Paul Langacker. The Standard Model and Beyond, Second Edition Answers to Selected Problems

Σχετικά έγγραφα
Homework 8 Model Solution Section

CRASH COURSE IN PRECALCULUS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Reminders: linear functions

Solutions - Chapter 4

Review Exercises for Chapter 7

Space-Time Symmetries

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

1 String with massive end-points

Geodesic Equations for the Wormhole Metric

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Answers to practice exercises

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 34 Bootstrap confidence intervals

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Efectos de la cromodinámica cuántica en la física del bosón de Higgs Mazzitelli, Javier

C.S. 430 Assignment 6, Sample Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Jeux d inondation dans les graphes

If we restrict the domain of y = sin x to [ π 2, π 2

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Lifting Entry (continued)

Approximation of distance between locations on earth given by latitude and longitude

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Tridiagonal matrices. Gérard MEURANT. October, 2008

D Alembert s Solution to the Wave Equation

Math221: HW# 1 solutions

Orbital angular momentum and the spherical harmonics

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

4.6 Autoregressive Moving Average Model ARMA(1,1)

Higher Derivative Gravity Theories

Srednicki Chapter 55

Solutions to Exercise Sheet 5


Second Order RLC Filters

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Uniform Convergence of Fourier Series Michael Taylor

Derivation of Optical-Bloch Equations

( N m 2 /C 2 )( C)( C) J

Non-Abelian Gauge Fields

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

( ) 2 and compare to M.

2 Composition. Invertible Mappings

Matrices and Determinants

EE101: Resonance in RLC circuits

Trigonometric Formula Sheet

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Second Order Partial Differential Equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Graded Refractive-Index

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Notes on the Open Economy

Oscillatory integrals

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Trigonometry 1.TRIGONOMETRIC RATIOS

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Ó³ Ÿ , º 7(170) Ä1091 ˆŒ ˆ. Œ. ˆ. Ò μí± 1. ˆ É ÉÊÉ É μ É Î ±μ Ô± ³ É ²Ó μ Ë ±, Œμ ±

Chapter 6 BLM Answers

= 0.927rad, t = 1.16ms

Example Sheet 3 Solutions

Particle Physics: Introduction to the Standard Model

Areas and Lengths in Polar Coordinates

SPECIAL FUNCTIONS and POLYNOMIALS

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Differential equations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

X t m X t Y t Z t Y t l Z t k X t h x Z t h z Z t Y t h y z X t Y t Z t E. G γ. F θ. z Θ Γ. γ F θ

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

rs r r â t át r st tíst Ó P ã t r r r â

Parametrized Surfaces

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

PARTIAL NOTES for 6.1 Trigonometric Identities

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ITU-R P (2009/10)

Errata 18/05/2018. Chapter 1. Chapter 2

Α Ρ Ι Θ Μ Ο Σ : 6.913

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Problem Set 3: Solutions

Section 9: Quantum Electrodynamics

Durbin-Levinson recursive method

Section 7.6 Double and Half Angle Formulas

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

Transcript:

Paul Langacker The Standard Model and Beyond, Second Edition Answers to Selected Problems

Contents Chapter Review of Perturbative Field Theory 1.1 PROBLEMS 1 Chapter 3 Lie Groups, Lie Algebras, and Symmetries 5 3.1 PROBLEMS 5 Chapter 4 Gauge Theories 9 4.1 PROBLEMS 9 Chapter 5 The Strong Interactions and QCD 11 5.1 PROBLEMS 11 Chapter 6 Collider Physics 15 6.1 PROBLEMS 15 Chapter 7 The Weak Interactions 17 7.1 PROBLEMS 17 Chapter 8 The Standard Electroweak Theory 19 8.1 PROBLEMS 19 Chapter 9 Neutrino Mass and Mixing 5 9.1 PROBLEMS 5 Chapter 10 Beyond the Standard Model 7 10.1 PROBLEMS 7 i

C H A P T E R Review of Perturbative Field Theory.1 PROBLEMS Problem.: 0.04 dσ d cos θ (fm ) 0.014 0.01 0.010 0.008 0.006 0.004 0.00 0.000-1.0-0.5 0.0 0.5 1.0 cos θ σ (fm ) 0.03 0.0 0.01 0.00 1.0 1.1 1. 1.3 1.4 1.5 s (GeV) Left: dσ/d cos θ in units of fm as a function of cos θ for s = 5m, 6m, and 7m (from upper to lower). Right: σ(s) in units of fm as a function of s Problem.5: [ ] M fi = ( iκ) i i s m + 3 u m 3 dσ d cos θ = M fi 3πs, u = p (1 + cos θ), p = s 4m 1 / Problem.6: M fi = 4iσ 4 Problem.7: dγ d cos θ = αm A 8 (1 4m M A ) 3/ cos θ, Γ = αm A 1 (1 4m M A ) 3/ 1

The Standard Model and Beyond Problem.8: (a) ( i M fi = ( ig) s µ + i ) t µ, s 4m t = p (1 cos θ), p =, E = (b,c) dσ d cos θ = M fi +1 3πs, σ = 1 dσ d cos θ. d cos θ s, dσ d cos θ (fm ) 0.005 0.000 0.0015 0.0010 π + π - π + π - x=4.0 x=4. x=4.4 σ (fm ) 0.0030 0.005 0.000 0.0015 0.0010 π + π - π + π - 0.0005 0.0005 0.0000-1.0-0.5 0.0 0.5 1.0 cos θ 0.0000 4.0 4. 4.4 4.6 4.8 5.0 x Left: dσ/d cos θ in units of fm for x = 4, 4., and 4.4. Right: σ in units of fm vs x. ( ) Problem.15: For example, P L u(+) m φ+ E E, so the rates for the wrong he- 0 licity are suppressed by m /4E. Problem.18: (a) with d σ d cos θ = 1 3πs M [ ( M = h 4 1 t µ ) ( 4m t ) ( + 1 u µ ) ( 4m u ) 1 ( ) ( ) 1 1 [(4m t µ u µ u ) ( + 4m t ) ( s 4m ) ]], where E = s s 4m, k =, t = k (1 cos θ), u = k (1 + cos θ). (b) d σ d cos θ = 3h4 3πs, σ = 1 1 1 d cos θ d σ d cos θ = 3h4 3πs.

Review of Perturbative Field Theory 3 Problem.0: d σ p [ = 4πα s + (E + p cos θ) d cos θ st m µ(1 cos θ) ] Problem.1: d σ d cos θ = πα s ( 3 + cos ) θ, 1 cos θ which displays the singularity from the t-channel pole in the forward direction. Problem.: d σ d cos θ = πα s = πα s [ (1 + cos 4 θ ) sin 4 θ [ 16 sin 4 θ 8 sin θ + 1 + (1 + sin4 θ ) + cos 4 θ ]. ] sin θ cos θ Problem.3: d σ d cos θ = πα βf 3 sin θ, 4s σ = πα β 3 f 3s Problem.4: d σ d cos θ = (Zα) π(1 β cos θ β p sin 4 θ ) β 1 Z α π β p sin 4 θ Problem.5: p f Γ = 8πMZ M m 0 M Z ( g 1π V + ga ). Problem.6: dγ d cos θ = p f [( gs + g P ) E p + ( g S g P ) m p 8πm Λ + Re (g P gs) p f cos θ]. Problem.7: σ(s) = 1π(s/M V ) Γ aā Γb b (s MV ) + MV, Γb b = g b M V Γ V 1π. Problem.9: M(, ) = M(+, +) = 8πα i ( 1 β π + 1 ) cos θ 1 cos θ.

4 The Standard Model and Beyond Problem.30: (a) eφ s (mã0( q ) ( p 1 + p ) ) A( q ) σ B( q ) [1 + F (0)] φ s1. (b) d e = ieg (0) m σ. Problem.31: τ 1 = 1 4 δ α m e, δ < 5.8 10 8. Problem.3: p() H p(1) = p() d 3 x ej µ Q A µ p(1) [ = m p e φ G E (Q )Ã0( q ) G M (Q ) σ ] B( q ) m p φ 1 Problem.33: (a) (b) (c) Ṽ ( q ) = λ, V ( r ) = λδ 3 ( r ). Ṽ ( q ) = g 1g q + m, V (r) = g 1g φ 4π V (r) = + g 1g 4π (d) Sign change for vector, not for scalar. (e) V ( r ) = g πm 3 π 16πm p e M V r r. e m φr ( σ p x ) ( σ n x ) ( e x x r ).. Problem.34: Γ = e m 3 µ 8π ( A + B ).

C H A P T E R 3 Lie Groups, Lie Algebras, and Symmetries 3.1 PROBLEMS Problem 3.4: cos γ = cos α cos β sin α sin β ˆα ˆβ sin γ ˆγ = sin α cos β ˆα + cos α sin β ˆβ + sin α sin β ˆα ˆβ. Problem 3.13: π + p M π + p = M 3/, π p M π p = 1 3 M 3/ + 3 M 1/ π 0 n M π p = 3 M 3/ 3 M 1/, π 0 n M π 0 n = 3 M 3/ + 1 3 M 1/ Problem 3.14: M(Σ + π 0 ( ) p) = M3/ M 1/ 3 M(Σ + π + n) = 1 3 M 3/ + 3 M 1/ M(Σ π n) = M 3/. Problem 3.16: σ A+ p A + p = σ A 0 p A 0 p = 1 4 σ A + n A 0 p = λ 8πs (E 1 + m p), E 1 = s + m p m A s 5

6 The Standard Model and Beyond Problem 3.19: g K+ nσ = g π + pn + 6g K+ pλ Problem 3.0: M p = M n M N = m 0 1 3 3 m β + M Ξ 0 = M Ξ M Ξ = m 0 1 3 m β M Σ ± = M Σ 0 M Σ = m 0 + m β 3 m α 3 m α M Λ = m 0 m β 3 Problem 3.: (b) g p /g n = 3/ (exp: 1.46) (c) g p / = 3 (exp:.79); g n / = (exp: 1.91) Problem 3.3: ( ) [ gf g d M π0 p = ( ie)ū γ 5 i( k 1+ p 1 + m) (k 1 + p 1 ) m ɛ+ ɛ i( p ] 1 k + m) (p 1 k ) m γ5 u 1 ( ) [ M K + Σ 0 = gf + g d ( ie)ū γ 5 i( k ] 1+ p 1 + m) (k 1 + p 1 ) m ɛ + k i ɛ (k k 1 ) µ γ5 u 1 Problem 3.5: (a) (b) ( L i A )ab;cd = Li acδ bd + L i bdδ ac L i adδ bc L i bcδ ad, T (L A ) = m. ( L i S )ab;cd = c ab c cb [L i acδ bd + L i bdδ ac + L i adδ bc + L i bcδ ad ], T (L S ) = m +. For m =, ψ S 11, ψ S 1 and ψ S correspond to the J = 1 angular momentum representation with J 3 = +1, 0, and 1, respectively. For example, ( L 3 S )11;11 = 1 4 [4] = 1, ( L 3 S )1;1 = 1 4 [1 1] = 0, ( ) L 1 S 11;1 = 1 1 [0 + 1 + 1 + 0] = 1. Problem 3.6: JLµ i = ψ ( ) L γ µ L i nψ L + itr φ L i n µ φ JRµ i = ψ ( R γ µ L i nψ R + itr φl i n µ φ ), and L i n I for the U(1) currents.

Lie Groups, Lie Algebras, and Symmetries 7 Problem 3.8: a = ν = µ /λ, b = µ / ( ) H(x) = µ4 µ x λ sech4, + H(x)dx = µ 3 3 λ Problem 3.30: (a) (b) M I = i ( mψ ν ) ū4 [ [ ( M = iλ 1 + 3m 1 1 t m + m 1 1 s + 1 )] u ] m η 1 m ψ t m + γ 5 1 γ 5 + γ 5 1 γ 5 η p 1 + p m ψ p p 3 m ψ u Problem 3.3: ψ = 1 {[ a b + a + b e iφ m ] + [ a b + a + b e iφm ] γ 5} ψ γ 5 ψ m = c + d a b, tan φ m = d c Problem 3.33: λ > 0 : φ 1 = ν b µ /λ, φ = 0, m 1 = λν b, m = λ ν b. φ φ survives. λ = 0 is similar except there is a circle of degenerate minima. For λ < 0, require λ + λ > 0. φ 1 = φ = ν c µ /(λ + λ ), m 1 = λ ν c, m = (λ + λ )ν c. φ 1 φ survives. Problem 3.34: λ 1 > 0, λ 3 > 0, µ µ 1 0, (flat for µ = µ 1 ). Problem 3.35: (a) µ I + µ II A > 0. (c) Minimum for µ I µ II A > 0; saddle point for µ I µ II A < 0. (d,e) µ A = µ I + µ II = A sin γ, 1 M Z = λν = µ I µ II tan γ tan. γ 1 (f) ( µ M Re = Z cos γ + µ A sin γ (MZ + ) µ A ) sin γ cos γ (MZ + µ A ) sin γ cos γ M Z sin γ + µ. A cos γ

8 The Standard Model and Beyond Problem 3.36: (b) (c) µ > 0 : m 1 = m = µ, m ψ = 0 µ < 0 : m 1 = µ, m = 0, m ψ = hν/, with ν = µ /λ µ > 0 : m 1 = µ + 3λν, m = µ + λν, m ψ = hν, with ν a/µ µ < 0 : m 1 = µ + 3 a a, m =, m ψ = h ν 0 + ɛ, ν 0 ν 0 with ν = ν 0 + ɛ, ν 0 = µ /λ, ɛ = a µ (e) µ J µ = i m L ( ψ L C ψ T L ψ T LCψ L )

C H A P T E R 4 Gauge Theories 4.1 PROBLEMS Problem 4.1: A µ = ( 0, nˆθ ) ( ), A ds rg = πn g. Problem 4.11: (a) gγ µ /, gγ µ /, igc µνσ ( p 3, p 3 + p 4, p 4 ) (b) M = ig v ɛ 1 ɛ+ u 1 p 1 p 3 m ψ + ig 1 s M A v [ ɛ + p 3 ɛ + ɛ + ɛ ( p 4 p 3 ) ɛ p 4 ɛ +] u 1. (c) M ig M A v p 4 u 1 ig MA v p 4 u 1 = 0 Problem 4.1: (a) A ijk = d ijk. (b) A D ijk = md ijk. One can also show that A A ijk = (m 4)d ijk and A S ijk = (m + 4)d ijk for the antisymmetric (A) and symmetric (D) products of two fundamentals. 9

C H A P T E R 5 The Strong Interactions and QCD 5.1 PROBLEMS Problem 5.1: (b) b = 1, c = 1/ 3. (c) R = 4() for HN (QCD); Drell Yan 5/9 (1/3); anomaly coefficient = 4 for both. Problem 5.: M = 4 9 gs 4 [ (s m t c ) + (u m c) + m ct ] u m c = p(e + p cos θ), t = p (1 cos θ), E = s + m c s, p = s m c s Problem 5.3: (a) where (b,c) L φ =Tr [(D µ φ) D µ φ] µ Tr (φ φ) λ 1 ( Tr (φ φ) ) λ Tr (φ φφ φ) + q L hφq R + q R h φ q L, D µ φ = µ φ + ig L G µ L L φ ig R φ G µ R L. G i = sin δ G i L + cos δ G i R, G i A = cos δ G i L sin δ G i R, where tan δ g R /g L and M GA = g L + g R v φ. L q = g s q G L q gs cot δ q L GA L q L + g s tan δ q R GA L q R, where g s g L sin δ = g R cos δ; T i = T i L + T i R. Problem 5.4: σ = 8πα s 7s β Q ( 3 β Q σ = πα sβ 3 0 7s ) with β 0 = with β Q = 1 4m Q s 1 4m 0 s. 11

1 The Standard Model and Beyond Problem 5.5: F r=1 σ q0 q 0 q r q r β rel = n f 4πα s 7m 0 β i, σ q0 q 0 GG β rel = 8 7 παs m. 0 Problem 5.6: (a) M /gs 4 = 4 ( ( s + u m r m s + s t + u ) + m 4 r m s(s t + u) + ms) 4 9t (b) ( M 7m /gs 4 4 7m t 7m u + 4t tu + 4u ) = 4s (m t) (m u) ( 6m 8 3m 4 t 14m 4 tu 3m 4 u + m t 3 + 7m t u + 7m tu + m u 3 t 3 u tu 3) (d) Use the expressions for t and u in (.40) for m 1, = 0, m 3,4 = m t, and the cross section formula in (.57), integrating cos θ from 1 to 1. 0.05 σ t t _ (nb) 0.00 0.015 0.010 qq tt GG t t 0.005 0.000 0 1 3 4 s (TeV) Problem 5.8: (a) B = 7, α(m P ) 0.019; (b) B = 3, α(m P ) 0.037 Problem 5.10: charmonium bottomonium exp model difference exp model difference 1S 3.097 3.097 9.490 9.490 S 3.686 3.710 0.64% 10.03 9.97 0.96% 3S 10.355 10.51 1.01% 4S 10.579 10.58 0.48%

The Strong Interactions and QCD 13 for m c 1.7 GeV and m b 4.61 GeV. Problem 5.17: (b)tr ( M 1 M ) [ (, Tr M 1 M )][ ( )] ( ) Tr M a M b, Tr M 1 M M 1 M (c) Tr (M[ a M b ), ψ L ψ] R + ψ R ψ L (d) itr ˆn τm 1 M.

C H A P T E R 6 Collider Physics 6.1 PROBLEMS Problem 6.3: dlij/ds dy (pb) 50 40 30 0 10 LHC (14 TeV), s = 1 TeV uu uu dlij/ds dy (pb) 600 500 400 300 00 100 LHC (14 TeV), s = 1 TeV uu Gu GG 0 0 - -1 0 1 - -1 0 1 y y Problem 6.4: Cross sections in pb: p p ( TeV) pp (8 TeV) pp (14 TeV) σ q q (pb) 3.34. 55.6 σ GG (pb) 0.3 78.5 356 σ tot (pb) 3.66 100 41 3.0 pp tt ( TeV) pp tt ( TeV) dσ /dy (pb).5.0 1.5 1.0 0.5 total qq GG dσ/dp T (pb/gev) 0.05 0.00 0.015 0.010 0.005 total qq GG 0.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 y 0.000 0 00 400 600 800 1000 p T (GeV) 15

16 The Standard Model and Beyond Problem 6.5: λ GG = π 8 Γ R dl GG 130 fb, M R dŝ λ uū = 4π 9 Γ R dl uū+ūu 79 fb, M R dŝ λ d d 51 fb. Problem 6.6: 1, 1, 3

C H A P T E R 7 The Weak Interactions 7.1 PROBLEMS Problem 7.: (a) 1ɛ (1 ɛ) (b) ɛ [ (3 ɛ) + 6(1 ɛ) ], ρ = 3 8 (c): ν µ : ɛ (3 ɛ), ν e : 1ɛ (1 ɛ). Problem 7.10: (a), (b), (c) in text. (d): α eν = g V g A. gv +3g A Problem 7.11: dγ(πν τ ) d cos θ = M 3πm τ Γ(πν τ ) = G F cos θ c fπm 3 τ. 16π = G F cos θ c fπm 3 τ (1 + cos θ) 3π 17

C H A P T E R 8 The Standard Electroweak Theory 8.1 PROBLEMS Problem 8.4: (a) V (φ, σ) = µ σσ σ + µ φφ φ + λ σ ( σ σ ) + λφ ( φ φ ) + λφσ σ σφ φ + κ φσ σφ φ + κ φσ σ φ φ. (c) M A cos θ W g ν σ (d) Γ = p ( ) f 6πMZ g sin θ W MA + E A MA, which survives for M A 0 because of the longitudinal mode. Problem 8.5: (b) L lh = 0. L l(w,a,z) = g ( Nγ µ E W µ + + Ēγµ N Wµ ) + e Ēγ µ EA µ g [ 1 cos θ W Nγ µ N + ( 1 ) ] Ēγµ + sin θ W E Z µ. Problem 8.6: A L MA R = diag(6.46 3.01 0.9) for 0.1 0.03i 0.05 0.34i 0.50 + 0.79i A L = 0.40 + 0.0i 0.84 + 0.13i 0.6 0.1i 0.9 0.4 0.1 0.05 0.1i 0.93 + 0.35i A R = 0.19 0.08i 0.89 + 0.39i 0.07 0.09i diag(e +3.14i e +0.14i e 0.67i ) 1. 0. 0. 10 1 Problem 8.7: m 1 = m = 3c, ψ L = ψ 0 L = ( ψ 0 1L ψ 0 L ), ψ R = i ( ψ 0 R ψ 0 1R ) 19

0 The Standard Model and Beyond Problem 8.8: (a) m 1 x, m B, A R I, ( ) A 1 y L = B y. B 1 (b) J µ Z = ē Lγ µ e L y B (ēl γ µ E L + ĒLγ µ e L ) ( y b ) ĒL γ µ E L + sin θ W (ēγ µ e + Ēγµ E ). Problem 8.9: M = g4 M Z (g V + g A ) cos 4 θ W 1 (q M Z ) d σ d cos θ = 1 3πs [ p 1 p 3 + p ] 1 p 4 p 3 p 4 MZ k 3 k 1 M. k 1 = s M H s, E = s + M H s, k 3 = s M Z s, E 4 = s + M Z s q = (p 3 p 1 ) = p 1 p 3 = k 1 k 3 (1 cos θ) p 1 p 4 = k 1 (E 4 + k 3 cos θ), p 3 p 4 = s M Z. Problem 8.10: L = Γ D κσ q L φd R /M D + h.c.. Problem 8.13: (a) d σ dz = s [( ɛll + ɛ RR ) (1 + z) + ( ɛ LR + ɛ RL ) (1 z) ] 384π z z for q r q r µ µ +. (b) For y > 0 d σ dydẑ =λ Z ɛ AB = Q re g s ZD(s)ɛ A (µ)ɛ B (r). [ ( Lr r G r N (1 + ẑ) + G r F (1 ẑ) ) r +L rr ( G r N (1 ẑ) + G r F (1 + ẑ) )], (ẑ ẑ for y < 0), where gz 4 λ Z, L r r dl q r q r, 384M Z Γ Z dŝdy ŝ=m L rr dl q rq r dŝdy ŝ=m Z Z G r N = ɛ L (µ) ɛ L (r) + ɛ R (µ) ɛ R (r), G r F = ɛ L (µ) ɛ R (r) + ɛ R (µ) ɛ L (r).

The Standard Electroweak Theory 1 (c) A F B (y) = 3 r L r r L rr (G r N Gr F ) 4 r (L r r + L rr ) (G r N + Gr F ) A similar expression holds for A F B (y 1, y ) except the numerator and denorminator are integrated ( y y y 1 dy, or y 1 + ) y 1 y dy. For more detail, see (Han et al., 013). (d) A F B (0, ln( s/m Z )) 0.031. 0.10 A FB (pp μ - μ + ), s = 14 TeV, s M Z 0.08 AFB (y) 0.06 0.04 0.0 Problem 8.14: M νe 0.00 0 1 3 4 5 [ ig = ɛ 3µɛ 4ν v 3 γ ν (1 γ 5 ) ) ( i M γ = ɛ 3µɛ 4ν v 3 [ieγ α ]u 1 s [ M Z = ɛ 3µɛ ig 4ν v 3 y ] ( i( p1 p 3 ) t ) [ ] ig γ µ (1 γ 5 ) u 1 ie C µαν ( p 3, p 1 + p, p 4 ) γ ( α 1 cos θ + sin θ W 1 )] γ5 u 1 W ( ) i e s MZ i C µαν ( p 3, p 1 + p, p 4 ) tan θ W

The Standard Model and Beyond 40 e + e - W + W - 30 σww (pb) 0 10 0 only ν e ν e, γ ν e, γ, Z 160 170 180 190 00 s (GeV) Problem 8.15: (a) dγ d cos θ = ĝ Eb [ ] (1 + cos θ) + m t 4πm t MW (1 cos θ) (c) m t F 0 = MW + m t 0.70, F = 1 F 0, F + = 0 Problem 8.0: (a) σ GGF pp H = π 8 σ W W F q rq s q rq sh(ŝ) = Γ H B(H GG) dl GG M H dŝ [( α3 g 16MW 1 + M H ) ln ŝ ŝ M H M H 11 pb + M H ] ŝ σ W W F pp H = q rq s dŝ ŝ dl qrq s dŝ ŝ σ W W F q rq s q rq sh(ŝ) 1.5 pb, σ ZZF pp H 0.5 pb σ qr q s W ± H(ŝ) = V rs πα g 36 p f p i 3M W + p f (ŝ M W ) (b) σ pp W ± H = q r q s dŝ ŝ dl qr q s dŝ ŝ σ qr q s W ± H(ŝ) 0.5 pb, σ pp ZH 0.3 pb. σ NNLO (pb) σ LO (pb) N γγ N 4l GGF 19 11 58 14 VBF 1.6.0 47 W H 0.7 0.5 11 0.6 ZH 0.4 0.3 7 0.3 total 14 33 17

The Standard Electroweak Theory 3 Problem 8.1: Γ(H GG) increases by a factor 9, while Γ increases by 1.8. B(H ZZ ) B(H ZZ 1 ) SM 1.7 0.58, B(H γγ).8/7.3 0.060, B(H γγ) SM 1.7 The rates σ GG B change by factors of 9 0.58 5. and 9 0.060 0.54 for ZZ and γγ, respectively. Problem 8.: (b) Define V (H + ν) c 0 + 6 n= c nh n. Then MH = c = λν + ρν 4, c 3 = M ) H (1 + 8ρν4, c 4 = M ) H (1 ν 8ν + 16ρν4 c 5 = ρν, c 6 = ρ 6. 3M H (c) κ 1 4σν and M H / λν (1 4σν ). Interactions terms: M H σ ( νh + H ) ( µ H) M H H M H ( 1 σν ) H 3 M ( H 1 4σν ) ν 8ν H 4. Problem 8.3: M = i G F MH s s MH, σ = M 16πs Problem 8.4: M = 4ĝ ( m t M W ) mt E b (1 cos θ)

C H A P T E R 9 Neutrino Mass and Mixing 9.1 PROBLEMS Problem 9.: m 1 = ɛ, ν 1L = ν µl ν τl m,3 = + ɛ (, ν,3l = ɛ ) ν el + ν µl + ν τl, Problem 9.3: m T γ µ (1 γ 5 )γ ν γ µ[ (1 γ 5 )m T + ɛ k ] γ ν + O(ɛ ) Problem 9.5: Dirac: σβ rel = G [ F π m ν ɛ L + ɛ ] R. Majorana: σβ rel = 8β 3 G [ F π m ν ɛ L + ɛ ] R. 5

C H A P T E R 10 Beyond the Standard Model 10.1 PROBLEMS Problem 10.1: (a) (b) n AF = 11C (G) = 11m n fp = 17C (G) 5C (G) + 3C (L m ) = 34m3 13m 3 < n AF α = 4πˆb 1 (m, n f ) ˆb (m, n f ) = 4π m(11m n f ) 34m 3 13m n f + 3n f 3.5 Running Coupling (m=3) 3.0.5 g(t).0 1.5 1.0 0.5 0.0 n f =1, α g (M P )=0.6 n f =13, α g (M P )=0.4 n f =14, α g (M P )=0. 0 10 0 30 40 t=ln Q/M Z (c) α < α c for n f > n c. α = α c for n c = 5 50m 3 33m 5m. 3 7

8 The Standard Model and Beyond Problem 10.3: For infinitesimal transformation M σ 0 M σ 0 β i σ i, M σ i M σ i ɛ ijk ω j σ k β i σ 0 Problem 10.4: ψ 1M ψ M = ξ 1 ξ + ξ 1 ξ, ψ1m γ 5 ψ M = ξ 1 ξ ξ 1 ξ ψ 1M γ µ ψ M = ξ 1 σ µ ξ + ξ 1 σ µ ξ, ψ1m γ µ γ 5 ψ M = ξ 1 σ µ ξ ξ 1 σ µ ξ ψ 1M σ µν ψ M = ξ 1 s µν ξ + ξ 1 s µν ξ Problem 10.10: σ(ah) = cos (β α) g4 Z kah 3 96π k i σ(zh) = sin (β α) g4 Z kzh 3 96π k i ɛ L + ɛ R (s M Z ) ɛ L + ɛ R (s MZ ) [ 1 + 3M Z k Zh ] Problem 10.13:

Beyond the Standard Model 9 σ(pp q G ), s = 14 TeV 1 σ(pb) 0.01 10-4 10-6 1000 1500 000 500 3000 3500 m (GeV) m. TeV M Z g Problem 10.14: Typeset by (a) FoilTEX θ = Q φ g 1. M 1 Z (b) Γ Z w + w = Γ Z zh = gq M Z φ 48π. ( Problem 10.15: B 3 W h0 d h0 u S Z ) basis: m B 0 g ν d g ν u 0 0 gν 0 m d W gνu 0 0 g ν d gν d 0 λ S s λ S ν u g Q d ν d g ν u gνu λ S s 0 λ S ν d g Q u ν u 0 0 λ S ν u λ S ν d 0 g Q S s 0 0 g Q d ν d g Q u ν u g Q S s m Z Decoupling limit: m B 0 g ν d g ν u 0 0 gν 0 m d W gνu 0 0 g ν d gν d 0 µ eff 0 0 g ν u, gνu µ eff 0 0 0 0 0 0 0 0 g Q S s 0 0 0 0 g Q S s 0 where µ eff = λ S s. Vector, Dirac fermion, and scalar masses are all g Q S s

30 The Standard Model and Beyond Problem 10.17: ζ 0.0004 for ω = 0; ζ 0.0 for ω = π/ (1 + ζ cos ω) 0.9999(6) Problem 10.18: V = 15 4 µ ν Φ + 15 16 (15a + 7b)ν4 Φ