Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments

Σχετικά έγγραφα
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillatory integrals

INTEGRAL INEQUALITY REGARDING r-convex AND

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

2 Composition. Invertible Mappings

Solutions_3. 1 Exercise Exercise January 26, 2017

Oscillation of nonlinear second-order neutral delay differential equations

Example Sheet 3 Solutions

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Uniform Convergence of Fourier Series Michael Taylor

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Tridiagonal matrices. Gérard MEURANT. October, 2008

ST5224: Advanced Statistical Theory II

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

C.S. 430 Assignment 6, Sample Solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Every set of first-order formulas is equivalent to an independent set

Section 8.3 Trigonometric Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Some definite integrals connected with Gauss s sums

Finite Field Problems: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

New Oscillation Criteria for Second-Order Neutral Delay Dynamic Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

4.6 Autoregressive Moving Average Model ARMA(1,1)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

derivation of the Laplacian from rectangular to spherical coordinates

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

Approximation of distance between locations on earth given by latitude and longitude

Exercises to Statistics of Material Fatigue No. 5

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Problem Set 3: Solutions

A Note on Intuitionistic Fuzzy. Equivalence Relation

( y) Partial Differential Equations

Statistical Inference I Locally most powerful tests

Homomorphism in Intuitionistic Fuzzy Automata

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Second Order RLC Filters

Other Test Constructions: Likelihood Ratio & Bayes Tests

Concrete Mathematics Exercises from 30 September 2016

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

D Alembert s Solution to the Wave Equation

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Lecture 2. Soundness and completeness of propositional logic

The challenges of non-stable predicates

5. Choice under Uncertainty

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Strain gauge and rosettes

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Section 7.6 Double and Half Angle Formulas

Lecture 34 Bootstrap confidence intervals

Higher Derivative Gravity Theories

Homomorphism of Intuitionistic Fuzzy Groups

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Parametrized Surfaces

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Second Order Partial Differential Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

w o = R 1 p. (1) R = p =. = 1

Areas and Lengths in Polar Coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Lecture 21: Properties and robustness of LSE

Homework 3 Solutions

Math221: HW# 1 solutions

The Simply Typed Lambda Calculus

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

The behavior of solutions of second order delay differential equations

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

The circle theorem and related theorems for Gauss-type quadrature rules

Spherical quadrangles with three equal sides and rational angles

Section 9.2 Polar Equations and Graphs

Solution Series 9. i=1 x i and i=1 x i.

A General Note on δ-quasi Monotone and Increasing Sequence

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Mean-Variance Analysis

The Pohozaev identity for the fractional Laplacian

On the Galois Group of Linear Difference-Differential Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ

SOME PROPERTIES OF FUZZY REAL NUMBERS

Transcript:

Avilble online t www.tjns.com J. Nonliner Sci. Appl. 9 (206), 670 682 Reserch Article Oscilltion criteri for third-order nonliner neutrl differentil equtions with distributed deviting rguments Cuimei Jing, Tongxing Li b,c, Qingdo Technologicl University, Feixin, Shndong 273400, P. R. Chin. b LinD Institute of Shndong Provincil Key Lbortory of Network Bsed Intelligent Computing, Linyi University, Linyi, Shndong 276005, P. R. Chin. c School of Informtics, Linyi University, Linyi, Shndong 276005, P. R. Chin. Communicted by X. Z. Liu Abstrct The im of this pper is to investigte the oscilltion nd symptotic behvior of clss of thirdorder nonliner neutrl differentil equtions with distributed deviting rguments. By mens of Riccti trnsformtion technique nd some inequlities, we estblish severl sufficient conditions which ensure tht every solution of the studied eqution is either oscilltory or converges to zero. Two exmples re provided to illustrte the min results. c 206 All rights reserved. Keywords: Oscilltion, symptotic behvior, third-order neutrl differentil eqution, distributed deviting rgument. 200 MSC: 34K.. Introduction During the pst few decdes, n incresing interest in obtining sufficient conditions for oscilltory nd nonoscilltory behvior of different clsses of differentil equtions hs been stimulted due to their pplictions in nturl sciences nd engineering (see Hle 9 nd Wong 24). This resulted in publiction of severl monogrphs,, numerous reserch ppers 2 6, 8, 0, 2 23, 25, 26, nd the references cited Corresponding uthor Emil ddresses: jingcuimei2004@63.com (Cuimei Jing), litongx2007@63.com (Tongxing Li) Received 206-0-26

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 67 therein. Anlysis of qulittive properties of neutrl differentil equtions is importnt not only for the ske of further development of the oscilltion theory, but for prcticl resons too. In fct, neutrl differentil equtions re used in modeling of networks contining lossless trnsmission lines (see, for instnce, the pper by Driver 7). In wht follows, let us present some bckground detils which motivte our study. Assuming tht the oscilltion of second-order neutrl differentil eqution 0 p(t) p 0 <, (.) r(t)(x(t) + p(t)xτ(t)) + q(t)f(x(σ(t))) = 0, nd its prticulr cses were investigted by Bculíková nd Džurin 4, 5, Fišnrová nd Mřík 8, Li nd Rogovchenko 4, 5, Li et l. 6, nd Xing et l. 25. For the oscilltion of second-order neutrl differentil equtions with distributed deviting rguments, Li et l. 2 nd Li nd Thndpni 7 estblished severl oscilltion criteri for (r(t) z (t) α z (t)) + q(t, ξ) xg(t, ξ) α xg(t, ξ)dσ(ξ) = 0, where z(t) := x(t) + p(t)xτ(t). Compred with second-order neutrl differentil equtions, there re few oscilltion results for third-order neutrl differentil equtions. Bculíková nd Džurin 2, 3, Jing nd Li 0, nd Li et l. 8 exmined n eqution of the form under the ssumption tht (r(t)((x(t) + p(t)x(τ(t))) ) γ ) + q(t)x γ (σ(t)) = 0, (.2) 0 p(t) p 0 <, wheres Li nd Rogovchenko 4, Thndpni nd Li 20, nd Xing et l. 25 deduced oscilltion of (.2) ssuming tht condition (.) is stisfied. On the bsis of the ides exploited by Li et l. 2, 8, the objective of this pper is to estblish severl oscilltion criteri for (r(t) z (t) α z (t)) + q(t, ξ) xg(t, ξ) α xg(t, ξ)dσ(ξ) = 0, (.3) where t t 0 > 0, α > 0 is constnt, nd z(t) := x(t) + p(t)xτ(t). As usul, solution x of (.3) is clled oscilltory, if the set of its zeros is unbounded from bove, otherwise, it is sid to be nonoscilltory. In order to ccomplish these tsks, it is necessry to mke the following ssumptions hold throughout this pper: (A ) r C (t 0, ), (0, )) nd p C(t 0, ), 0, )); (A 2 ) q C(t 0, ), b, 0, )) nd q(t, ξ) is not eventully zero on ny t µ, ), b, t µ t 0, ); (A 3 ) g C(t 0, ), b, R) is nondecresing function for ξ stisfying lim inf t g(t, ξ) = for ξ, b; (A 4 ) τ C (t 0, ), R), τ (t) > 0, lim t τ(t) =, nd g(τ(t), ξ) = τg(t, ξ); (A 5 ) σ C(, b, R) is nondecresing nd the integrl of (.3) is tken in the sense of Riemnn Stieltijes. Min results in this pper re orgnized into two prts in ccordnce with different ssumptions on the coefficient r. In Section 2, oscilltion results for (.3) re estblished in the cse where t 0 r /α (t)dt =. (.4)

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 672 By ssuming tht t 0 r /α (t)dt <, (.5) oscilltion criteri for (.3) re obtined in Section 3. To illustrte the results reported in Sections 2 nd 3, we give two exmples in Section 4. In the sequel, we use the following nottions for compct presenttion of our results: Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)}, R(t) := mx{r(t), rτ(t)}, ρ +(t) := mx{0, ρ (t)}, ϑ(t) := ζ(t) r /α (s)ds, where ρ nd ζ will be explined lter, nd ll functionl inequlities re tcitly ssumed to hold for ll t lrge enough, unless mentioned otherwise. 2. Oscilltion criteri for the cse (.4) In this section, we consider two cses g(t, ) τ(t) nd g(t, ) τ(t). Let us strt with the first cse. Theorem 2.. Let conditions (A )-(A 5 ), (.), (.4), nd α be stisfied. Suppose tht g(t, ) C (t 0, ), R), g (t, ) > 0, g(t, ) t, nd g(t, ) τ(t) for t t 0. If there exists function ρ C (t 0, ), (0, )) such tht, for ll sufficiently lrge t 0 nd for some >, ( ) 2 α ρ(t)g (t) Q(t, ξ)dσ(ξ) (α + ) α+ + pα 0 rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α dt = (2.) nd where u R(u) G (t) := u ( g(t,) s g(t,) Q(s, ξ)dσ(ξ)ds /α du =, (2.2) then every solution x of (.3) is either oscilltory or stisfies lim t x(t) = 0. ) α r /α (u)duds, (2.3) r /α (u)du Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. Then we hve z > 0. It follows from (.3) tht nd (r(t) z (t) α z (t)) + (r(t) z (t) α z (t)) 0, (2.4) q(t, ξ)x α g(t, ξ)dσ(ξ) + pα 0 τ (t) (rτ(t) z τ(t) α z τ(t)) + By virtue of (2.4) nd τ (t) > 0, we obtin (r(t) z (t) α z (t)) + + q(t, ξ)x α g(t, ξ)dσ(ξ) p α 0 q(τ(t), ξ)x α g(τ(t), ξ)dσ(ξ) = 0. p α 0 q(τ(t), ξ)x α g(τ(t), ξ)dσ(ξ) + pα 0 (rτ(t) z τ(t) α z τ(t)) 0.

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 673 By using the ltter inequlity nd condition g(τ(t), ξ) = τg(t, ξ), we hve (r(t) z (t) α z (t)) + pα 0 (rτ(t) z τ(t) α z τ(t)) In view of 0 p(t) p 0 < nd the inequlity (see 5, Lemm ) (q(t, ξ)x α g(t, ξ) + p α 0 q(τ(t), ξ)x α g(τ(t), ξ)) dσ(ξ) Q(t, ξ) (x α g(t, ξ) + p α 0 x α τ(g(t, ξ))) dσ(ξ). (2.5) A α + B α 2 α (A + B)α for A 0, B 0, nd α, we rrive t x α g(t, ξ) + p α 0 x α τ(g(t, ξ)) (xg(t, ξ) + p 0xτ(g(t, ξ))) α 2 α zα g(t, ξ) 2 α. (2.6) By combining (2.5) nd (2.6), we conclude tht (r(t) z (t) α z (t)) + pα 0 (rτ(t) z τ(t) α z τ(t)) 2 α Bsed on condition (.4), z stisfies two possible cses: (I) z > 0, z > 0, z > 0, nd (r z α z ) 0; (II) z > 0, z < 0, z > 0, nd (r z α z ) 0. Q(t, ξ)z α g(t, ξ)dσ(ξ). (2.7) Assume first tht cse (I) holds. By using z > 0, z > 0, nd the fct tht g(t, ξ) is nondecresing function for ξ, b, we hve by (2.7) tht (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα g(t, ) 2 α Define Riccti trnsformtion ω by Clerly, ω > 0 nd Q(t, ξ)dσ(ξ). (2.8) ω(t) := ρ(t) r(t)(z (t)) α (z g(t, )) α, t. (2.9) ω (t) = ρ (t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z g(t, )) α αr(t)ρ(t)g (t, ) (z (t)) α z g(t, ) (z g(t, )) α+. Applying the monotonicity of r z α z nd g(t, ) t implies tht z g(t, ) ( ) r(t) /α z (t). rg(t, ) Then, combining the ltter inequlity nd (2.9), we conclude tht ω (t) ρ +(t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z g(t, )) α αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t). (2.0) Furthermore, we define nother function ν by ν(t) := ρ(t) rτ(t)(z τ(t)) α (z g(t, )) α, t. (2.)

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 674 Thus, we hve ν > 0 nd ν (t) = ρ (t) ρ(t) ν(t) + ρ(t)(rτ(t)(z τ(t)) α ) (z g(t, )) α αρ(t)g (t, )rτ(t) (z τ(t)) α z g(t, ) (z g(t, )) α+. We derive from the monotonicity of r z α z nd g(t, ) τ(t) tht z g(t, ) By using the ltter inequlity nd (2.), we deduce tht ( ) rτ(t) /α z τ(t). rg(t, ) ν (t) ρ +(t) ρ(t) ν(t) + τ(t)) α ) αg (t, ) ρ(t)(rτ(t)(z (z g(t, )) α (ρ(t)rg(t, )) /α ν(α+)/α (t). (2.2) It follows from (2.0) nd (2.2) tht ω (t) + pα 0 (r(t)(z ν (t)) α ) (t) ρ(t) (z g(t, )) α + pα 0 (rτ(t)(z τ(t)) α ) (z g(t, )) α + ρ +(t) ρ(t) ω(t) αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t) + pα 0 ρ + (t) ρ(t) ν(t) αg (t, ) (ρ(t)rg(t, )) /α ν(α+)/α (t). Let By using the inequlity (see 3) C := ρ +(t) ρ(t) nd D := αg (t, ) (ρ(t)rg(t, )) /α. Cu Du (α+)/α α α C α+ (α + ) α+, D > 0, (2.3) Dα we conclude tht nd ρ +(t) ρ(t) ω(t) αg (t, ) (ρ(t)rg(t, )) /α ω(α+)/α (t) ρ +(t) ρ(t) ν(t) αg (t, ) (ρ(t)rg(t, )) /α ν(α+)/α (t) By combining the ltter inequlities nd (2.8), we obtin rg(t, )(ρ +(t)) α+ (α + ) α+ (ρ(t)g (t, )) α rg(t, )(ρ +(t)) α+ (α + ) α+ (ρ(t)g (t, )) α. ω (t) + pα 0 ν (t) ρ(t) ( zg(t, ) 2 α z g(t, ) + (α + ) α+ ( + pα 0 ) α Q(t, ξ)dσ(ξ) ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α. (2.4) By virtue of (r(z ) α ) 0, z (t) = z ( ) + z (s)ds = z (r(s)(z (s)) α ) ( ) + r /α (s) /α ds r /α (t)z (t) r /α (s)ds.

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 675 Hence, we get which implies tht, for t >, ( ) z (t) 0, r /α (s)ds nd so Then, we hve z(t) = z( ) + z (t) r /α (u)du z (s)ds = z( ) + s z(t) z (t) r /α (u)duds, s z (s) s r /α (u)du s r /α (u)duds r /α (u)duds. (2.5) r /α (u)du ( ) zg(t, ) α z G (t), g(t, ) where G is defined by (2.3). Substitution of this inequlity into (2.4) yields t 3 ω (t) + pα 0 ν (t) 2 α ρ(t)g (t) + (α + ) α+ ( + pα 0 Q(t, ξ)dσ(ξ) ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α. Integrting the ltter inequlity from t 3 (t 3 > ) to t, we conclude tht ρ(s)g (s) b 2 α Q(s, ξ)dσ(ξ) + pα 0 / rg(s, )(ρ +(s)) α+ (α + ) α+ (ρ(s)g (s, )) α ds ω(t 3 ) + pα 0 ν(t 3 ), which contrdicts (2.). Assume now tht cse (II) holds. On the bsis of the monotonicities of z nd g(t, ξ), we hve zg(t, ξ) zg(t, b). By tking into ccount tht z > 0, inequlity (2.7) becomes (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα g(t, b) 2 α Q(t, ξ)dσ(ξ). By using similr proof of 4, Theorem 5, we cn obtin lim t x(t) = 0 when using (2.2). completes the proof. This Now, we turn our ttention to the cse when g(t, ) τ(t). Theorem 2.2. Let conditions (A )-(A 5 ), (.), (.4), (2.2), nd α be stisfied. Suppose tht τ(t) t nd g(t, ) τ(t) for t t 0. If there exists function ρ C (t 0, ), (0, )) such tht for ll sufficiently lrge t 0 nd for some >, where 2 α ρ(t)g 2 (t) Q(t, ξ)dσ(ξ) G 2 (t) := ( (α + ) α+ + pα 0 ( τ(t) s then the conclusion of Theorem 2. remins intct. ) rτ(t)(ρ + (t)) α+ ( ρ(t)) α dt =, (2.6) ) α r /α (u)duds τ(t), (2.7) r /α (u)du

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 676 Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. As in the proof of Theorem 2., we hve (2.4), (2.7), nd two possible cses (I) nd (II) (s those in the proof of Theorem 2.) for z. Assume first tht cse (I) holds. It follows from g(t, ξ) g(t, ) τ(t), z > 0, nd z > 0 tht Define Riccti trnsformtion ω by (r(t)(z (t)) α ) + pα 0 (rτ(t)(z τ(t)) α ) zα τ(t) 2 α Then ω > 0. Applying (2.4) nd τ(t) t yields By differentiting (2.9), we conclude tht Q(t, ξ)dσ(ξ). (2.8) ω(t) := ρ(t) r(t)(z (t)) α (z τ(t)) α, t. (2.9) z τ(t) ( ) r(t) /α z (t). rτ(t) ω (t) = ρ (t) ρ(t) ω(t) + (t)) α ) ρ(t)(r(t)(z (z τ(t)) α αr(t)ρ(t)τ (t) (z (t)) α z τ(t) (z τ(t)) α+ ρ +(t) ρ(t) ω(t) + ρ(t)(r(t)(z (t)) α ) (z τ(t)) α αρ(t)τ (t) r(α+)/α (t) r /α τ(t) ( z (t) z τ(t) ) α+ = ρ +(t) ρ(t) ω(t) + (t)) α ) ατ (t) ρ(t)(r(t)(z (z τ(t)) α (ρ(t)rτ(t)) /α ω(α+)/α (t). (2.20) Similrly, define nother Riccti trnsformtion ν by Clerly, ν > 0 nd ν(t) := ρ(t) rτ(t)(z τ(t)) α (z τ(t)) α, t. ν (t) = ρ (t) ρ(t) ν(t) + τ(t)) α ) ( z ρ(t)(rτ(t)(z (z τ(t)) α αρ(t)τ ) τ(t) α+ (t)rτ(t) z τ(t) ρ +(t) ρ(t) ν(t) + τ(t)) α ) ατ (t) ρ(t)(rτ(t)(z (z τ(t)) α (ρ(t)rτ(t)) /α ν(α+)/α (t). (2.2) In view of (2.20) nd (2.2), we get ω (t) + pα 0 (r(t)(z ν (t)) α ) (t) ρ(t) (z τ(t)) α + pα 0 (rτ(t)(z τ(t)) α ) (z τ(t)) α + ρ +(t) ρ(t) ω(t) + pα 0 ρ + (t) ρ(t) ν(t) ατ (t) (ρ(t)rτ(t)) /α ω(α+)/α (t) ατ (t) (ρ(t)rτ(t)) /α ν(α+)/α (t). Set C := ρ +(t) ρ(t) nd D := ατ (t) (ρ(t)rτ(t)) /α.

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 677 By virtue of (2.3) nd (2.8), we hve ω (t) + pα 0 ν (t) ρ(t) ( ) zτ(t) α ( ) 2 α z Q(t, ξ)dσ(ξ) + τ(t) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ (ρ(t)τ (t)) α. Similrly, s in the proof of Theorem 2., we obtin (2.5), nd hence ( ) zτ(t) α z G 2 (t), τ(t) where G 2 is defined s in (2.7). Therefore, ω (t) + pα 0 ν (t) ρ(t)g 2(t) 2 α t 3 Q(t, ξ)dσ(ξ) + ( ) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ ( ρ(t)) α. By integrting the ltter inequlity from t 3 (t 3 > ) to t, we hve ρ(s)g2 (s) b 2 α Q(s, ξ)dσ(ξ) + pα 0 / rτ(s)(ρ +(s)) α+ (α + ) α+ ( ρ(s)) α ds ω(t 3 ) + pα 0 ν(t 3 ), which contrdicts (2.6). Assume now tht cse (II) holds. As in the proof of Cse (II) in Theorem 2., we rrive t the desired conclusion. The proof is complete. 3. Oscilltion criteri for the cse (.5) In this section, we estblish some oscilltion criteri for (.3) under the ssumption tht (.5) holds. Similrly, s in Section 2, we begin with the cse when g(t, ) τ(t) holds. Theorem 3.. Let conditions (A )-(A 5 ), (.), (.5), (2.2), nd α be stisfied. Suppose tht g(t, ) C (t 0, ), R), g (t, ) > 0, nd g(t, ) τ(t) t for t t 0. Assume further tht there exists function ρ C (t 0, ), (0, )) such tht (2.) holds for ll sufficiently lrge t 0 nd for some >. If there exists function ζ C (t 0, ), R) such tht, ζ(t) t, ζ(t) g(t, ), ζ (t) > 0 for t t 0, nd for ll sufficiently lrge t 0, where 2 α ϑ α (t)g 3 (t) ( ) α α+ ( ) Q(t, ξ)dσ(ξ) + pα 0 ζ (t) α + ϑ(t)r /α dt =, (3.) ζ(t) G 3 (t) := (g(t, ) ) α, (3.2) then every solution x of (.3) is either oscilltory or stisfies lim t x(t) = 0. Proof. Assume tht (.3) hs nonoscilltory solution x. Without loss of generlity, we my suppose tht there exists t 0 such tht x(t) > 0, xτ(t) > 0 for t, nd xg(t, ξ) > 0 for (t, ξ), ), b. Then we hve z > 0. Bsed on condition (.5), there exist three possible cses (I), (II) (s those in the proof of Theorem 2.), nd (III) z > 0, z > 0, z < 0, nd (r z α z ) 0. Assume tht cse (I) nd cse (II) hold. By using the proof of Theorem 2., we get the conclusion of Theorem 3.. Assume now tht cse (III) holds. In view of g(t, ξ) g(t, ), z > 0, nd z < 0, inequlity (2.7) reduces to ( r(t)( z (t)) α ) + pα 0 ( rτ(t)( z τ(t)) α ) zα g(t, ) b 2 α Q(t, ξ)dσ(ξ). (3.3)

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 678 From (r z α z ) 0, we hve (r( z ) α ) 0, which shows tht r( z ) α is nondecresing. Thus, we obtin z (s) r/α (t) r /α (s) z (t), s t. An integrtion from ζ(t) to l yields By pssing to the limit s l, we get tht is, Define function ϕ by Clerly, ϕ < 0 nd Similrly, we define nother function φ by l z (l) z ζ(t) + r /α (t)z (t) r /α (s)ds. ζ(t) 0 z ζ(t) + r /α (t)z (t)ϑ(t), ϑ(t) r/α (t)z (t) z ζ(t). ϕ(t) := r(t)( z (t)) α (z ζ(t)) α, t. (3.4) ϑ α (t)ϕ(t). (3.5) φ(t) := rτ(t)( z τ(t)) α (z ζ(t)) α, t. (3.6) Then φ < 0. From the monotonicity of r( z ) α nd τ(t) t, we obtin rτ(t)( z τ(t)) α r(t)( z (t)) α. Hence, 0 < φ(t) < ϕ(t). By virtue of (3.5), we hve Now, by differentiting (3.4), we rrive t ϑ α (t)φ(t). (3.7) ϕ (t) = ( r(t)( z (t)) α ) (z ζ(t)) α + αr(t)ζ (t)( z (t)) α z ζ(t) (z ζ(t)) α+. By virtue of ζ(t) t nd the fct tht r( z ) α is nondecresing, we get nd so Similrly, by differentiting (3.6), we hve z ζ(t) r/α (t) r /α ζ(t) z (t), ϕ (t) ( r(t)( z (t)) α ) (z ζ(t)) α αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α. (3.8) φ (t) = ( rτ(t)( z τ(t)) α ) (z ζ(t)) α + αζ (t)rτ(t)( z τ(t)) α z ζ(t) (z ζ(t)) α+.

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 679 By tking into ccount tht r( z ) α is nondecresing nd ζ(t) τ(t), we conclude tht nd hence It follows from (3.3), (3.8), nd (3.9) tht z ζ(t) r/α τ(t) r /α ζ(t) z τ(t), φ (t) ( rτ(t)( z τ(t)) α ) (z ζ(t)) α αζ (t) r /α ζ(t) ( φ(t))(α+)/α. (3.9) ϕ (t) + pα 0 φ (t) ( r(t)( z (t)) α ) (z ζ(t)) α + pα 0 ( rτ(t)( z τ(t)) α ) (z ζ(t)) α Applying z > 0 nd z < 0 implies tht Hence, we hve where G 3 is s in (3.2). Then, we hve αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α pα 0 αζ (t) r /α ζ(t) ( φ(t))(α+)/α ( ) zg(t, ) α 2 α z Q(t, ξ)dσ(ξ) ζ(t) αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α pα 0 αζ (t) r /α ζ(t) ( φ(t))(α+)/α. z(t) = z( ) + ( ) zg(t, ) α ( zg(t, ) z = ζ(t) z g(t, ) ϕ (t) + pα 0 φ (t) 2 α G 3 (t) αpα 0 z (s)ds (t )z (t). z ) g(t, ) α z G 3 (t), ζ(t) Q(t, ξ)dσ(ξ) ζ (t) r /α ζ(t) ( φ(t))(α+)/α. αζ (t) r /α ζ(t) ( ϕ(t))(α+)/α By multiplying the ltter inequlity by ϑ α (t) nd integrting the resulting inequlity from ( > ) to t, we get ϑ ϑ α (t)ϕ(t) ϑ α α (s)ζ (s) ( )ϕ( ) + α r /α ϕ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( ϕ(s))(α+)/α ds + pα 0 (ϑ α (t)φ(t) ϑ α ( )φ( )) + αpα 0 ϑ α (s)ζ (s) r /α φ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( φ(s))(α+)/α ds Set + A := 2 α ϑ α (s)g 3 (s) Q(s, ξ)dσ(ξ)ds 0. ϑ α (s)ζ (s) α/(α+) r /α ϕ(s) nd B := ζ(s) By using the inequlity (see 2) α α + ϑ α (s)ζ (s) r /α ζ(s) ϑ α (s)ζ (s) α/(α+) α r /α. ζ(s) α + α AB/α A (α+)/α α B(α+)/α, for A 0 nd B 0, (3.0)

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 680 we obtin On the other hnd, define A := ϑ α (s)ζ (s) r /α ϕ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( ϕ(s))(α+)/α ( ) α α+ ζ (s) α α + ϑ(s)r /α ζ(s). ϑ α (s)ζ (s) α/(α+) r /α φ(s) nd B := ζ(s) α α + ϑ α (s)ζ (s) r /α ζ(s) ϑ α (s)ζ (s) α/(α+) α r /α. ζ(s) By virtue of (3.0), we hve ϑ α (s)ζ (s) r /α φ(s) + ϑα (s)ζ (s) ζ(s) r /α ζ(s) ( φ(s))(α+)/α ( ) α α+ ζ (s) α α + ϑ(s)r /α ζ(s). By using (3.5) nd (3.7), we conclude tht 2 α ϑ α (s)g 3 (s) ( ) α α+ ( ) Q(s, ξ)dσ(ξ) + pα 0 α + ϑ α ( )ϕ( ) + pα ϑ α ( )φ( ) + + pα 0, which contrdicts (3.). This completes the proof. ζ (s) ϑ(s)r /α ds ζ(s) With proof similr to the proof of Theorems 2.2 nd 3., we cn obtin the following criterion for (.3) ssuming tht g(t, ) τ(t). Theorem 3.2. Let conditions (A )-(A 5 ), (.), (.5), (2.2), nd α be stisfied. Suppose tht τ(t) t nd g(t, ) τ(t) for t t 0. Assume lso tht there exists function ρ C (t 0, ), (0, )) such tht (2.6) holds for ll sufficiently lrge t 0 nd for some >. If there exists function ζ C (t 0, ), R) such tht ζ(t) t, ζ(t) g(t, ), ζ (t) > 0 for t t 0, nd (3.) holds for ll sufficiently lrge t 0, then the conclusion of Theorem 3. remins intct. 4. Exmples Similr results cn be obtined under the ssumption tht 0 < α. In this cse, utilizing 5, Lemm 2, one hs to replce Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)} with Q(t, ξ) := 2 α min{q(t, ξ), q(τ(t), ξ)} nd proceed s bove. In this section, we illustrte possible pplictions with two exmples. Exmple 4.. For t, consider third-order neutrl differentil eqution x(t) + x(t 2π) + π 4π xt + ξdξ = 0. (4.) Let α =, = 4π, b = π, r(t) =, p(t) = p 0 =, τ(t) = t 2π, q(t, ξ) =, g(t, ξ) = t + ξ, nd σ(ξ) = ξ. Note tht Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} =, g (t, ) = > 0, g(t, ) = t 4π < t, nd g(t, ) < τ(t). Moreover, let = nd ρ(t) =, then nd G (t) = 4π 4π 2 α ρ(t)g (t) s r /α (u)duds r /α (u)du = t2 /2 (4π + )t + β, β = 8π 2 t2 2 t (4π + ) 2 + 4π +, Q(t, ξ)dσ(ξ) ( (α + ) α+ + pα 0 ) rg(t, )(ρ + (t)) α+ (ρ(t)g (t, )) α dt

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 68 = 5π G (t)dt = 5π 2 2(4π + )t + 2β dt =. t (4π + ) Hence, by Theorem 2., every solution x of (4.) is either oscilltory or stisfies lim t x(t) = 0. As mtter of fct, x(t) = sin t is n oscilltory solution to (4.). Exmple 4.2. For t, consider third-order neutrl differentil eqution (x(t) + p(t)x(t γ)) + (ξ + )xt + ξdξ = 0, (4.2) where 0 < p(t) p 0, p 0 nd γ re positive constnts. Let α =, = 0, b =, r(t) =, τ(t) = t γ, q(t, ξ) = ξ+, g(t, ξ) = t+ξ, nd σ(ξ) = ξ. Note tht Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} = ξ+, τ(t) = t γ t, nd g(t, ) = t τ(t). Moreover, let =, ρ(t) =, nd ζ(t) = t +, then we hve ϑ(t) = /(t + ), 0 G 2 (t) = γ γ s r /α (u)duds r /α (u)du = γ γ s u 2 duds u 2 du = (t γ)2 + ( ln )(t γ) (t γ)ln(t γ) t γ, nd nd thus 2 α ρ(t)g 2 (t) = 3 2 G 2 (t)dt = 3 2 G 3 (t) = (g(t, ) ) α = t, ( ) Q(t, ξ)dσ(ξ) (α + ) α+ + pα 0 rτ(t)(ρ + (t)) α+ ( ρ(t)) α dt (t γ) 2 + ( ln )(t γ) (t γ)ln(t γ) dt =, t γ nd 2 α ϑ α (t)g 3 (t) = ( α Q(t, ξ)dσ(ξ) 3(t t ) 2(t + ) + p 0 4(t + ) α + dt =. ) α+ ( ) + pα 0 ζ (t) ϑ(t)r /α dt ζ(t) Therefore, by Theorem 3.2, every solution x of (4.2) is either oscilltory or stisfies lim t x(t) = 0. Acknowledgment This reserch is supported by NNSF of P. R. Chin (Grnt Nos. 65037 nd 640306), CPSF (Grnt No. 205M58209), nd NSF of Shndong Province (Grnt Nos. ZR206JL02 nd ZR202FL06), DSRF of Linyi University (Grnt No. LYDX205BS00), nd the AMEP of Linyi University, P. R. Chin. References R. P. Agrwl, M. Bohner, W.-T. Li, Nonoscilltion nd oscilltion: theory for functionl differentil equtions, Monogrphs nd Textbooks in Pure nd Applied Mthemtics, Mrcel Dekker, Inc., New York, (2004). 2 B. Bculíková, J. Džurin, On the symptotic behvior of clss of third order nonliner neutrl differentil equtions, Cent. Eur. J. Mth., 8 (200), 09 03., 3 B. Bculíková, J. Džurin, Oscilltion of third-order neutrl differentil equtions, Mth. Comput. Modelling, 52 (200), 25 226. 4 B. Bculíková, J. Džurin, Oscilltion theorems for second order neutrl differentil equtions, Comput. Mth. Appl., 6 (20), 94 99. 5 B. Bculíková, J. Džurin, Oscilltion theorems for second-order nonliner neutrl differentil equtions, Comput. Mth. Appl., 62 (20), 4472 4478., 2, 4

C. M. Jing, T. X. Li, J. Nonliner Sci. Appl. 9 (206), 670 682 682 6 T. Cndn, Oscilltion criteri nd symptotic properties of solutions of third-order nonliner neutrl differentil equtions, Mth. Methods Appl. Sci., 38 (205), 379 392. 7 R. D. Driver, A mixed neutrl system, Nonliner Anl., 8 (984), 55 58. 8 S. Fišnrová, R. Mřík, Oscilltion criteri for neutrl second-order hlf-liner differentil equtions with pplictions to Euler type equtions, Bound. Vlue Probl., 204 (204), 4 pges., 9 J. Hle, Theory of functionl differentil equtions, Second edition, Applied Mthemticl Sciences, Springer- Verlg, New York-Heidelberg, (977). 0 Y. Jing, T.-X. Li, Asymptotic behvior of third-order nonliner neutrl dely differentil eqution, J. Inequl. Appl., 204 (204), 7 pges., G. S. Ldde, V. Lkshmiknthm, B. G. Zhng, Oscilltion theory of differentil equtions with deviting rguments, Monogrphs nd Textbooks in Pure nd Applied Mthemtics, Mrcel Dekker, Inc., New York, (987). 2 T.-X. Li, B. Bculíková, J. Džurin, Oscilltory behvior of second-order nonliner neutrl differentil equtions with distributed deviting rguments, Bound. Vlue Probl., 204 (204), 5 pges.,,, 3 3 T.-X. Li, Yu. V. Rogovchenko, Asymptotic behvior of n odd-order dely differentil eqution, Bound. Vlue Probl., 204 (204), 0 pges. 2 4 T.-X. Li, Yu. V. Rogovchenko, Asymptotic behvior of higher-order qusiliner neutrl differentil equtions, Abstr. Appl. Anl., 204 (204), pges.,, 2 5 T.-X. Li, Yu. V. Rogovchenko, Oscilltion of second-order neutrl differentil equtions, Mth. Nchr., 288 (205), 50 62. 6 T.-X. Li, Yu. V. Rogovchenko, C.-H. Zhng, Oscilltion of second-order neutrl differentil equtions, Funkcil. Ekvc., 56 (203), 20. 7 T.-X. Li, E. Thndpni, Oscilltion of second-order qusi-liner neutrl functionl dynmic equtions with distributed deviting rguments, J. Nonliner Sci. Appl., 4 (20), 80 92. 8 T.-X. Li, C.-H. Zhng, G.-J. Xing, Oscilltion of third-order neutrl dely differentil equtions, Abstr. Appl. Anl., 202 (202), pges., 9 M. T. Şenel, N. Utku, Oscilltion criteri for third-order neutrl dynmic equtions with continuously distributed dely, Adv. Difference Equ., 204 (204), 5 pges. 20 E. Thndpni, T.-X. Li, On the oscilltion of third-order qusi-liner neutrl functionl differentil equtions, Arch. Mth. (Brno), 47 (20), 8 99. 2 A. Tiryki, Oscilltion criteri for certin second-order nonliner differentil equtions with deviting rguments, Electron. J. Qul. Theory Differ. Equ., 2009 (2009), pges. 22 P.-G. Wng, Oscilltion criteri for second-order neutrl equtions with distributed deviting rguments, Comput. Mth. Appl., 47 (2004), 935 946. 23 P.-G. Wng, H. Ci, Oscilltory criteri for higher order functionl differentil equtions with dmping, J. Funct. Spces Appl., 203 (203), 5 pges. 24 J. S. W. Wong, Necessry nd sufficient conditions for oscilltion of second order neutrl differentil equtions, J. Mth. Anl. Appl., 252 (2000), 342 352. 25 G.-J. Xing, T.-X. Li, C.-H. Zhng, Oscilltion of higher-order qusi-liner neutrl differentil equtions, Adv. Difference Equ., 20 (20), 0 pges.,, 26 Q.-X. Zhng, L. Go, Y.-H. Yu, Oscilltion criteri for third-order neutrl differentil equtions with continuously distributed dely, Appl. Mth. Lett., 25 (202), 54 59.