CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Σχετικά έγγραφα
Homework 8 Model Solution Section

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Example 1: THE ELECTRIC DIPOLE

Spherical Coordinates

Tutorial Note - Week 09 - Solution

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Rectangular Polar Parametric

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

CURVILINEAR COORDINATES

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Answer sheet: Third Midterm for Math 2339

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Reminders: linear functions

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

1 String with massive end-points

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Parametrized Surfaces

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Strain gauge and rosettes

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Notes 6 Coordinate Systems

11.4 Graphing in Polar Coordinates Polar Symmetries

Math221: HW# 1 solutions

ECE 222b Applied Electromagnetics Notes Set 4c

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Note: Please use the actual date you accessed this material in your citation.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

EE512: Error Control Coding

Example Sheet 3 Solutions

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

3.5 - Boundary Conditions for Potential Flow

Geodesic Equations for the Wormhole Metric

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

SPECIAL FUNCTIONS and POLYNOMIALS

ECE 468: Digital Image Processing. Lecture 8

Section 8.3 Trigonometric Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Rectangular Polar Parametric

Differentiation exercise show differential equation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

ST5224: Advanced Statistical Theory II

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CRASH COURSE IN PRECALCULUS

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Lecture 26: Circular domains

What happens when two or more waves overlap in a certain region of space at the same time?

Matrices and Determinants

Solution to Review Problems for Midterm III

Second Order RLC Filters

Graded Refractive-Index


Section 7.6 Double and Half Angle Formulas

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

For a wave characterized by the electric field

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Oscillatory integrals

w o = R 1 p. (1) R = p =. = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

2 Composition. Invertible Mappings

Congruence Classes of Invertible Matrices of Order 3 over F 2

Statistical Inference I Locally most powerful tests

ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 28)

Trigonometry 1.TRIGONOMETRIC RATIOS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

( ) 2 and compare to M.

Orbital angular momentum and the spherical harmonics

Other Test Constructions: Likelihood Ratio & Bayes Tests

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

fysikoblog.blogspot.com

Electromagnetic Waves I

Transcript:

CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity

Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution re very smll compred to the distnce to the neighoring chrges, i.e. the point chrge is occupying very smll physicl spce ) Distriuted Chrge The chrge my e distriuted long line, mong surfce or mong volume. () Line Chrge: The line chrge density l is defined s the chrge per unit length. l lim l Q l C m dl + + + + + + + + + + + + + + + + dq L dl So, l dq dl C m dq l dl The totl chrge Q of the line cn e determined y

Q dq l dl l l [C] For uniform line chrge, where l is constnt Q l l [C] U() Surfce Chrge: The surfce chrge density s is defined s the chrge per unit surfce re. s lim s Q s C m s dq ds C m So, dq s ds The totl chrge Q of the surfce cn e determined y

Q dq s ds For uniform surfce chrge, where s is constnt Q s S [C] U) Volume chrge density ( v ) v lim v Q v C m v dq dv C m dv dq v dv So, dq v dv The totl chrge Q of the surfce cn e determined y Q dq v dv UFor uniform volume chrgeu, where v is constnt Q v V [C]

Exmple: A uniform sphericl volume chrge density distriution contins totl chrge of -8 C, if the rdius of the sphere x - m. Find v. Solution: Q 8 v C Q V, r *. 8 4π *8 * 8 m, V.98 * 4π r 4 Cm 4π ( * ) 8 * 6 m UExmple: A non-uniform sphericl volume chrge density distriution with v k r s C.mP - P. Find the totl chrge contined in the volume of the sphere of rdius [m] USolution: dq v dv Q dq v dv k r s r s sinθ dθ dφ

to Q k r s [φ] π [ cos θ ][ cos θ ] π Q πk C Coloum s Lw: Force Between Two Point Chrges: The force etween two sttionry point chrges Q,Q is proportionl to the product of the two chrges nd inversely proportionl to the squre of the distnce etween them. F â Q Q F F Q Q 4πε o F Q Q 4πε o Where: unit vector from chrge Q chrge. Q

P is P nd, ε o 9 6π 8. 85x F/m Force on Point Chrge due to n Point Chrges: Force F t on point chrge Q t due to n point chrges cn e determined s n F t i Q i Q t 4πε o it it [N] Q t t n t Qt UExmple: Find the force F in vcuum on point Q P C due to -5 point chrge Q*P C where centered t point Q (,,)m nd t (,4,5) Q USolution: F Q Q 4πε QQ 4πε ( ) xˆ + ( 4) yˆ + ( 5) zˆ xˆ yˆ ˆ z Q n -4 4 + 9 + 9

ˆ xˆ yˆ ˆ z 4 5 ( ) ( xˆ yˆ ˆ) z F N 4π 8.85 ( ) Electric Field Intensity t Point due to Point Chrge Q: It is vector force cting on unit (+ve) chrge. The electric field intensity due to point locted t distnce from the chrge Q is given y: E Q 4πε o Q 4πε o volt meter (V/m) Electric Field Intensity t Point due to Point Chrges Q, Q,.., Q n : If we hve system of chrges Q, Q Q n. the totl electric field t point is the vector sum of ll fields due to the different chrges. n Q i E t i [N/C] 4πε o it α n Q i E t 4πε o i i i [N/C] Q â â Q n â n Q n

Exmple: Find the electric field intensity t the point (,4,5) m, due to point chrge Q * -5 C, locted t (,,) m. Solution: E Q 4πε ( ) xˆ + (4 ) yˆ + (5 ) zˆ xˆ + yˆ + z 4 + 9 + 9 E 5 4π (8.85 (xˆ + yˆ + ˆ) z )( )... xˆ +... yˆ +... zˆ

Electric Field Intensity t point p (r c, φ, z) due to line chrge de dq 4πε o z de dq 4πε o x dl y E l dl 4πε o Electric Field Intensity t Point p (r c, φ, z) due to Uniform Line Chrge Along z-axis z dz' z' z α α (r c,φ,z) y z r c φ x

de dq 4πε o dq l dl l dz rc r c z (z z) r c + (z z) r c r c z (z z) r c + (z z) de l dz rc r c z (z z) 4πε o r c + (z z) note: E l rc r c z z z 4πε o r c + z z dz dx c + x x c c + x

xdx c + x c + x E l 4πε o rc r c z dz r c + z z z z dz r c + z z E l 4πε o rc r c + z (z z) r c [r c + (z z) ] [r c + (z z) ] E l r c ( z) 4πε o r c [r c + ( z) ] r c + z r c [r c + ( z) ] ( z) [r c + ( z) ] r c [r c + ( z) ]

E l 4πε o r c r c [sin α + sin α ] + z r c [cos α cosα ] E l 4πε o r c rc [sin α + sin α ] + z [cos α cosα ] Note: - For infinite line α α 9 o So, E rc l πε o r c Projection point rc r c Intersection point

Electric Field Intensity t point p (,,z) on the xis of ring chrged with uniform L of rdius centered t the origin nd positioned in (x-y) plne d E Ẑ (,, z) dφ Yˆ dl dφ dq dl l dφ l Xˆ de dq 4πε o dq l dl l r c dφ l dφ rc r c + z z rc + z z r c + z + z

r c + z z + z de l dφ rc + z z 4πε o [ + z ] E l 4πε o π rc + z z + z dφ E π l 4πε o [ + z ] r dφ c π + z z dφ Since, the unit vector rc is not constnt unit vector nd it is function of φ, nd since So, E l 4πε o [ + z ] rc x cosφ + y sinφ π x cosφ dφ π + z z dφ π y sinφ dφ

E π l zz dφ 4πε o [ + z ] E z l z ε o [ + z ] Exmple: A uniform line chrge of infinite extent with l nc/m lies on z-xis. Find E t (6,8,) m. Solution: E l πε r c r c x + y E rˆ c 6 + 8 9 rˆ c 6ˆ rc V / m π (8.85* )

Electric field intensity of surfce chrge: d E z (,,z ) S r c ds y x de dq 4πε o dq s ds s r c dr c dφ rc r c + z z r c + z

r c r c + z z r c + z de s r c dr c dφ rc r c + z z 4πε o r c + z E s r c dr c 4πε o r c +z π rc dφ + r c dr c r c +z π z z dφ Since, the unit vector rc is not constnt unit vector nd it is function of φ, nd since So, E s 4πε o + rc x cosφ + y sinφ r c dr c r c + z [r c ]dr c π x cosφ y sinφ dφ π r c + z z z dφ Then,

E s 4πε o nd since, r c dr c r c +z [r c ]dr c r c + z r c +z π z z dφ + [ +z ] [z ] So, E z s ε o z [ + z ] + z z E z s ε o z + z For infinite surfce E z s ε o Note: For infinite surfce the electric field E z s ε o nd in direction norml to the surfce nd out of it.

Exmple: Two infinite uniform sheets of chrge s nd s locted t x ± s shown in figure. Find the electric field in ll regions. Solution: [ ]x s s E E E x s E x s E t ˆ ˆ, ˆ : egion ε ε ε + + [ ]x s s E x s E x s E t ˆ ( ˆ), ˆ) ( egion : ε ε ε + x x S y - s

egion : E E t s xˆ, E ε [ + ]xˆ s s ε s ε xˆ