Section 9: Quantum Electrodynamics
|
|
- Δελφινιος Κολιάτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6
2 9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z F =» d x ψ(i/ m)ψ ea µ ψγ µ ψ FµνFµν Feynman rules: Fermion propagator Photon propagator EM coupling vertex p k µ ν i a b µ i /p m + iε k + iε ieγ µ ab (gµν ( ξ) kµkν k ) (Feyn. gauge ξ = ) Incoming photon: ɛ µ, outgoing photon: (ɛ µ ) Incoming fermion/antifermion: u s (p)/ v s (p) Outgoing fermion/antifermion: ū s (p)/v s (p) c W. Taylor 8.33 Section 9: QED / 6
3 Comments on QED Feynman rules (momentum) arrows on external edges: incoming/outgoing p conserved at vertices R over undetermined momenta signs: must fix order of in/out fermions loops contribute (-) factor! Example: a ( ψψ)( ψψ)a + (note: ( ψψ) commutes) Fermion loop: ( ψψ)( ψψ)( ψψ) Can now compute general diagrams, e.g. e e e e : e- e- e- + e- e + e e + e, e + e γγ : homework e- e- e- e- c W. Taylor 8.33 Section 9: QED 3 / 6
4 Example: e + e µ + µ Basic reaction in e + e colliders used to calibrate. m µ 5.7MeV m e e, µ, τ 3 generations of leptons. Z S = [ ψ e(i /D m e)ψ e + ψ µ(i /D m µ)ψ µ FµνFµν ] same Feynman rules, fermions are e ± or µ ±. µ - k, r p, s e - µ + k, r q = p + p p, s e + im = [ v s (p )( ieγ µ )u s (p)][ igµν ][ū r (k)( ieγ ν )v r (k )] q Using ( vγ µ u) = u γ µ+ γ v = u γ γ µ v = ūγ µ v M = e ` v(p )γ µ u(p)ū(p)γ ν v(p ) `ū(k)γ µv(k ) v(k )γ νu(k) q average over initial s, s, sum over final r, r X M(s, s r, r ) = e q Tr[( /p m e)γ µ (/p + m e)γ ν ]Tr[(/k + m µ)γ µ(/k m µ)γ ν] s,s,r,r c W. Taylor 8.33 Section 9: QED / 6
5 X Me + e µ + µ = e q Tr[( /p m e)γ µ (/p + m e)γ ν ]Tr[(/k + m µ)γ µ(/k m µ)γ ν] Need Tr γ µ γ ν, Tr γ µ γ ν γ λ,... Tr(γ µ... γ µ k+ ) = Tr(γ 5 γ 5 γ µ... γ µ k+ ) = Tr(γ µ γ ν ) = Tr(γµ γ ν + γ ν γ µ ) = Tr (a)(g µν ) = g µν Tr(γ µ γ ν γ λ γ σ ) = (g µν g λσ g µλ g νσ + g µσ g νλ ) Tr[(/p m)γ µ (/p + m)γ ν ] = [ g µν (p p + m ) + p µ p ν + p ν p µ ] So (k k )(p p ) terms cancel and X h M = e (k p)(k p ) + (k p )(k i p) + m µ(p p ) + m e(k k ) + m em q µ spins = e s [(m e + m µ) + (m e + m µ)(s t u) + (t + u )] (s = (p + p ), t = (p k), u = (p k ) ; k k = s m µ, p k = t m e m µ,...) c W. Taylor 8.33 Section 9: QED 5 / 6
6 X spins M eē µ µ = e q h (k p)(k p ) + (k p )(k i p) + m µ(p p ) + m e(k k ) + m em µ Assume E m e, set m e ; OK since me M µ ; write m = mµ Kinematics in center of mass (COM) frame p = (E, Eẑ) k = (E, k) p = (E, Eẑ) k = (E, k) where k + m = E, k z = k cos θ. q = (p + p ) = E (= s) p p = E p k = p k = E E k cos θ p k = p k = E + E k cos θ X spins M = e E [m E + (E E k cos θ) + (E + E k cos θ) ] = e [( + m m ) + ( E E ) cos θ] c W. Taylor 8.33 Section 9: QED 6 / 6
7 For E m e, e + e µ + µ matrix element X M = e [( + m m ) + ( E E ) cos θ] spins Thus ( dσ dω )cm = E (v) k π (E ( X M ) cm) = r α»( m + m m ) + ( 6E E E E ) cos θ [v, E cm E] Using R dω = R π sin θdθ R π, R cos θ π/3, r σ tot = πα m m ( + 3Ecm E E ) For E m, dσ dω cm α E cm ( + cos θ) σ tot πα 3E cm [Note: Couplings + dim. analysis σ α E ; just need π 3 ] c W. Taylor 8.33 Section 9: QED 7 / 6
8 q σ tot = πα m ( + m ) p (E m)/m for E = m + ɛ 3Ecm E E Compare with tau particle production: σ(e + e τ + τ )/σ(e + e µ + µ ) Experimentally measured τ + τ production, fit gives m τ 78 ± 7 MeV [P & S] c W. Taylor 8.33 Section 9: QED 8 / 6
