Core Mathematics C34
|
|
- Πελάγιος Δυοβουνιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Friday 12 June 2015 Morning Time: 2 hours 30 minutes You must have: Mathematical Formulae and Statistical Tables (Blue) Paper Reference WMA02/01 Total Marks Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. Instructions Use black ink or ball-point pen. If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions and ensure that your answers to parts of questions are clearly labelled. Answer the questions in the spaces provided there may be more space than you need. You should show sufficient working to make your methods clear. Answers without working may not gain full credit. When a calculator is used, the answer should be given to an appropriate degree of accuracy. Information The total mark for this paper is 125. The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. Advice Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. P44970A 2015 Pearson Education Ltd. 5/1/1/1/1/ *P44970A0144* Turn over
2 1. A curve has equation The points P and Q lie on the curve. 4x 2 y 2 + 2xy + 5 = 0 Given that d y = 2 at P and at Q, dx (a) use implicit differentiation to show that y 6x = 0 at P and at Q. (6) (b) Hence find the coordinates of P and Q. (3) 2 *P44970A0244*
3 Question 1 continued Q1 (Total 9 marks) *P44970A0344* 3 Turn over
4 2. Given that 2 4( x + 6) A B C + + ( 1 2x)( 2 + x) ( 1 2x) ( 2 + x) ( 2 + x) 2 2 (a) find the values of the constants A and C and show that B = 0 (4) (b) Hence, or otherwise, find the series expansion of 2 4( x + 6) ( 1 2x)( 2 + x) 2, x < 1 2 in ascending powers of x, up to and including the term in x 2, simplifying each term. (5) 4 *P44970A0444*
5 Question 2 continued *P44970A0544* 5 Turn over
6 Question 2 continued 6 *P44970A0644*
7 Question 2 continued Q2 (Total 9 marks) *P44970A0744* 7 Turn over
8 3. y O x A Figure 1 Figure 1 shows a sketch of part of the curve with equation y = f(x), where f(x) = (2x 5)e x, x The curve has a minimum turning point at A. (a) Use calculus to find the exact coordinates of A. (5) Given that the equation f(x) = k, where k is a constant, has exactly two roots, (b) state the range of possible values of k. (2) (c) Sketch the curve with equation y = f(x). Indicate clearly on your sketch the coordinates of the points at which the curve crosses or meets the axes. (3) 8 *P44970A0844*
9 Question 3 continued *P44970A0944* 9 Turn over
10 Question 3 continued 10 *P44970A01044*
11 Question 3 continued Q3 (Total 10 marks) *P44970A01144* 11 Turn over
12 4. A a O b Figure 2 B Figure 2 shows the points A and B with position vectors a and b respectively, relative to a fixed origin O. Given that a = 5, b = 6 and a.b = 20 (a) find the cosine of angle AOB, (b) find the exact length of AB. (2) (2) (c) Show that the area of triangle OAB is 5 5 (3) 12 *P44970A01244*
13 Question 4 continued Q4 (Total 7 marks) *P44970A01344* 13 Turn over
14 5. (i) Find the x coordinate of each point on the curve y = x, x 1, at which the x + 1 gradient is 1 4 (ii) Given that (4) 2a a t + 1 dt = ln 7 a > 0 t find the exact value of the constant a. (4) 14 *P44970A01444*
15 Question 5 continued Q5 (Total 8 marks) *P44970A01544* 15 Turn over
16 6. The mass, m grams, of a radioactive substance t years after first being observed, is modelled by the equation m = 25e 1 kt where k is a positive constant. (a) State the value of m when the radioactive substance was first observed. Given that the mass is 50 grams, 10 years after first being observed, 1 1 (b) show that k = ln e 10 2 (1) (4) (c) Find the value of t when m = 20, giving your answer to the nearest year. (3) 16 *P44970A01644*
17 Question 6 continued Q6 (Total 8 marks) *P44970A01744* 17 Turn over
18 7. (a) Use the substitution t = tanx to show that the equation can be written in the form 4tan 2x 3cot x sec 2 x = 0 3t 4 + 8t 2 3 = 0 (4) (b) Hence solve, for 0 x < 2, 4tan 2x 3cot x sec 2 x = 0 Give each answer in terms of. You must make your method clear. (4) 18 *P44970A01844*
19 Question 7 continued *P44970A01944* 19 Turn over
20 Question 7 continued 20 *P44970A02044*
21 Question 7 continued Q7 (Total 8 marks) *P44970A02144* 21 Turn over
22 8. (a) Prove by differentiation that d dy 4 ( ln tan 2y) =, π 0 < y < sin 4y 4 (b) Given that y = 6 π when x = 0, solve the differential equation (4) dy dx π = 2cos xsin 4y, 0 < y < 4 Give your answer in the form tan2y = Ae Bsinx, where A and B are constants to be determined. (6) 22 *P44970A02244*
23 Question 8 continued *P44970A02344* 23 Turn over
24 Question 8 continued 24 *P44970A02444*
25 Question 8 continued Q8 (Total 10 marks) *P44970A02544* 25 Turn over
26 9. y O A B x Figure 3 Figure 3 shows a sketch of part of the curve with parametric equations x = t 2 + 2t, y = t 3 9t, t The curve cuts the x-axis at the origin and at the points A and B as shown in Figure 3. (a) Find the coordinates of point A and show that point B has coordinates (15, 0). (b) Show that the equation of the tangent to the curve at B is 9x 4y 135 = 0 (3) (5) The tangent to the curve at B cuts the curve again at the point X. (c) Find the coordinates of X. (5) (Solutions based entirely on graphical or numerical methods are not acceptable.) 26 *P44970A02644*
27 Question 9 continued *P44970A02744* 27 Turn over
28 Question 9 continued 28 *P44970A02844*
29 Question 9 continued Q9 (Total 13 marks) *P44970A02944* 29 Turn over
30 10. x 6x Figure 4 Figure 4 shows a right circular cylindrical rod which is expanding as it is heated. At time t seconds the radius of the rod is x cm and the length of the rod is 6x cm. Given that the cross-sectional area of the rod is increasing at a constant rate π of cm2 s 1, find the rate of increase of the volume of the rod when x = 2 20 Write your answer in the form k cm 3 s 1 where k is a rational number. (6) 30 *P44970A03044*
31 Question 10 continued Q10 (Total 6 marks) *P44970A03144* 31 Turn over
32 11. (a) Express 1.5sin 1.2cos in the form Rsin( ), where R > 0 and 0 < < 2 π Give the value of R and the value of to 3 decimal places. (3) The height, H metres, of sea water at the entrance to a harbour on a particular day, is modelled by the equation H = sin πt 6 1.2cos πt 6, 0 t < 12 where t is the number of hours after midday. (b) Using your answer to part (a), calculate the minimum value of H predicted by this model and the value of t, to 2 decimal places, when this minimum occurs. (4) (c) Find, to the nearest minute, the times when the height of sea water at the entrance to the harbour is predicted by this model to be 4 metres. (6) 32 *P44970A03244*
33 Question 11 continued *P44970A03344* 33 Turn over
34 Question 11 continued 34 *P44970A03444*
35 Question 11 continued Q11 (Total 13 marks) *P44970A03544* 35 Turn over
36 12. (i) Relative to a fixed origin O, the line l 1 is given by the equation l 1 : r = where is a scalar parameter. The point P lies on l 1. Given that OP is perpendicular to l 1, calculate the coordinates of P. (5) (ii) Relative to a fixed origin O, the line l 2 is given by the equation l 2 : r = where is a scalar parameter. The point A does not lie on l 2. Given that the vector OA is parallel to the line l 2 and OA = 2 units, calculate the possible position vectors of the point A. (5) 36 *P44970A03644*
37 Question 12 continued *P44970A03744* 37 Turn over
38 Question 12 continued 38 *P44970A03844*
39 Question 12 continued Q12 (Total 10 marks) *P44970A03944* 39 Turn over
40 13. y R O e e 2 x Figure 5 Figure 5 shows a sketch of part of the curve with equation y = 2 ln x, x > 0 The finite region R, shown shaded in Figure 5, is bounded by the curve, the x-axis and the line with equation x = e. The table below shows corresponding values of x and y for y = 2 ln x x e e + e 2 2 e 2 y l 0 (a) Complete the table giving the value of y to 4 decimal places. (1) (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 3 decimal places. (3) (c) Use integration by parts to show that (ln x) 2 dx = x (ln x) 2 2xln x + 2x + c (4) The area R is rotated through 360 about the x-axis. (d) Use calculus to find the exact volume of the solid generated. Write your answer in the form e( pe + q), where p and q are integers to be found. (6) 40 *P44970A04044*
41 Question 13 continued *P44970A04144* 41 Turn over
42 Question 13 continued 42 *P44970A04244*
43 Question 13 continued *P44970A04344* 43 Turn over
44 Question 13 continued Q13 (Total 14 marks) TOTAL FOR PAPER: 125 MARKS END 44 *P44970A04444*
Core Mathematics C34
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Core Mathematics C12
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Wednesday 25 May 2016 Morning Time: 2 hours
physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)
C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer
Paper Reference R. Statistics S1 Advanced/Advanced Subsidiary. Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6683/01R Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Tuesday 10 June 2014 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the
Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary
Centre No. Candidate No. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Friday 20 May 2011 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical
43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 9 June 2011 Morning Time: 3 hours Paper
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end.
Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 22 June 2015 Morning Time: 3 hours You do not need any other materials. Paper
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Tuesday 18 June 2013 Afternoon Time: 3 hours Paper
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Advanced Subsidiary Paper 1: Understanding and Written Response. Wednesday 24 January 2018 Morning Time: 2 hours 30 minutes
Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Greek Advanced Subsidiary Paper 1: Understanding and Written Response Wednesday 24 January
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information.
Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Thursday 31 May 2012 Morning Time: 3 hours You do not need any other materials. Paper Reference
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information.
Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 3 June 2013 Morning Time: 3 hours You do not need any other materials. Paper Reference
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Candidate Number. General Certificate of Secondary Education Higher Tier November 2013
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Advanced Unit 2: Understanding, Written Response and Research
Write your name here Surname Other names Pearson Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 11 June 2015 Afternoon Time: 3 hours
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Thursday 24 May 2007 Morning Time: 45 minutes
Paper Reference. Advanced/Advanced Subsidiary. Thursday 9 June 2005 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference 6 6 8 3 0 1 Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June 2005 Morning Time: 1 hour 30 minutes Surname Signature
AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop
SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
International Advanced Subsidiary Paper 1: Understanding and Written Response
Write your name here Surname Other names Pearson Edexcel IS Level entre Number andidate Number Greek International dvanced Subsidiary Paper 1: Understanding and Written Response Wednesday 24 May 2017 Morning
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8175930111* GREEK 0543/04 Paper 4 Writing May/June 2017 1 hour Candidates answer on the Question
*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes
Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time)
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 15 May 2009 Afternoon Time: 45 minutes
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *1880009435* GREEK 0543/04 Paper 4 Writing May/June 2018 1 hour Candidates answer on the Question
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Monday 18 May 2009 Afternoon Time: 2 hours 45 minutes
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education GREEK 0543/04 Paper 4 Writing For Examination from 2015 SPECIMEN PAPER Candidates answer on the Question
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Cambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Monday 16 May 2011 Morning Time: 2 hours 45 minutes
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
General Certificate of Secondary Education Higher Tier
Version 1.0 Centre Number Surname Other Names Candidate Number For Examiner s Use Examiner s Initials Candidate Signature Pages Mark General Certificate of Secondary Education Higher Tier 3 4 5 Mathematics
GCSE MATHEMATICS (LINEAR) Higher Tier Paper 2. Morning (NOV H01) Materials. Instructions. Information. Advice PMT
Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature GCSE H MATHEMATICS (LINEAR) Higher Tier Paper 2 Friday 4 November 2016 Materials For this
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY
GRADE TRIALS EXAMINATION AUGUST 05 MATHEMATICS PAPER Time: 3 hours Examiners: Miss Eastes, Mrs. Jacobsz, Mrs. Dwyer 50 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Read the questions carefully.
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Modern Greek Extension
Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Date Morning/Afternoon Time allowed: 1 hour 30 minutes
*0000000000* GCSE (9 1) Mathematics J560/06 Paper 6 (Higher Tier) Practice Paper Date Morning/Afternoon Time allowed: 1 hour 30 minutes You may use: A scientific or graphical calculator Geometrical instruments
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Advanced Subsidiary Unit 1: Understanding and Written Response. Wednesday 19 May 2010 Afternoon Time: 2 hours 45 minutes
Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Wednesday 19 May 2010 Afternoon Time: 2 hours 45
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Pearson Edexcel GCE Greek Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Pearson Edexcel GE entre Number andidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Tuesday 17 May 2016 Morning Time: 2 hours 45
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Pearson Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Friday 5 June 2015 fternoon Time: 2 hours 45
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data
Physics (Specification A & B) PHY6T/Q11/test
Centre Number Surname Candidate Signature Candidate Number Other Names Notice to Candidate. The work you submit for assessment must be your own. If you copy from someone else or allow another candidate
Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours
Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Friday 14 May 2010 Afternoon Time: 3 hours Initial(s)
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
PhysicsAndMathsTutor.com
PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth