Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix
|
|
- Ἡρὼ Δουρέντης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w) Slope-Intercept Form: y mx + (r, θ) or r θ x r cos θ y r sin θ z z r x + y r ± x + y tn θ ( y x ) θ tn 1 ( y x ) (ρ, θ, φ) x ρ sin φ cos θ y ρ sin φ sin θ z ρ cos φ ρ r + z ρ x + y + z tn θ ( y x ) φ cos 1 z ( x + y + z ) φ cos 1 ( z ρ ) Point (,) in Rectngulr : x(t) y(t) t 3 rd vrile, usully time, with 1 degree of freedom (df) r x 0, y 0, z 0 [] [x] [] Point-Slope Form: y y 0 m (x x 0 ) Line Generl Form: Ax + By + C 0 where A nd B 0 Clculus Form: f(x) f () x + f(0) where m f () x x 0 3-D: y y 0 z z 0 c < x, y > < x 0, y 0 > + t <, > < x, y > < x 0 + t, y 0 + t > where <, > < x x 1, y y 1 > x(t) x 0 + t y(t) y 0 + t m y x y y 1 x x 1 r r 0 + t v x 0, y 0, z 0 + t,, c [ ] [ x y ] [c] [ c d ] [x y ] [e f ] Copyright y Hrold Toomey, WyzAnt Tutor 1
2 Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Plne (x x 0 ) + (y y 0 ) + c(z z 0 ) 0 x + y + cz d where d x 0 + y 0 + cz 0 f(x, y) Ax + By + C (vrile, constnt, constnt) where ρ tkes on ll vlues in the domin (0 ρ < ) r r 0 + sv + tw where: s nd t rnge over ll rel numers v nd w re given vectors defining the plne r 0 is the vector representing the position of n ritrry (ut fixed) point on the plne n (r r 0 ) 0 Conics Generl Eqution for All Conics: Ax + Bxy + Cy + Dx + Ey + F 0 where Line: A B C 0 Circle: A C nd B 0 Ellipse: AC > 0 or B 4AC < 0 Prol: AC 0 or B 4AC 0 Hyperol: AC < 0 or B 4AC > 0 ote: If A + C 0, squre hyperol Rottion: If B 0, then rotte coordinte system: cot θ A C B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis Generl Eqution for All Conics: Verticl Axis of Symmetry: p r 1 e cos θ Horizontl Axis of Symmetry: p r 1 e sin θ (1 e ) 0 e < 1 where p { d for { e 1 (e 1) e > 1 p semi-ltus rectum or the line segment running from the focus to the curve in direction prllel to the directrix Eccentricity: Circle e 0 Ellipse 0 e < 1 Prol e 1 Hyperol e > 1 Copyright y Hrold Toomey, WyzAnt Tutor
3 Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix x + y r (x h) + (y k) r Centered t Origin: r (constnt) θ θ [0, π] or [0, 360 ] Circle Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where A C nd B 0 Focus nd Center: (h, k) Centered t (r 0, φ): r + r 0 rr 0 cos(θ φ) R Hint: Lw of Cosines or r r 0 cos(θ φ) + r 0 sin (θ φ) ρ constnt θ θ [0, π] φ constnt 0 x(t) r cos(t) + h y(t) r sin(t) + k [t min, t mx ] [0, π) (h, k) center of circle (h, k) Sphere x + y + z r (x h) + (y k) + (z l) r Focus nd center: (h, k, l) Generl Form: Ax + By + Cz + Dxy + Eyz + Fxz + Gx + Hy + Iz + J 0 where A B C > 0 Cylindricl to Rectngulr: x r cos (θ) y r sin (θ) z z Sphericl to Rectngulr: x r sin θ cos φ y r sin θ sin φ z r cos θ Rectngulr to Cylindricl: r x + y Sphericl to Cylindricl: ρ r sin (θ) φ φ z r cos (θ) ρ constnt θ θ [0, π] φ φ [0, π] Rectngulr to Sphericl: r x + y + z θ rccos ( z r ) φ rctn ( y x ) Cylindricl to Sphericl: r ρ + z θ rctn ( ρ z ) rccos (z r ) φ φ Rectngulr: x r [ y] z Cylindricl: r cos (θ) r [ r sin (θ)] z Sphericl: r sin θ cos φ r [ r sin θ sin φ] r cos θ Copyright y Hrold Toomey, WyzAnt Tutor 3
4 Ellipse Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix (x h) (y k) + 1 Generl Form: Ax + Bxy + Cy + Dx + Ey +F 0 where B 4AC < 0 or AC > 0 Center: (h, k) Vertices: (h ±, k) nd (h, k ± ) Foci: (h ± c, k) Focus length, c, from center: c Eccentricity: e c If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ Verticl Axis of Symmetry: r (1 e ) 1 ± e cos θ Horizontl Axis of Symmetry: r (1 e ) 1 ± e sin θ Eccentricity: 0 < e < 1 r(θ) ( cos θ) + ( sin θ) reltive to center (h,k) Interesting ote: The sum of the distnces from ech focus to point on the curve is constnt. d 1 + d k x(t) cos(t) + h y(t) sin(t) + k [t min, t mx ] [0, π] (h, k) center of ellipse Rotted Ellipse: x(t) cos t cos θ sin t sin θ + h y(t) cos t sin θ + sin t cos θ + k θ the ngle etween the x-xis nd the mjor xis of the ellipse Ellipsoid ew (x, y ), Old (x, y) rottes through ngle θ from x- xis (x h) (y k) + 1 (z l) + c r cos θ + r sin θ + z c 1 r cos θ sin φ + r sin θ sin φ + r cos φ c 1 x(t, u) cos(t) cos(u) + h y(t, u) cos(t) sin(u) + k z(t, u) c sin(t) + l [t min, t mx ] [ π, π ] [u min, u mx ] [ π, π] (h, k, l) center of ellipsoid (x v) T A 1 (x v) 1 Centered t vector v Copyright y Hrold Toomey, WyzAnt Tutor 4
5 Prol ose Cone Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Verticl Axis of Symmetry: x 4 py (x h) 4p(y k) Vertex: (h, k) Focus: (h, k + p) Directrix: y k p Horizontl Axis of Symmetry: y 4 px (y k) 4p(x h) Vertex: (h, k) Focus: (h + p, k) Directrix: x h p Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where B 4AC 0 or AC 0 If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis (x h) (y k) (z l) + c Verticl Axis of Symmetry: ed r 1 ± e cos θ Horizontl Axis of Symmetry: ed r 1 ± e sin θ Eccentricity: e 1 where d p Verticl xis of symmetry: x(t) pt + h y(t) pt + k (opens upwrds) or y(t) pt + k (opens downwrds) [t min, t mx ] [ c, c] (h, k) vertex of prol Horizontl xis of symmetry: x(t) pt + h y(t) pt + k (opens right) or y(t) pt + k (opens left) [t min, t mx ] [ c, c] Projectile otion: x(t) x 0 + v x t y(t) y 0 + v y t 16t feet y(t) y 0 + v y t 4.9t meters v x v cos θ v y v sin θ Generl Form: x At + Bt + C y Lt + t + where A nd L hve the sme sign Copyright y Hrold Toomey, WyzAnt Tutor 5
6 Hyperol Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix (x h) (y k) 1 Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where B 4AC > 0 or AC < 0 If A + C 0, squre hyperol Center: (h, k) Vertices: (h ±, k) Foci: (h ± c, k) Focus length, c, from center: c + Eccentricity: e c + sec θ 3-D (x h) (y k) + (x h) 1 (y k) 1 (z l) c (z l) + c If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis Verticl Axis of Symmetry: r (e 1) 1 ± e cos θ Horizontl Axis of Symmetry: r (e 1) 1 ± e sin θ Eccentricity: e > 1 where e c + sec θ > 1 reltive to center (h,k) cos 1 ( 1 e ) < θ < cos 1 ( 1 e ) p semi-ltus rectum or the line segment running from the focus to the curve in the directions θ ± π Interesting ote: The difference etween the distnces from ech focus to point on the curve is constnt. d 1 d k Left-Right Opening Hyperol: x(t) sec(t) + h y(t) tn(t) + k [t min, t mx ] [ c, c] (h, k) vertex of hyperol Alternte Form: x(t) ± cosh(t) + h y(t) sinh(t) + k Up-Down Opening Hyperol: x(t) tn(t) + h y(t) sec(t) + k Alternte Form: x(t) sinh(t) + h y(t) ± cosh(t) + k Generl Form: x(t) At + Bt + C y(t) Dt + Et + F where A nd D hve different signs Copyright y Hrold Toomey, WyzAnt Tutor 6
7 Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Limit lim f(x) L x c 1 st Derivtive nd Derivtive f f(x + h) f(x) (x) lim h 0 h f f(x) f(c) (c) lim x c x c f (x) dy y D x f (x) d (dy ) d y y dy dy dr sin θ + r cos θ dr cos θ r sin θ Hint: Use Product Rule for y r sin θ x r cos θ d y d (dy ) d (dy ) dy dy, provided 0 d y d (dy ) Riemnn Sum: n d (dy ) S f(y i )(x i x i 1 ) i 1 d (r ) r Unit tngent vector T (t) r (t) r (t) where r (t) 0 Unit norml vector (t) T (t) T (t) where T (t) 0 Left Sum: Integrl F(x) f(x) F() F() S ( 1 n ) [ f() + f ( + 1 n ) + f ( + n ) + + f( 1 n ) ] iddle Sum: S ( ) [f ( + ) + f ( + n n n ) + + f( 1 n )] r (t) f(t), g(t), h(t) Right Sum: S ( 1 n ) [f ( + 1 n ) + f ( + n ) + + f()] Doule Integrl d(y) f(x, y) dy c(y) Sme s rectngulr, ut f(x, y) f(ρ cos φ, ρ sin φ) Copyright y Hrold Toomey, WyzAnt Tutor 7
8 Triple Integrl Inverse Functions Arc Length Curvture Perimeter d(z) Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix g(y,z) f(x, y, z) dy dz c(z) e(y,z) If f(x) y, then f 1 (y) x Inverse Function Theorem: f 1 1 () f () where f () L 1 + [f (x)] Proof: s (x x 0 ) + (y y 0 ) s ( x) + ( y) ds + dy ds + dy ( ) ds + ( dy ) ds (1 + ( dy ) ) ds 1 + ( dy ) κ L ds Sme s rectngulr, ut f(x, y, z) f(ρ cos φ, ρ sin φ, z) if y sin θ if y cos θ if y tn θ if y csc θ if y sec θ if y cot θ then θ sin 1 y then θ cos 1 y then θ tn 1 y then θ csc 1 y then θ sec 1 y then θ cot 1 y Polr: L r + ( dr ) Where r f(θ) Circle: L s rθ Proof: L (frction of circumference) π (dimeter) L ( θ ) π (r) rθ π y κ(θ) r + r rr (1 + y ) 3 (r + r ) 3 Squre: P 4s Rectngle: P l + w Tringle : P + + c for r(θ) Circle: C πd πr Ellipse: C π( + ) π Ellipse: C 4 1 ( c ) sin θ 0 Sme s rectngulr, ut f(x, y, z) f(ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) θ rcsin y θ rccos y θ rctn y θ rccsc y θ rcsec y θ rccot y C πd πr Rectngulr D: L ( L ( t L ( dr t t 1 ( dρ ) t 1 κ + ( dy Rectngulr 3D: + ( dy + ( dz Cylindricl: + r ( + ( dz Sphericl: L + ρ sin φ ( + ρ ( dφ (z y y z ) + (x z z x ) + (y x x y ) (x + y + z ) 3 where f(t) (x(t), y(t), z(t)) L r (t) t s(t) r (u) 0 κ d T ds κ T (t) r (t) du κ r (t) r (t) r (t) 3 (See Wikipedi : Curvture) Circle: C πr Copyright y Hrold Toomey, WyzAnt Tutor 8
9 Are Lterl Surfce Are Totl Surfce Are Surfce of Revolution Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Squre: A s² Rectngle: A lw Rhomus: A ½ Prllelogrm: A h Trpezoid: A ( 1+ ) h Kite: A d 1 d Tringle: A ½ h Tringle: A ½ sin(c) Tringle: A s(s )(s )(s c), where s ++c Equilterl Tringle: A ¼ 3s Frustum: A 1 3 ( 1+ ) h Circle: A πr² Circulr Sector: A ½ r²θ Ellipse: A π Cylinder: S πrh Cone: S πrl S π f(x) 1 + [f (x)] Cue: S 6s² Rectngulr Box: S lw + wh + hl Regulr Tetrhedron: S h Cylinder: S πr (r + h) Cone: S πr² + πrl πr (r + l) Sphere: S 4πr² For revolution out the x-xis: A π f(x) 1 + ( dy ) For revolution out the y-xis: A π x 1 + ( dy ) dy A 1 [f(θ)] where r f(θ) Proof: Are of sector: A s dr r θ dr 1 r θ where rc length s r θ For rottion out the x-xis: S πy ds For rottion out the y-xis: S πx ds ds r + ( dr ) r f(θ), θ Ellipsoid: S 1 p 4π ( p p + p c p + p c p ) 3 Where p , E 1.061% (Knud Thomsen s Formul) For revolution out the x-xis: A π r cos θ r + ( dr ) For revolution out the y-xis: A π r sin θ r + ( dr ) Sphere: S 4πr² Sphere: S 4πr² Ellipsoid: S A g(t) f (t) where f(t) x nd g(t) y or x(t) f(t) nd y(t) g(t) Simplified: A y(t) (t) Proof: f(x) y f(x) g(t) df(t) f (t) For rottion out the x-xis: S πy ds For rottion out the y-xis: S πx ds ds ( ) + ( dy ) if x f(t), y g(t), t where For revolution out the x-xis: A x π y(t) ( + ( dy For revolution out the y-xis: A y π x(t) ( + ( dy A r u r du dv v D Copyright y Hrold Toomey, WyzAnt Tutor 9
10 Volume Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Cue: V s³ Rectngulr Prism: V lwh Cylinder: V πr²h Tringulr Prism: V Bh Tetrhedron: V ⅓ h Pyrmid: V ⅓ Bh Sphere: V 4 3 πr3 Ellipsoid: V 4 3 πc Cone: V ⅓ h ⅓ πr²h f(r cos θ, r sin θ, z)r dz dr ρ sin φ cos θ, f ( ρ sin φ sin θ,) ρ cos φ ρ sin φ dρ dφ Ellipsoid: V 4 3 π det(a 1 ) f(x, y, z) dy dz Disc ethod - Rottion out the x-xis: V π [f(x)] Disc ethod: Cylindricl Shell ethod: Wsher ethod - Rottion out the x-xis: Volume of Revolution V π { [f(x)] [g(x)] } Cylinder ethod - Rottion out the y-xis: V πx f(x) (circumference) (hight) oments of Inerti Center of ss I m i r i m r dr 0 R 1 m i r i where m i 1-D for Discrete: x cm m 1x 1 + m x m 1 + m -D for Discrete: y m i x i x m i y i x y, y x 3-D for Discrete: x cm x 1 m i x i y cm y 1 m i y i z cm z 1 m i z i 3-D for Continuous: x 1 x dm 0 y 1 y dm 0 z 1 z dm where dm 0 nd dm ρ dz dy 0 I ρ(r) d(r) dv(r) V R 1 r dm R 1 ρ(r) r dv V Where r is distnce from the xis of rottion, not origin. (see Wikipedi) Copyright y Hrold Toomey, WyzAnt Tutor 10
11 Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Grdient ƒ f x f f ƒ(ρ, ϕ, z) i + j + y z k f ρ e ρ + 1 f ρ ϕ e ϕ + f z e z ƒ(r, θ, ϕ) f r e r + 1 f r θ e θ + 1 f r sin θ ϕ e ϕ ( ƒ(x)) v D v f(x) ƒ f i x j e i e j where ƒ (ƒ 1, ƒ, ƒ 3 ) Line Integrl f ds C f(r(t)) r (t) F(r) dr C F(r(t)) r (t) f ds S f(x(s, t)) T x s x ds t v ds S Surfce Integrl where x(s, t) (x(s, t), y(s, t), z(s, t)) nd ( x s x t ) (y, z) (z, x) (x, y) (,, (s, t) (s, t) (s, t) ) (v n) ds S v(x(s, t)) T ( x s x ) ds t Copyright y Hrold Toomey, WyzAnt Tutor 11
Rectangular Polar Parametric
Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''
Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE
THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208 THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA,
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Quantitative Aptitude 1 Algebraic Identities Answers and Explanations
Quntittive ptitude lgebric Identities nswers nd Eplntions P- (S) d 5 6 b 7 c 8 b 9 c 0 d d 5 d 6 d 7 b 8 9 c 0 c c b 5 6 7 8 c 9 d 0 b d b b 5 6 b 7 c 8 b 9 c 0 d c c b c 5 d 6 c 7 d 8 b 9 c 50 b. Q +
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Double Integrals, Iterated Integrals, Cross-sections
Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)
List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere
Electromagnetic Waves I
Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Derivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
MATH 150 Pre-Calculus
MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree
Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.
Review of Essential Skills- Part Operations with Rational Numbers, page. (e) 8 Exponent Laws, page 6. (a) 0 + 5 0, (d) (), (e) +, 8 + (h) 5, 9. (h) x 5. (d) v 5 Expanding, Simplifying, and Factoring Algebraic
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
CURVILINEAR COORDINATES
CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the
x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]
συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,
Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim
Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions
Physics/Astronomy 6, Problem set 5, Due /17 Solutions Reding: Ch. 3, strt Ch. 4 1. Prove tht R λναβ + R λαβν + R λβνα = 0. Solution: We cn evlute this in locl inertil frme, in which the Christoffel symbols
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651
CHAPTER 10 Solutions Key Spatial Reasoning ARE YOU READY? PAGE 651 1. D. C. A 4. E 5. b = AB = 5-0 = 5; h = - (-1 = 4 bh = (5(4 = 10 units A = 6. b = LM = 6 - (- = 8, h = KL = 7 - = 4 A = bh = (8(4 = units
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
ECE 222b Applied Electromagnetics Notes Set 4c
ECE 222b Applied Electromgnetics Notes Set 4c Instructor: Prof. Vitliy Lomkin Deprtment of Electricl nd Computer Engineering University of Cliforni, Sn Diego 1 Cylindricl Wve Functions (1) Helmoholt eqution:
σ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +