IV и. е ые и Си АДИ, ы 5 (51),

Σχετικά έγγραφα
Super-Resolution Reconstruction for Face Images Based on Particle Filters Method

On homeomorphisms and C 1 maps

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

The one-dimensional periodic Schrödinger equation

TeSys contactors a.c. coils for 3-pole contactors LC1-D

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

New symmetries of Black-Scholes equation

Parts Manual. Trio Mobile Surgery Platform. Model 1033

2002 Journal of Software

2742/ 207/ / «&»

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Αλληλεπίδραση ακτίνων-χ με την ύλη

Power allocation under per-antenna power constraints in multiuser MIMO systems

HONDA. Έτος κατασκευής

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

DOI: /jos Tel/Fax: by Journal of Software. All rights reserved. , )

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics

Nonstationary Navier-Stokes Problem for Incompressible Fluid with Viscosity

High order interpolation function for surface contact problem

Granger FIA JOSEPH. Stock index futures 2005

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΚΑΤΑΤΑΞΗ ΟΜΙΛΩΝ ΜΕΤΑ ΑΠΟ ΚΛΗΡΩΣΗ (Α ΦΑΣΗ)


5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

D-Wave D-Wave Systems Inc.

An Inventory of Continuous Distributions

Το άτομο του Υδρογόνου

Example Sheet 3 Solutions

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

«ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΤΕΡΕΟΦΟΡΤΙΟΥ ΣΤΗ ΛΕΚΑΝΗ ΑΠΟΡΡΟΗΣ ΤΟΥ ΝΕΣΤΟΥ, ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΚΑΤΑΣΚΕΥΗ ΤΩΝ ΦΡΑΓΜΑΤΩΝ»

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

Reflection Models. Reflection Models

!! " # $%&'() * & +(&( 2010

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Estimators when the Correlation Coefficient. is Negative

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

( ) 1995.» 3 ( ). 10 ( ) ( ) 1986, ( ) (1) 3,, ( ),,,,».,,,

Χρονοσειρές Μάθημα 3



!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

Κεφάλαιο 5. Ειδικές Εξισώσεις Περιγραφής Ροής Βασικές αρχές για περιγραφή των περιβαλλοντικών ροών Οι εξισώσεις Navier-Stokes

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

α & β spatial orbitals in

A summation formula ramified with hypergeometric function and involving recurrence relation

MATHACHij = γ00 + u0j + rij

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

G10,O15,E

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

General theorems of Optical Imaging systems

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

A Class of Orthohomological Triangles

Χειμερινό εξάμηνο

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

6β1.γ96.96(075.8) MATHEMATICAL MODEL OF MOTION OF A MILITARY TRACKED VEHICLE WITH COMBINED POWER INSTALLATION. V.V.

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment


NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

.,., Klas Eric Soderquist,!., (knowledge transfer). % " $&, " 295 " 72 " marketing 65,, ', (, (.

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,.,

C F E E E F FF E F B F F A EA C AEC

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

!"#$!"#$%!"#$ Application Note. Pharmaceutical. Udo Huber. ChemStore C/S! ChemStation Plus!"#$ LC LC/MSD CE GC A/D!"#$%&'()*+,!"#$%!"#$!

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

5. Να βρείτε τον ατομικό αριθμό του 2ου μέλους της ομάδας των αλογόνων και να γράψετε την ηλεκτρονιακή δομή του.

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Quantum annealing inversion and its implementation

Homework 8 Model Solution Section

Generalized Normal Type-2. Triangular Fuzzy Number

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

ί α α I. Β α μ α π α μ α μ π φα α υ α υ αμ α ία ( α. μ3) : ία & α μα μα - αμ υ α ) α α Θ π μα α 79 (55) * 107

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Chapter 6 BLM Answers

Sheet H d-2 3D Pythagoras - Answers

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Transcript:

IV 493 - «И» Аи - - - - PO - - - Кеые : PO - - - - - ; - И - - - - - - ; - И- - - - - - - - - [] - Веи СиАДИ ы 5 (5) 6 45

- - - (ODE) - - - D- - D - - - - - - - - PO - - - - - - - ( - ) - G - И- f R ( f ) с f : X : g f f ε ε ; Y : gε f f ε 46 Веи СиАДИ ы 5 (5) 6 f : gφ f f φ φ s s s ( α ): gα f f cosα snα snα cosα И - - D- - - Д] p q f : D- p q mpq f d; p q Z ; : m f d f : m m ; f m m - f - : f f g F φ s - - m m : J m m - -

cos sn sn cos : J ' J : 5 arcg J J J - d J dag J J R J J - J J J - : XY D- C - c : R ; R c c ; a - - ы : A A c A: R R R Д3] GL ;de GL A R A - O GL - O : AR AA A A Id;de A - ρ A ρ ρ R E - - O R : g : a b GL GL dg ; a b d dg : Ag d ; g Id AR - g ep A - : g g GL - : v d Lv v d; L V R () dg v g d - Э Д4]: * * d Lv d Lv v v Lv () ы - X R X - X X ; - ( Id ) Dff X - - - X - - Веи СиАДИ ы 5 (5) 6 47

- X R g : X X g - G - : g g g g G - - ODE g ; X v : ; dg d v g g (3) v g X R g ; g ; X - * V v Lv v Lv v d α Lv ; g G v g dg d - : V (4) v v d Lv v d g g g g v - α : v L α Kα (5) : L d a R K L : K e (6) - Э- - [5]: v dα d Dα v α v Dv α (7) Df f ; : v K l l l - - - - Д6 7] - - - g n ; n n : σ V n n n v d g (8) Э- σ : σ α ; d d v v k k k K l l d k d K k l k l l l α ; α α α (9) K K - 48 Веи СиАДИ ы 5 (5) 6

L K : K e : k l K k l k l e PO (9) : α α α α α α - (9) - - (sсшштчр) PO (pкrтмlо sакrц ШpТЦТгКТШЧ) - α α α (8) - PO - J KОЧЧОНв 995 Д8] - (sакrц) ; - - - : - - ( ) PO - - - (- ε π ) π ( ε ) - θ βπ ; - 4 : σ ; PO: 7 ; : ε ε ( ) - 3 6 9 ε (; ) (; ) (; -) (-; ) (; ) (; 77) (4; -) (-; -77) (-43; ) (; 77) 84 4 (; 55) (83; -) (-; -55) (-84; ) (; 55) 954 6 (; 36) (; -) (-; -36) (-; 3) (; 36) 987 8 (; 8) (56; -) (-; -8) (-54; 3) (; 8) 998 (3; ) (85; -) (-3; ) (-8; 5) (3; ) 3 6 9 (; ) (34; ) (; ) (-34; (; ) Веи СиАДИ ы 5 (5) 6 49

- : n g n n 34 - : n g n n 7 - - PO σ - D - - - - - - - - - PO - - - - - 3D : - - - - - PO [9] (- ) : l u l u Mamze f X ; X X X X X (lower) (upper) X PO X X : X V - : f X X - : 3 X V : (a) И - X : P bes X f И X : G bes f X ; (b) : cr bes V V P X cr Gbes X c3 r3 c c c 3 r r r - 3 ; (c) : X X V f X X 4 3 P G - bes bes - - Beg MF e al Compung large deformaon merc mappngs va geodesc flows of dffeomorphsms // Inernaonal ournal of compuer vson 5 6 39-57 - // 8 44 3 8-87 5 Веи СиАДИ ы 5 (5) 6

3 Baker A Mar groups: An nroducon o Le group heor prnger cence & Busness Meda 4 Arnold VI Khesn BA opologcal mehods n hdrodnamcs prnger cence & Busness Meda 998 5 Holm DD e al Geomerc mechancs and smmer: from fne o nfne dmensons London: Oford Unvers Press 9 6 Mller MI rouve A Younes L Geodesc shoong for compuaonal anaom // Journal of mahemacal magng and vson 6 4 9-8 7 Bruvers M Holm DD Geomer of mage regsraon: he dffeomorphsm group and momenum maps // Geomer Mechancs and Dnamcs - prnger ew York 5-9-56 8 Kenned J e al warm nellgence Morgan Kaufmann 9 Yang X aure-nspred opmzaon algorhms Elsever 4 APPLICAIO OF PO FOR OLVIG PROB- LEM OF IVARIA COMPARIO OF WO-DIMEIOAL CLOED CURVE DB Abramov O Baranov V Lekher Absrac he problem of esmang he norm of he dsance beween he wo closed smooh curves for paern recognon s consdered Dffeomorphc ransformaon curves based on he model of large deformaons s descrbed For esmang of he norm of he dsance beween wo closed curves s formed he funconal correspondng normalzed dsance beween he wo curves and he equaon of evoluon dffeomorphc ransformaons An algorhm for solvng he equaon of dffeomorphc ransformaon s proposed bul on he bass of PO whch can sgnfcanl reduce he number of compung operaons compared wh graden mehods for solvng he developed algorhms can be used n bonformacs and bomercs ssems classfcaon of mages and obecs machne vson ssems for paern recognon and obec rackng ssems Kewords: nvarance roaon group ranslaon group dffeomorphc ransformaon PO mehod References Beg MF e al Compung large deformaon merc mappngs va geodesc flows of dffeomorphsms // Inernaonal ournal of compuer vson 5 6 39-57 hukanov he Fourer ransform of a funcon of hree-dmensonal mage nvaran o he acon of he roaon group and ransfer Avomera 8 no 3 pp 8-87 3 Baker A Mar groups: An nroducon o Le group heor prnger cence & Busness Meda 4 Arnold VI Khesn BA opologcal mehods n hdrodnamcs prnger cence & Busness Meda 998 5 Holm D D e al Geomerc mechancs and smmer: from fne o nfne dmensons London: Oford Unvers Press 9 6 Mller M I rouve A Younes L Geodesc shoong for compuaonal anaom // Journal of mahemacal magng and vson 6 4 9-8 7 Bruvers M Holm D D Geomer of mage regsraon: he dffeomorphsm group and momenum maps // Geomer Mechancs and Dnamcs - prnger ew York 5-9-56 8 Kenned J e al warm nellgence Morgan Kaufmann 9 Yang X aure-nspred opmzaon algorhms Elsever 4 ( ) «-» «И» (6448 5 О-mal: abramov@kvarksudoru) ( ) «-» «И» (6448 5 Оmal: baranov@kvarksudoru) ( ) «-» «И» (6448 5 emal: lekher@malru) Abramov Dmr Borsovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: abramov@kvarksudoru) Baranov erge Olegovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: baranov@kvarksudoru) Lekher erge Vladmrovch (Omsk Russan) posgraduae of he Deparmen "Auomaed sems of Informaon Processng and Managemen" "badi" (6448 Omsk Mra 5 emal: lekher@malru) Веи СиАДИ ы 5 (5) 6 5