalue of Hessenberg matrix, Adv. Eng. Softw., 30(1999), 201-210. T. Sogabe, A note on a fast numerical algorithm for the determinant of a pentadiagonal matrix, Appl. Math. Comput., 201(2008), 561-564. 6/28

M. Elouafi, and A. D. A. Hadj, A recursion formula for the characteristic polynomial of Hessenberg matrices, Appl. Math. Comput. 208(2009), 177-179. Y. H. Chen, C. Y. Yu, A new algorithm for computing the inverse and the determinant of a Hessenberg matrix, Appl. Math. Comput., 218(2011), 4433-4436. M. Merca, A note on the determinant of a Toeplitz-Hessenberg matrix, Special Matrices, 1(2013), 10-16. Z. Cinkir, A fast elementary algorithm for computing the determinant of Toeplitz matrices, J. Comput. Appl. Math., 255(2014), 353-361. A. Ipek, A. Kamil, On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers, Appl. Math. Comput., 229(2014), 433-439. D. A. Bini, L. Robol, Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications, Linear Algebra Appl., 502(2016), 186-213. 7/28

1.2 Exponential Riordan matrix { } F n = j n f jz j C[[z]] f n 0. An exponential Riordan matrix or e-riordan matrix [r n,k ] n,k 0 is defined by g(z) F 0 and f (z) F 1 s.t. its kth column egf is r n,k z n /n! =g(z)f k (z)/k!. n k As usual, the matrix is denoted by E(g(z), f (z)) or E(g, f ). Let E be the set of all e-riordan matrices. The set E forms a group called the exponential Riordan group under the Riordan multiplication defined by E(g, f ) E(h,l)=E(g h(f ),l(f )). The identity is E(1, z), the usual identity matrix. E(g, f ) 1 = E(1/g(f ), f )wheref (f (z)) = f (f (z)) = z. 8/28

2. Horizontal and vertical formulas for e-riordan matrices 9/28

Theorem 1 (Horizontal formula) An i.l.t. matrix R =[r n,k ], r 0,0 =1,isE(g, f ) iff there exists a horizontal pair {h n ; h n } n 0 of sequences s.t. r n,n = h n 0 0, r n, 1 =0; n k r n+1,k = h 0 r n,k 1 + j=0 (k + j)! k! (h j + k h j+1 ) r n,k+j, (n k 0) where H R = n 0 h nz n = g ( f ) g( f ) and H R = n 0 h n z n = f ( f ). 10 / 28

r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 r 5,0 r 5,1 r 5,2 r 5,3 r 5,4 = r 0,0 0 0 0 0 r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 h 0 h0 0 0 0 1! h 1 1! (h 0 + h 1 ) h0 0 0 2! h 2 1! (h 2! 1 + h 2 ) 2! (h 0 +2 h 1 ) h 0 0 3! h 2 1! (h 2 + h 3! 3 ) 2! (h 3! 1 +2 h 2 ) 3! (h 0 +3 h 1 ) h0 4! h 2 1! (h 3 + h 4! 4 ) 2! (h 4! 2 +2 h 3 ) 3! (h 4! 1 +3 h 2 ) 4! (h 0 +4 h 1 ) 11 / 28

r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 r 5,0 r 5,1 r 5,2 r 5,3 r 5,4 = r 0,0 0 0 0 0 r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 h 0 h0 0 0 0 1! h 1 1! (h 0 + h 1 ) h0 0 0 2! h 2 1! (h 2! 1 + h 2 ) 2! (h 0 +2 h 1 ) h 0 0 3! h 2 1! (h 2 + h 3! 3 ) 2! (h 3! 1 +2 h 2 ) 3! (h 0 +3 h 1 ) h0 4! h 2 1! (h 3 + h 4! 4 ) 2! (h 4! 2 +2 h 3 ) 3! (h 4! 1 +3 h 2 ) 4! (h 0 +4 h 1 ) 11 / 28

Theorem 2 (Vertical formula) An i.l.t. matrix R =[r n,k ], r 0,0 =1,isE(g, f ) iff there exists a vertical pair {v n ;ṽ n } n 0 of sequences s.t. r n,n =ṽ0 n 0; n k n! r n,k 1 =ṽ 0 r n+1,k + (n j)! (v j +(n j)ṽ j+1 ) r n j,k, (n k 1) j=0 where V R = n 0 v nz n = g gf and Ṽ R = n 0 ṽnz n = 1 f. 12 / 28

r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 r 5,0 r 5,1 r 5,2 r 5,3 r 5,4 1! 1! (v 0 +ṽ 1 ) ṽ 0 0 0 0 2! 1! (v 2! 1 +ṽ 2 ) 2! (v 0 +2ṽ 1 ) ṽ 0 0 0 3! = 1! (v 3! 2 +ṽ 3 ) 2! (v 3! 1 +2ṽ 2 ) 3! (v 0 +3ṽ 1 ) ṽ 0 0 4! 1! (v 4! 3 +ṽ 4 ) 2! (v 4! 2 +2ṽ 3 ) 3! (v 4! 1 +3ṽ 2 ) 4! (v 0 +4ṽ 1 ) ṽ 0 5! 1! (v 5! 4 +ṽ 5 ) 2! (v 5! 3 +2ṽ 4 ) 3! (v 5! 2 +3ṽ 3 ) 4! (v 5! 1 +4ṽ 1 ) 5! (v 0 +5ṽ 1 ) r 1,1 0 0 0 0 r 2,1 r 2,2 0 0 0 r 3,1 r 3,2 r 3,3 0 0 r 4,1 r 4,2 r 4,3 r 4,4 0 r 5,1 r 5,2 r 5,3 r 5,4 r 5,5 13 / 28

r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 r 5,0 r 5,1 r 5,2 r 5,3 r 5,4 1! 1! (v 0 +ṽ 1 ) ṽ 0 0 0 0 2! 1! (v 2! 1 +ṽ 2 ) 2! (v 0 +2ṽ 1 ) ṽ 0 0 0 3! = 1! (v 3! 2 +ṽ 3 ) 2! (v 3! 1 +2ṽ 2 ) 3! (v 0 +3ṽ 1 ) ṽ 0 0 4! 1! (v 4! 3 +ṽ 4 ) 2! (v 4! 2 +2ṽ 3 ) 3! (v 4! 1 +3ṽ 2 ) 4! (v 0 +4ṽ 1 ) ṽ 0 5! 1! (v 5! 4 +ṽ 5 ) 2! (v 5! 3 +2ṽ 4 ) 3! (v 5! 2 +3ṽ 3 ) 4! (v 5! 1 +4ṽ 1 ) 5! (v 0 +5ṽ 1 ) r 1,1 0 0 0 0 r 2,1 r 2,2 0 0 0 r 3,1 r 3,2 r 3,3 0 0 r 4,1 r 4,2 r 4,3 r 4,4 0 r 5,1 r 5,2 r 5,3 r 5,4 r 5,5 14 / 28

r 1,0 r 1,1 0 0 0 r 2,0 r 2,1 r 2,2 0 0 r 3,0 r 3,1 r 3,2 r 3,3 0 r 4,0 r 4,1 r 4,2 r 4,3 r 4,4 r 5,0 r 5,1 r 5,2 r 5,3 r 5,4 1! 1! (v 0 +ṽ 1 ) ṽ 0 0 0 0 2! 1! (v 2! 1 +ṽ 2 ) 2! (v 0 +2ṽ 1 ) ṽ 0 0 0 3! = 1! (v 3! 2 +ṽ 3 ) 2! (v 3! 1 +2ṽ 2 ) 3! (v 0 +3ṽ 1 ) ṽ 0 0 4! 1! (v 4! 3 +ṽ 4 ) 2! (v 4! 2 +2ṽ 3 ) 3! (v 4! 1 +3ṽ 2 ) 4! (v 0 +4ṽ 1 ) ṽ 0 5! 1! (v 5! 4 +ṽ 5 ) 2! (v 5! 3 +2ṽ 4 ) 3! (v 5! 2 +3ṽ 3 ) 4! (v 5! 1 +4ṽ 1 ) 5! (v 0 +5ṽ 1 ) r 1,1 0 0 0 0 r 2,1 r 2,2 0 0 0 r 3,1 r 3,2 r 3,3 0 0 r 4,1 r 4,2 r 4,3 r 4,4 0 r 5,1 r 5,2 r 5,3 r 5,4 r 5,5 14 / 28

Corollary 3 Let R = E(g, f )bee-riordan matrix with generating functions H R and H R for a horizontal pair {h n ; h n }. Then the generating functions V R and Ṽ R for a vertical pair {v n ;ṽ n } are given by V R = H R(f ) H R (f ) and Ṽ R = 1 H R (f ). Corollary 4 Let R be an e-riordan matrix with the horizontal pair {h n ; h n } n 0 and the vertical pair {v n ;ṽ n } n 0.ThenT = R 1 iff the horizontal pair of T is {v n ;ṽ n } n 0 and the vertical pair of T is {h n ; h n } n 0. Corollary 5 An e-riordan matrix R is an involution iff its horizontal pair and vertical pair are same. 15 / 28

Example 1. Consider S 2 = E(1, e z 1) = 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 3 1 0 0 0 1 7 6 1 0 0 1 15 25 10 1 Let g =1andf = e z 1. Since by f =ln(1+z) we obtain H S2 = g ( f ) g( f ) =0 and H S2 = f ( f )=1+z,. from the Theorem 1 the horizontal pair of S 2 is {0,...;1, 1, 0,...}, i.e. S(n +1, k) =S(n, k 1) + ks(n, k). 16 / 28

Since by Corollary 3 we obtain V S2 = H S 2 (f ) H S2 (f ) =0 and Ṽ S2 = 1 H S2 (f ) = e z = ( 1) n 1 n! z n, n 0 the vertical pair of S 2 is { 0,...; 1 0!, 1 1!, 1 2!,...},i.e. S(n, k 1) = n k+1 j=0 ( 1) j ( n j ) S(n j +1, k). 17 / 28

Let S 1 = S 1 2 = E(1, ln(1 + z)) = 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 2 3 1 0 0 0 6 11 6 1 0 0 24 50 35 10 1. From Corollary 4, the horizontal pair of S 1 is { 0,...; 1 0!, 1 1!, 1 2!,...} and the vertical pairs of S 1 is {0,...;1, 1, 0,...}, i.e. and s(n +1, k) = ( ) k + j 1 ( 1) j s(n, k + j 1) j n k+1 j=0 s(n, k 1) = s(n +1, k)+ns(n, k). 18 / 28

E(g, f ) Horizontal and vertical pairs Comments {h n} = {r( 1) n+1 (n +1)} ( ( ) r E 1 2, 1+ ) { h n} = { {( 1) n } } 1+2z 1+2z {v n} = r, r, r 3!! 5!!, r { 2! 3!,... } {ṽ n} = 1, 1, 1, 3!! 3!, 5!! { 4!,... } {h n} = r, r, r 3!! 5!!, r ( ) 2! 3!,... E (1 + z) r, z + z2 { h n} = {1, 1, 1, 3!! 2 3!, 5!! 4!,...} {v n} = {r( 1) n+1 (n +1)} {ṽ n} = {( 1) n } } {h n} = { r ( m)n ( ( ) r ) { n! E 1 m, ln(1 + mz) m 1 { h n} = ( m) n } 1+mz n! {v n} = {r, 0, 0,...} {ṽ n} = {1, m, 0...} {h n} = {r, 0, 0,...} ( ) { h n} = {1, m, 0...} E e rz, emz 1 } m {v n} = { r ( m)n { n! ( m) n } {ṽ n} = n! ( ( ) 2r ) {h n} = {2r, 2rm, 0,...} E 1 m, z { h n} = { 1, 2m, m 2, 0,...} 1 mz 1 mz {v n} = {2r, 2rm, 0,...} {ṽ n} = { 1, 2m, m 2, 0,...} r-bessel numbers of the 1st kind r-bessel numbers of the 2nd kind r-whiteny numbers of the 1st kind r-whiteny numbers of the 2nd kind r-whiteny-lah numbers 19 / 28

3. Applications 20 / 28

3.1 Determinant of the Hessenberg matrix For a vertical pair {v n ;ṽ n } n 0 of an e-riordan matrix E(g, f ), let v 0 ṽ 0 0 0 v 1 v 0 +ṽ 1 2ṽ 0 0 v 2 v 1 +ṽ 2 v 0 +2ṽ 1 0 V n = and.... v n 2 v n 3 +ṽ n 3 v n 4 +2ṽ n 3 (n 1)ṽ 0 v n 1 v n 2 +ṽ n 1 v n 3 +2ṽ n 2 v 0 +(n 1)ṽ 1 ṽ 1 ṽ 0 0 0 ṽ 2 ṽ 1 ṽ 0 0 ṽ 3 ṽ 2 ṽ 1 0 W n = n!.... 0 ṽ n 1 ṽ n 2 ṽ n 2 ṽ 0 ṽ n ṽ n 1 ṽ n 2 ṽ 1 Remark. The matrix D n V n Dn 1 is the n n leading principle matrix of Stieltjes transform of E(g, f ) 1 where D n = diag(0!, 1!,...,(n 1)!), i.e., (E(g, f )E(g, f ) 1 ) n = D nv n D 1 n. 21 / 28

Theorem 6 Let R = E(g, f )beane-riordan matrix with a vertical pair {v n ;ṽ n } n 0. Then g =1+ n 1 g n z n n! and f = n 1 f n z n n! can be determined by g n = ( 1 ) n ( det(v n ) and f n+1 = 1 ) n+1 det(w n ) ṽ 0 ṽ 0 where det(v 0 )=det(w 0 ) = 1. In particular, if f = zg then det(v n )= 1 n +1 det(w n). 22 / 28

Example 2. Let g = C and f = zc where C = 1 1 4z 2 is the ordinary generating function of the Catalan numbers C n = n+1( 1 2n ) n.since V R = g gf = C = n 0 C n z n and ṼR = 1 f = 1 4z = n 0 1 1 2n ( ) 2n z n, n ByTheorem6,( 1) n n!c n = det(v n )= 1 n+1 det(w n)wherev n = C n and ṽ n = 1 ( 2n ) 1 2n n. For instance, when n =4 4!C 4 = det 1 1 0 0 1 3 2 0 2 3 5 3 5 6 5 7 = 4! 5 det 2 1 0 0 2 2 1 0 4 2 2 1 10 4 2 2. 23 / 28

3.2 d-orthogonality of Sheffer polynomials Definition (P. Maroni in 1989) Let d be an arbitrary positive integer. The PS {P n (x)} Pis a d- orthogonal if there exists a d-dimensional vector of linear functionals, U =(u 0,...,u d 1 ) T, such that { uk, P r (x)p n (x) =0 if r > nd + k, (1) u k, P n (x)p nd+k (x) 0 if n N for each integer k {0, 1,...,d 1}. The orthogonality conditions (1) are equivalent to satisfying the following (d + 2)-term recurrence relation in the monic form: P n+1 (x) =(x β n )P n (x) d λ n,n j P n j (x), λ n,n d 0 j=1 where P 0 (x) =1andP n (x) =0ifn < 0. 24 / 28

Let A n be the n n Hessenberg matrix of the form A n = β 0 1 0 0 λ 1,0 β 1...... λ 2,0 λ 2,1........... λ 3,1............. λ d,0................. 0 λ d+1,1............... 0.................... 1 0 0 λ n 1,n 1 d λ n 1,n 3 λ n 1,n 2 β n 1. Then it is known that P n (x) =det(xi n A n ) for n 1andP 0 (x) =1iff the sequence {P n (x)} n 0 is monic d-orthogonal. 25 / 28

Using the Horizontal formula, we obtain that {P n (x)} is Sheffer for (g, f ) iff there exists a horizontal pair {h n ; h n } s.t. P 0 (x) =1 and P n+1 (x) = n (h j + h j x) d j dx j P n(x) (n 0) j=0 where H R = g ( f ) and H g( f ) R = f ( f ). Similarly, using the vertical formula we obtain that {P n (x)} is Sheffer for (g, f ) iff there exists a vertical pair {v n ;ṽ n } s.t. P 0 (x) =1, ṽ 0 P 1 (x) =x v 0 ṽ 0 P n+1 (x) =(x v 0 nṽ 1 )P n (x) n j=1 n! (n j)! (v j +(n j)ṽ j+1 )P n j (x) where V R = g gf and Ṽ R = 1 f. In this section, we only consider monic polynomials. From now on, let h 0 =ṽ 0 =1. 26 / 28

Theorem 7 Let the sequence {P n (x)} n 0 be Sheffer with a vertical pair {v n ;ṽ n }. Then {P n (x)} n 0 is d-orthogonal iff v d mṽ d+1 and v d+i =ṽ d+i+1 = 0 for all i 1andm 0. Corollary 8 Let the sequence {P n (x)} n 0 be Sheffer for (g, f ) with a vertical pair {v n ;ṽ n }.Then{P n (x)} is d-orthogonal iff there exist g and f with g(0) = 1 and f (0) = 0 such that VR ln(g) = dz and f = dz Ṽ R 1ṼR where V R = d n 0 v nz n and Ṽ R = d+1 n 0 ṽnz n. 27 / 28

1. 감사합니다. 2. Grazie. 3. Thank you. 4. Gracias.