AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Σχετικά έγγραφα
Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

11.4 Graphing in Polar Coordinates Polar Symmetries

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 8.2 Graphs of Polar Equations

Section 8.3 Trigonometric Equations

Section 9.2 Polar Equations and Graphs

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

Section 7.6 Double and Half Angle Formulas

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Answer sheet: Third Midterm for Math 2339

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Solutions to Exercise Sheet 5

Trigonometric Formula Sheet

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Differentiation exercise show differential equation

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Spherical Coordinates

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

PARTIAL NOTES for 6.1 Trigonometric Identities

MathCity.org Merging man and maths

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

If we restrict the domain of y = sin x to [ π 2, π 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Core Mathematics C34

Chapter 6 BLM Answers

Math221: HW# 1 solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differential equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Core Mathematics C12

CHAPTER 8. CONICS, PARAMETRIC CURVES, AND POLAR CURVES

Core Mathematics C34

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Parametrized Surfaces

Tutorial Note - Week 09 - Solution

1 String with massive end-points

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Solution to Review Problems for Midterm III

Math 6 SL Probability Distributions Practice Test Mark Scheme

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Second Order RLC Filters

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Trigonometry 1.TRIGONOMETRIC RATIOS

Example 1: THE ELECTRIC DIPOLE

Geodesic Equations for the Wormhole Metric

MATH 150 Pre-Calculus

Lecture 26: Circular domains

Homework 3 Solutions

Finite Field Problems: Solutions

TRIGONOMETRIC FUNCTIONS

D Alembert s Solution to the Wave Equation

4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Matrices and Determinants

Rectangular Polar Parametric

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

Probability and Random Processes (Part II)

Chapter 7 Analytic Trigonometry

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Example Sheet 3 Solutions

10.7 Performance of Second-Order System (Unit Step Response)

CYLINDRICAL & SPHERICAL COORDINATES

Approximation of distance between locations on earth given by latitude and longitude

Srednicki Chapter 55

Fourier Analysis of Waves

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

The Pohozaev identity for the fractional Laplacian

derivation of the Laplacian from rectangular to spherical coordinates

Double Integrals, Iterated Integrals, Cross-sections

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

2 Composition. Invertible Mappings

Statistical Inference I Locally most powerful tests

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

C.S. 430 Assignment 6, Sample Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Review Exercises for Chapter 7

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Principles of Mathematics 12 Answer Key, Contents 185

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

EE512: Error Control Coding

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Transcript:

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve and lies in the specified sector.. r,. r e,. r cos,. r,. r sin, 6. r cos, 7. r sin, 8. r, 6 6 6 6 9 6 Sketch the curve and find the area that it encloses. 9. r sin. r sin. r sin. r cos. r cos. r sin. r cos 6. r sin ; 7. Graph the curve r cos 6 and find the area that it encloses. ; 8. The curve with polar equation r sin cos is called a bifolium. Graph it and find the area that it encloses. 9 Find the area of the region enclosed by one loop of the curve. 9. r cos. r sin. r sin. r cos inner loop) Find the area of the region that lies inside the first curve and outside the second curve.. r cos,. r cos,. Find the area inside the larger loop and outside the smaller loop of the limaçon r sin. ; 6. Graph the hippopede r s.8 sin and the circle r sin and find the exact area of the region that lies inside both curves. 7 Find the length of the polar curve. 7. r cos, 8. r, 9. r cos. r e,.. r cos r cos r cos r Use a calculator or computer to find the length of the loop correct to four decimal places.. ne loop of the four-leaved rose r cos. The loop of the conchoid r sec Copyright, Cengage Learning. All rights reserved.

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. ANSWERS E Click here for exercises. S Click here for solutions.. 6. e e ) 7.. 6 +.. 96 6. +) 7. 9 +) 8. 8 6 8. 9 9.. 8.. 9.. 9. 9 8. 8. ). sin +9 7 ). 7 cos 6.....6 arcsin., ). +ln ) 7. 8. ln 9. 8. e ). 6.....88., 6. Copyright, Cengage Learning. All rights reserved., 9,

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. SLUTINS E Click here for exercises.. A r dθ θ dθ θ] 6 6.. A / / eθ dθ eθ] / / e e ). A /6 cos θ) dθ /6 + cos θ) dθ θ + sin θ] /6. A /6 /6. A /6 6 + /θ) dθ / θ)] /6 /6 sin θdθ /6 cos θ) dθ θ 6 sin θ] /6 96 6. A / cos θdθ / + cos 6θ) dθ θ + sin 6θ] / +) 6 7. A / / sin θ) dθ / 9 cos θ) dθ / 9 θ sin θ] / 9 +) / 8 8. A / / θ ) dθ θ] / / 6. A 6 /6 sin θdθ /6 cos 6θ) dθ θ sin 6θ] /6 6 A cos θ)] dθ 6 cosθ +cos θ ) dθ 8 cosθ +cosθ) dθ 6θ 8sinθ + sin θ] 9.., ). A sin θ) dθ θ sin θ] cos θ) dθ A / cos θ) dθ / + cos θ) dθ θ + sin θ] /. Copyright, Cengage Learning. All rights reserved. A / / sin θ) dθ / / 6 8sinθ +sin θ ) dθ / / 6 + sin θ ) dθ by Theorem..7b)] / / 6 + sin θ ) dθ by Theorem..7a)] 6 + cos θ)] dθ θ sin θ] / A / + sin / θ) dθ / / + sin θ + sin θ ) dθ θ cosθ] / / + / cos θ) dθ / + θ sin θ] / + /

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES.,,, 9. A /6 cos θdθ /6 + cos 6θ) dθ θ + sin 6θ] /6 6 6. A cos θ) dθ 9 6cosθ +cos θ ) dθ 9θ 6sinθ + θ + sin θ] 9. A / sin θ) dθ 9 / cos θ) dθ 9 θ sin θ] / 9 8. A / sin θdθ θ sin θ] / / cos θ) dθ. 7. A 8 / sin θdθ / cos 8θ) dθ θ sin 8θ] / By symmetry, the total area is twice the area enclosed above the polar axis, so A r dθ + cos 6θ] dθ +cos6θ +cos 6θ ) dθ θ + sin 6θ) + sin θ + θ)] 6 + 9. +cosθ cos θ θ cos ) or cos ) ).Letα cos.then A + cos α θ) dθ α +cosθ +9cos θ ) dθ 7 α +cosθ + 9 cos θ) dθ 7 θ + sin θ + 9 sin θ] α 7 α) sin α 9 sin α cos α )] ) ) 7 cos ) 9 ) 7 cos 8. Copyright, Cengage Learning. All rights reserved. Note that the entire curve r sinθcos θ is generated by θ,]. The radius is positive on this interval, so the area enclosed is A r dθ sin θ cos θ ) dθ sin θ cos θdθ sin θ cos θ) cos θdθ sin θ) cos θdθ sin θ cos θ +)dθ sin θ cos θdθ+ sin θdθ ] θ sin θ] the first integral vanishes) 8 cos θ cos θ θ or A cos θ) ) ] dθ / / cosθ +cos θ ) dθ θ sinθ] / + + + + cos θ) dθ / θ + sin θ] / + + 6 + 8 9 8

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES Copyright, Cengage Learning. All rights reserved... 6. cosθ cos θ cos θ θ ± A / cos θ) cos θ) ] dθ / 8cos θ +cosθ ) dθ / cos θ +cosθ) dθ / sin θ + sin θ] The curve crosses itself when +sinθ sin θ.lettingα sin, the desired area is / A α + sin θ) dθ α + sin θ)] dθ / Now + sin θ) dθ 9θ cos θ +8θ sinθ + C,so A α +8cosα 6 sin α cos α The points of intersection occur where.8 sin θ sin θ.8sin θ θ arcsin α,socos α ). So the area is 9 A α. sin θdθ + / α.8 sin θ) dθ θ sin θ] α + θ.8 θ sin θ)] / α α sin α cos α)+.6.6α +. sin α cos α)] arcsin..6 7, +., r sin sin.6 arcsin. arcsin.. ) sin +9 7. 7. L b r a +dr/dθ) dθ / cos θ) + sin θ) dθ / cos θ + sin θdθ / dθ 8. L b a r +dr/dθ) dθ θ ) +ln) θ ] dθ +ln θ ln )] θ +ln dθ +ln ) ln 9. L + cos θ) + sin θ) dθ +cosθdθ cos θ/) dθ 8 sin θ/)] 8. L e θ ) + e θ ) dθ e θ dθ e ). L cos 8 θ) +cos 6 θ) sin θ) dθ cos θ) cos θ) + sin cos θ) dθ 8 / cos uduwhere u θ) θ) dθ 8 sin u sin u ] / 6 Note that the curve is retraced after every interval of length.. L cos θ)] + cos θ) sin θ)] dθ cos θ) dθ sin θ)]. From Figure in Example, L / r / +r ) dθ / cos θ + sin θdθ.6).. +secθ sec θ cos θ θ,. L / / + sec θ) + sec θ tan θ) dθ.88