9 Helicity structure Take ultrarelativistic limit m e, m µ (E m e, m µ) ξl Helicities separate. Compute, e.g. σ(e R e+ L µ R µ+ L ) ξ R + γ 5 ξ η Write (in general spinor representation) γ 5 = γ 5 = η ξ η = ξ P ± = ± γ5 P ± = P ± P ±P = projection ops. P ±u(p) R L spinor R L fermion P±v(p) L R antifermion To select e R/L, insert v(p )γ µ ± γ 5 u(p) = v (p ) e R/L annihilates only with e+ L/R (photon is spin ) ± γ 5 γ γ µ u(p) c W. Taylor 8.33 Section 9: QED 9 / 6
10 Example: e R e+ L M = X µ R µ+ L e s,s,r,r q ` v(p )γ µ P +u(p)ū(p)γ ν P +v(p ) `ū(k)γ µp +v(k ) v(k )γ νp +u(k) Tr[/p γ µ P ±/pγ ν P ±] = Tr[/p γ µ /pγ ν ± γ 5 So M = e q Similarly, So as promised i ] = h g µν (p p ) + p µ p ν + p ν p µ iε αµβν p αp β h (p k)(p k ) + (p k )(p k) + ε αµβν ε ρµσνp αp β k ρ k σi = 6e q (p k )(p k) = e ( + cos θ) dσ dω (e R e + L µ R µ + L ) = α ( + cos θ) Ecm e L e + R µ L µ + R : e R e + L µ L µ + R, e L e + R µ R µ + L : α Ecm α Ecm X α ( + cos θ) Ecm ( + cos θ) ( cos θ) c W. Taylor 8.33 Section 9: QED / 6
11 NR limit E m µ (E still m e) Choose e R e+ L, p = Eẑ u(p) = v(p )γ µ u(p) = E ( ) C A σ µ σ µ v(p ) = E B Photon has J z =, ε + = (ˆx + iŷ); how about ū(k)γ µ v(k )? u(k) = ξ m ξ v(k ) = ξ m ξ M(e R e + L µ µ + ) = e q ( 8mEξ» M = e Tr ξξ θ indep., need J z = ξ = ξ ξ, ξ C A C A = E(,, i, ) j ū(k)γ µ v(k, µ = ) = mξ σ i ξ, µ = i ξ ) = e ξ = e dσ dω Spin avg.: ξ α (erē L µµ) = k Ecm E dσ dω = α E cm c W. Taylor 8.33 Section 9: QED / 6 k E
12 9.3 Recall scalar QED: p p µ ie(p + p ) µ B -p B Consider A + φ B, A φ + B vs. p φ A A im(a + φ(p) B) = im(a B + φ( p)) [as function of p] Only of p >, p > only one physical process. Related by analytic continuation. Same for fermions, if choose phases cleverly. With PS conventions, P u(p)ū(p) = /p + m = ( /p m) = P v( p) v( p) so ( ) for each crossing : = c W. Taylor 8.33 Section 9: QED / 6
13 Example: e µ e µ µ X spins - A k, r p, s e - µ + k, r q = p + p p, s e + M B = e q Tr `(/p + m e)γ µ (/p + m e)γ ν Tr = ( ) X MA(p = p, k = k ) e - B p e - p q = p - p µ - k k µ - (/k + m µ)γ µ(/k + m µ)γ ν For E m µ, X MA = e s (t + u ) crossing: s t, t u, u s X MB = e t (s + u ) Note: kinematics very different. dσ α = dω Ecm( cos θ) ( + ( + cos θ) ) as θ θ cm (cp. Rutherford cross-section) c W. Taylor 8.33 Section 9: QED 3 / 6
14 9.3 : e γ e γ p p + k k k p + p - k p p k k im = ( ie )ε µ ε ν `ū(p )γ µ (/p + /k + m)γ ν u(p) + ( ie )ε s m u m Note: (/p + m)γ µ u(p) = p µ u(p) γ µ (/p m)u(p) µ ε ν» im = ie ε µ ε νū(p γ µ /kγ ν + γ µ p ν ) + γν /k γ µ + γ ν p µ u(p) p k p k Gauge invariance (Ward Id.) [prove in general later] ff ε µ ε µ + ak µ ε µ ε µ + ak µ im = (as for scalar Compton) Need to sum Σε µε ν; Assume k µ = (k,,, k) Σε µε ν = `ū(p )γ ν (/p /k + m)γ µ u(p) C A c W. Taylor 8.33 Section 9: QED / 6
15 Write M = M µ ε µ M = Σε v M v M µ ε µ Ward Identity M + M 3 = M = M 3 M = Σg µνm µ M ν = M + M + M + M 3 Valid for all k so Σε µε ν g µν Matrix element for e γ e γ» im = ie ε µ ε νū(p γ µ /kγ ν + γ µ p ν ) + γν /k γ µ + γ ν p µ u(p) p k p k Σ spins M G µνρσ AA = = e High energy: E m e» Tr + G µνρσ BA (/p + m) γµ /kγ ν + γ µ p ν gµρgνσ [Gµνρσ AA p k + G µνρσ AB + G µνρσ BB ] (/p + m) γσ /kγ ρ + γ σ p ρ p k Σ = e s Tr ˆγ µ /p γ µ(/p + /k)γ ν /pγ ν(/p + /k) + AB + BA + BB,... c W. Taylor 8.33 Section 9: QED 5 / 6
16 Compute AA contribution with γ µ /pγ µ = /p: Σ M = e s Tr ˆγ µ /p γ µ(/p + /k)γ ν /pγ ν(/p + /k) = e s Tr `/p (/p + /k)/p(/p + /k) = e s Tr `/p /k/p/k = 8e s (p k)(p k) = e u s AB = BA = BB e s/u exchange s and u (Recall: in COM frame, Σ M = e u s + s u dσ d cos θ = πα s u s s u dσ dσ = π = πα d cos θ dω s Full cross-section in lab frame (p = ): Klein-Nishina M e ) (COM frame) dσ d cos θ = πα ω» ω m ω ω + ω ω sin θ (notation: /ω /ω = ( cos θ)/m, k = (ω,,, ω), k = (ω, ω sin θ,, ω cos θ)) Observe sin θ correction to ultrarelativistic calculation; Cp. problem 5 3: For ω, [ ] ( + cos θ) (same for φ) c W. Taylor 8.33 Section 9: QED 6 / 6
Quantum Electrodynamics
Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Dirac Trace Techniques
Dirac Trace Techniques Consider a QED amplitude involving one incoming electron with momentum p and spin s, one outgoing electron with momentum p and spin s, and some photons. There may be several Feynman
8.324 Relativistic Quantum Field Theory II
8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian
T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389
164/389 Ο διαδότης του ηλεκτρονίου Από την μη σχετικιστική θεωρία είχαμε δει T fi = 2πiδ(E f E i ) < f V i > + < f V n > n i 1 < n V i > +... E i E n όπου H 0 n >= E n n >. Φορμαλιστικά μπορούμε να γράψουμε
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4
Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Particle Physics Formula Sheet
Particle Physics Formula Sheet Special Relativity Spacetime Coordinates: x µ = (c t, x) x µ = (c t, x) x = (x, x, x ) = (x, y, z) 4-Momentum: p µ = (E/c, p) p µ = (E/c, p) p = (p, p, p ) = (p x, p y, p
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc
4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude
PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
1 Bhabha scattering (1936)
Bhabha scaering 936 Consider he scaering of an elecron and a posiron. We have already compued he annihilaion of an elecron/posiron in finding he cross-secion for producing muon pairs. I is also possible
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Orbital angular momentum and the spherical harmonics
Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Particle Physics: Introduction to the Standard Model
Particle Physics: Introduction to the Standard Model Electroweak theory (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 4, rue
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia
http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour
Non-Abelian Gauge Fields
Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
dim(u) = n 1 and {v j } j i
SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar
Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Now, suppose the electron field Ψ(x) satisfies the covariant Dirac equation (i D m)ψ = 0.
PHY 396 K. Solutions for homework set #7. Problem 1a: γ α γ α 1 {γα, γ β }g αβ g αβ g αβ 4; S.1 γ α γ ν γ α γ α γ ν g να γ ν γ α γ α γ ν γ ν γ α γ α 4 γ ν ; S. γ α γ µ γ ν γ α γ α γ µ g µα γ µ γ α γ ν
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389
97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Dirac Matrices and Lorentz Spinors
Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions
O(a 2 Corrections to the ropagator and Bilinears of Wilson / Clover Fermions Martha Constantinou Haris anagopoulos Fotos Stylianou hysics Department, University of Cyprus In collaboration with members
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants
Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants F. Kleefeld and M. Dillig Institute for Theoretical Physics III, University of Erlangen Nürnberg, Staudtstr.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
MA 342N Assignment 1 Due 24 February 2016
M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
The Feynman-Vernon Influence Functional Approach in QED
The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy