Rectangular Polar Parametric
|
|
- Ἑλένη Μακρή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl Form: Ax + By + C = 0 Clculus Form: f(x) = f () x + f(0) (r, θ) or r θ Polr Rect. Rect. Polr x = r cos θ y = r sin θ tn θ = y x r 2 = x 2 + y 2 r = ± x 2 + y 2 θ = tn 1 ( y x ) Point (,) in Rectngulr: x(t) = y(t) = <, > t = 3 rd vrile, usully time, with 1 degree of freedom (df) < x, y > = < x 0, y 0 > + t <, > < x, y > = < x 0 + t, y 0 + t > where <, > = < x 2 x 1, y 2 y 1 > x(t) = x 0 + t y(t) = y 0 + t m = y x = y 2 y 1 x 2 x 1 = r = r 0 + sv + tw Plne n x (x x 0 ) +n y (y y 0 ) + n z (z z 0 ) = 0 Vector Form: n (r r 0 ) = 0 where: v nd w re given vectors defining the plne r 0 is the vector of fixed point on the plne Copyright y Hrold Toomey, WyzAnt Tutor 1
2 Rectngulr Polr Prmetric. Generl Eqution for All Conics: Generl Eqution for All Conics: Conics Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 where Line: A = B = C = 0 Circle: A = C nd B = 0 Ellipse: AC > 0 or B 2 4AC < 0 Prol: AC = 0 or B 2 4AC = 0 Hyperol: AC < 0 or B 2 4AC > 0 Note: If A + C = 0, squre hyperol Rottion: If B 0, then rotte coordinte system: A C cot 2θ = B x = x cos θ y sin θ y = y cos θ + x sin θ New = (x, y ), Old = (x, y) rottes through ngle θ from x-xis r = p 1 e cos θ (1 e 2 ) 0 e < 1 where p = { 2d for { e = 1 (e 2 1) e > 1 p = semi-ltus rectum or the line segment running from the focus to the curve in direction prllel to the directrix Eccentricity: Circle e = 0 Ellipse 0 e < 1 Prol e = 1 Hyperol e > 1 Copyright y Hrold Toomey, WyzAnt Tutor 2
3 Rectngulr Polr Prmetric. x 2 + y 2 = r 2 (x h) 2 + (y k) 2 = r 2 Centered t Origin: r = (constnt) θ = θ [0, 2π] or [0, 360 ] Circle Center: (h, k) Vertices: NA Focus: (h, k) Centered t (r 0, φ): r 2 + r 0 2 2rr 0 cos(θ φ) = R 2 Hint: Lw of Cosines or r = r 0 cos(θ φ) + 2 r 0 2 sin 2 (θ φ) x(t) = r cos(t) + h y(t) = r sin(t) + k [t min, t mx ] = [0, 2π) (h, k) = center of circle (h, k) Copyright y Hrold Toomey, WyzAnt Tutor 3
4 Rectngulr Polr Prmetric. (x h) 2 2 (y k)2 + 2 = 1 Center: (h, k) Vertices: (h ±, k) nd (h, k ± ) Foci: (h ± c, k) Focus length, c, from center: c = 2 2 Ellipse: r = (1 e2 ) for 0 e < e cos θ where e = c = 2 2 reltive to center (h,k) x(t) = cos(t) + h y(t) = sin(t) + k [t min, t mx ] = [0, 2π] (h, k) = center of ellipse Rotted Ellipse: x(t) = cos t cos θ sin t sin θ + h y(t) = cos t sin θ + sin t cos θ + k Ellipse θ = the ngle etween the x-xis nd the mjor xis of the ellipse Interesting Note: The sum of the distnces from ech focus to point on the curve is constnt. d 1 + d 2 = k Copyright y Hrold Toomey, WyzAnt Tutor 4
5 Prol Rectngulr Polr Prmetric. Verticl Axis of Symmetry: x 2 = 4 py (x h) 2 = 4p(y k) Vertex: (h, k) Focus: (h, k + p) Directrix: y = k p Horizontl Axis of Symmetry: y 2 = 4 px (y k) 2 = 4p(x h) Vertex: (h, k) Focus: (h + p, k) Directrix: x = h p Prol: 2d r = for e = e cos θ where d = 2p Trigonometric Form: y = x 2 r sin θ = r 2 cos 2 θ sin θ r = cos 2 = tn θ sec θ θ Verticl Axis of Symmetry: x(t) = 2pt + h y(t) = pt 2 + k (opens upwrds) or y(t) = pt 2 k (opens downwrds) [t min, t mx ] = [ c, c] (h, k) = vertex of prol Horizontl Axis of Symmetry: y(t) = 2pt + k x(t) = pt 2 + h (opens to the right) or x(t) = pt 2 h (opens to the left) [t min, t mx ] = [ c, c] (h, k) = vertex of prol Projectile Motion: x(t) = x 0 + v x t y(t) = y 0 + v y t 16t 2 feet y(t) = y 0 + v y t 4.9t 2 meters v x = v cos θ v y = v sin θ Generl Form: x = At 2 + Bt + C y = Dt 2 + Et + F where A nd D hve the sme sign Copyright y Hrold Toomey, WyzAnt Tutor 5
6 Hyperol Rectngulr Polr Prmetric. (x h) 2 2 (y k)2 2 = 1 Center: (h, k) Vertices: (h ±, k) Foci: (h ± c, k) Focus length, c, from center: c = Hyperol: r = (e2 1) for e > e cos θ Eccentricity: where e = c = = sec θ > 1 reltive to center (h,k) Left-Right Opening Hyperol: x(t) = sec( t) + h y(t) = tn( t) + k [t min, t mx ] = [ c, c] (h, k) = vertex of hyperol Up-Down Opening Hyperol: x(t) = tn(t) + h y(t) = sec(t) + k [t min, t mx ] = [ c, c] (h, k) = vertex of hyperol p = semi-ltus rectum or the line segment running from the focus to the curve in the directions θ = ± π 2 Interesting Note: The difference etween the distnces from ech focus to point on the curve is constnt. d 1 d 2 = k Generl Form: x(t) = At 2 + Bt + C y(t) = Dt 2 + Et + F where A nd D hve different signs Copyright y Hrold Toomey, WyzAnt Tutor 6
7 Rectngulr Polr Prmetric. 1 st Derivtive 2 nd Derivtive f f(x + h) f(x) (x) = lim h 0 h f f(x) f(c) (c) = lim x c x c f (x) = dy = y = D x f (x) = d (dy ) = d2 y 2 = y dy = dy = dr sin θ + r cos θ dr cos θ r sin θ Hint: Use Product Rule for y = r sin θ x = r cos θ d 2 y 2 = d (dy ) = d (dy ) dy = dy, provided 0 d 2 y 2 = d (dy ) = Riemnn Sum: n d (dy ) S = f(y i )(x i x i 1 ) i 1 Left Sum: S = ( 1 n ) [f() + f ( + 1 n ) + f ( + 2 n ) + + f( 1 n )] Integrl F(x) = f(x) = F() F() Middle Sum: S = ( ) [f ( + ) + f ( + n 2n 2n ) + + f( 1 2n )] Right Sum: S = ( 1 n ) [f ( + 1 n ) + f ( + 2 n ) + + f()] Copyright y Hrold Toomey, WyzAnt Tutor 7
8 Inverse Functions Arc Length Rectngulr Polr Prmetric. f(f 1 (x)) = f 1 (f(x)) = x Inverse Function Theorem: f 1 1 () = f () where = f () L = 1 + [f (x)] 2 Proof: s = (x x 0 ) 2 + (y y 0 ) 2 s = ( x) 2 + ( y) 2 ds = 2 + dy 2 ds = 2 + dy 2 ( 2 2) ds = 2 + ( dy ) 2 2 ds = 2 (1 + ( dy ) 2 ) if y = sin θ if y = cos θ if y = tn θ if y = csc θ if y = sec θ if y = cot θ L = ds ds = r 2 + ( dr ) 2 Circle: L = s = rθ then θ = sin 1 y then θ = cos 1 y then θ = tn 1 y then θ = csc 1 y then θ = sec 1 y then θ = cot 1 y Proof: L = (frction of circumference) π (dimeter) L = ( θ ) π (2r) = rθ 2π θ = rcsin y θ = rccos y θ = rctn y θ = rccsc y θ = rcsec y θ = rccot y L = ( L = ( + ( dy + ( dy + ( dz ds = 1 + ( dy ) 2 L = ds Perimeter Squre: P = 4s Rectngle: P = 2l + 2w Tringle: P = + + c Circle: C = πd = 2πr Ellipse: C π( + ) π Ellipse: C = ( c )2 sin 2 θ 0 Copyright y Hrold Toomey, WyzAnt Tutor 8
9 Are Lterl Surfce Are Rectngulr Polr Prmetric. Squre: A = s² Rectngle: A = lw Rhomus: A = ½ Prllelogrm: A = h Trpezoid: A = ( 1+ 2 ) h 2 Kite: A = d 1 d 2 2 Tringle: A = ½ h Tringle: A = ½ sin(c) Tringle: A = s(s )(s )(s c), where s = ++c 2 Equilterl Tringle: A = ¼ 3s 2 Frustum: A = 1 3 ( 1+ 2 ) h 2 Circle: A = πr² Circulr Sector: A = ½ r²θ Ellipse: A = π Cylinder: S = 2πrh Cone: S = πrl S = 2π f(x) 1 + [f (x)] 2 A = 1 2 [f(θ)]2 where r = f(θ) Proof: Are of sector: A = s dr = r θ dr = 1 2 r2 θ where rc length s = r θ For rottion out the x-xis: S = 2πy ds For rottion out the y-xis: S = 2πx ds A = g(t) f (t) where f(t) = x nd g(t) = y or x(t) = f(t) nd y(t) = g(t) Simplified: A = y(t) (t) Proof: f(x) y = f(x) = g(t) = df(t) = f (t) For rottion out the x-xis: S = 2πy ds For rottion out the y-xis: S = 2πx ds ds = r 2 + ( dr 2 ) r = f(θ), θ ds = ( 2 ) + ( dy 2 ) if x = f(t), y = g(t), t Copyright y Hrold Toomey, WyzAnt Tutor 9
10 Totl Surfce Are Surfce of Revolution Volume Rectngulr Polr Prmetric. Cue: S = 6s² Rectngulr Box: S = 2lw + 2wh + 2hl Regulr Tetrhedron: S = 2h Cylinder: S = 2πr (r + h) Cone: S = πr² + πrl = πr (r + l) For revolution out the x-xis: A = 2π f(x) 1 + ( dy ) 2 For revolution out the y-xis: A = 2π x 1 + ( dy ) 2 dy Cue: V = s³ Rectngulr Prism: V = lwh Cylinder: V = πr²h Tringulr Prism: V= Bh Tetrhedron: V= ⅓ h Pyrmid: V = ⅓ Bh Cone: V = ⅓ h = ⅓ πr²h Sphere: S = 4πr² Ellipsoid: S = (too complex) For revolution out the x-xis: A = 2π r cos θ r 2 + ( dr ) 2 For revolution out the y-xis: A = 2π r sin θ Sphere: V = 4 3 πr3 r 2 + ( dr ) 2 Ellipsoid: V = 4 3 πc For revolution out the x-xis: A = 2π y(t) ( + ( dy For revolution out the y-xis: A = 2π x(t) ( + ( dy Copyright y Hrold Toomey, WyzAnt Tutor 10
11 Rectngulr Polr Prmetric. Disc Method - Rottion out the x- xis: V = π [f(x)] 2 Cylindricl Shell Method: = (re of circle) d(thickness) Disc Method: Volume of Revolution Wsher Method - Rottion out the x-xis: V = π { [f(x)] 2 [g(x)] 2 } Cylinder Method - Rottion out the y-xis: V = 2πx f(x) = (circumference) (hight) Copyright y Hrold Toomey, WyzAnt Tutor 11
Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix
Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w)
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets
System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''
Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Quantitative Aptitude 1 Algebraic Identities Answers and Explanations
Quntittive ptitude lgebric Identities nswers nd Eplntions P- (S) d 5 6 b 7 c 8 b 9 c 0 d d 5 d 6 d 7 b 8 9 c 0 c c b 5 6 7 8 c 9 d 0 b d b b 5 6 b 7 c 8 b 9 c 0 d c c b c 5 d 6 c 7 d 8 b 9 c 50 b. Q +
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE
THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA, MALTA 208 THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE UNIVERSITY PRESS, MSIDA,
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
MATH 150 Pre-Calculus
MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Derivations of Useful Trigonometric Identities
Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine
Section 7.7 Product-to-Sum and Sum-to-Product Formulas
Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)
List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere
Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.
Review of Essential Skills- Part Operations with Rational Numbers, page. (e) 8 Exponent Laws, page 6. (a) 0 + 5 0, (d) (), (e) +, 8 + (h) 5, 9. (h) x 5. (d) v 5 Expanding, Simplifying, and Factoring Algebraic
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651
CHAPTER 10 Solutions Key Spatial Reasoning ARE YOU READY? PAGE 651 1. D. C. A 4. E 5. b = AB = 5-0 = 5; h = - (-1 = 4 bh = (5(4 = 10 units A = 6. b = LM = 6 - (- = 8, h = KL = 7 - = 4 A = bh = (8(4 = units
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section
SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Double Integrals, Iterated Integrals, Cross-sections
Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1
SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-8 PAPER II VERSION B [MATHEMATICS]. Ans: ( i) It is (cs5 isin5 ) ( i). Ans: i z. Ans: i i i The epressin ( i) ( ). Ans: cs i sin cs i sin
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
Electromagnetic Waves I
Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ο μετασχηματισμός Laplace Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains