A cobinatorial criterion for k-separability of ultipartite Dicke states Zhihua Chen 1, Zhihao Ma, Ting Gao 3, and Sione Severini 4 1 Departent of Matheatics, College of Science, Zhejiang University of Technology, Hangzhou 31004, China Departent of Matheatics, Shanghai Jiaotong University, Shanghai 0040, China 3 College of Matheatics and Inforation Science, Hebei Noral University, Shijiazhuang 05004, China and 4 Departent of Coputer Science, University College London, Gower Street, London WC1E 6BT, UK arxiv:1511.00103v1 [quant-ph] 31 Oct 015 We derive a cobinatorial criterion for detecting k-separability of N-partite Dicke states. The criterion is efficiently coputable and ipleentable without full state toography. We give exaples in which the criterion succeeds, where known criteria fail. I. INTRODUCTION While the structure of bipartite entangled states is fairly well-understood, the study of ultipartite entangleent still presents a nuber of partial successes and difficult open probles (see the recent reviews [1, ]). General criteria for ultipartite states of any diension were recently proposed in [3 11, 13]. Here, we derive a criterion for detecting k-nonseparability in Dicke states based on various ideas developed in [3 6, 8, 9, 1]. The criterion can be seen as a generalization of a ethod for detecting genuine ultipartite entangleent in Dicke states detailed in [7]. The criterion have the advantages of being coputationally efficient and ipleentable without the need of state toography. We give exaples in which the criterion is stronger than the ones proposed in [13]. Let us recall soe standard terinology and the definition of a Dicke state. An N-partite pure state ψ H 1 H H N (di H i = d i,1 i N) is said to be k-separable if there is a k-partition [8, 9] j 1 1 j1 1 j 1 j j k 1 jk k such that ψ = ψ 1 j 1 1 j 1 1 ψ j 1 j ψ k j k 1 j k k, where ψ i j i 1 j is the state of the subsystes j i i i 1,ji,...,ji i, and k i=1 {ji 1,ji,,ji i } = {1,,,N}. More generally, an N-partite ixed state ρ is said to be k-separable if it can be written as a convex cobination of k-separable pure states ρ = p i ψ i ψ i, where ψ i is possibly k-separable under different partitions. An n-partite state is said i to be fully separable when it is N-separable and N-partite entangled if it is not -separable. A k-separable ixed state ight not be separable with regard to any specific k-partition, which akes k-separability difficult to deal with. We shall consider pure states as a special case. The N-qubits Dicke state with excitations (see [14]) is defined as D N = 1 C N 1 i j i l N φ i1,...,i, where φ i1,...,i = where C N := ( N ) is the binoial coefficient. For instance, i {i 1,...,i } 0 i i {i 1,...,i } D 4 = 6 1/ ( 1100 + 1010 + 1001 + 0110 + 0011 + 0101 ), 1 i, when N = 4 and =. Section II contains the stateents and proofs of the results. Exaples are in Section III. II. RESULTS We construct a set of inequalities which are optially suited for testing whether a given Dicke state is N-partite entangled: Theore 1 Suppose that ρ is an N-partite density atrix acting on a Hilbert space H = H 1 H H N. Let F(ρ,φ) := A(ρ,φ) B(ρ,φ),
where and A(ρ,φ) := 1 i j j N ( ) φ ρ φ φ φ Π j ρ Π j φ φ, B(ρ,φ) := N k 1 i j N φ ρ φ. Here, φ := 0...010...010...0 H, with the 1s in the subspaces H i and H j, N k := ax{(n k 1),N k} and Π j, is the operator swapping the two copies of H j in H H, for 1 i j N. If the density atrix ρ is k-separable then F(ρ,φ) 0. Proof. We start with a 4-qubit state to get an intuition. Note that for a four-qubit pure state ρ = ψ ψ, we have F(ρ,φ) = ( ρ 4,6 ρ, ρ 8,8 + ρ 4,7 ρ 3,3 ρ 8,8 + ρ 4,10 ρ, ρ 1,1 + ρ 4,11 ρ 3,3 ρ 1,1 + ρ 6,7 ρ 5,5 ρ 8,8 + ρ 6,10 ρ, ρ 14,14 + ρ 6,13 ρ 5,5 ρ 14,14 + ρ 7,11 ρ 3,3 ρ 15,15 + ρ 7,13 ρ 5,5 ρ 15,15 + ρ 10,11 ρ 9,9 ρ 1,1 + ρ 10,13 ρ 9,9 ρ 14,14 (1) + ρ 11,13 ρ 9,9 ρ 15,15 ) N k (ρ 4,4 +ρ 6,6 +ρ 7,7 +ρ 10,10 +ρ 11,11 +ρ 13,13 ). If a 4-qubit pure state ρ = ψ ψ is biseparable then F(ρ,φ) 0 by the criterion in [15]. Suppose that a 4-qubit pure state ρ = ψ ψ with ψ = i 1i i 3i 4 ψ i1i i 3i 4 i 1 i i 3 i 4 (i 1,i,i 3,i 4 = 0,1) is k-separable, where k = 3,4. Then, F( ψ,φ) = ( ψ 0011 ψ 0101 ψ 0001 ψ 0111 + ψ 0011 ψ 0110 ψ 0010 ψ 0111 + ψ 0011 ψ 1001 ψ 0001 ψ 1011 + ψ 0011 ψ 1010 ψ 0010 ψ 1011 + ψ 0101 ψ 0110 ψ 0100 ψ 0111 + ψ 0101 ψ 1001 ψ 0001 ψ 1101 + ψ 0101 ψ 1100 ψ 0100 ψ 1101 + ψ 0110 ψ 1010 ψ 0010 ψ 1110 + ψ 0110 ψ 1100 ψ 0100 ψ 1110 +ψ 1001 ψ 1010 ψ 1011 ψ 1000 + ψ 1001 ψ 1100 ψ 1000 ψ 1101 + ψ 1010 ψ 1100 ψ 1000 ψ 1110 ) N k ( ψ 0011 + ψ 0101 + ψ 0110 + ψ 1001 + ψ 1010 + ψ 1100 ). Note that there are six 3-partitions 1 34, 1 3 4, 1 4 3, 3 14, 4 13, and 3 4 1. WLOG we prove that F( ψ, φ) 0 holds for a 4-qubit pure state ρ = ψ ψ which is 3-separable under the partition 1 34. Suppose that then and ψ = (a 1 0 +a 1 ) 1 (b 1 0 +b 1 ) (c 1 00 +c 01 +c 3 10 +c 4 11 ) 34 = a 1 b 1 c 1 0000 +a 1 b 1 c 0001 +a 1 b 1 c 3 0010 +a 1 b 1 c 4 0011 +a 1 b c 1 0100 +a 1 b c 0101 +a 1 b c 3 0110 +a 1 b c 4 0111 +a b 1 c 1 1000 +a b 1 c 1001 +a b 1 c 3 1010 +a b 1 c 4 1011 +a b c 1 1100 +a b c 1101 +a b c 3 1110 +a b c 4 1111, A 1 = ( ψ 0011 ψ 0101 ψ 0001 ψ 0111 + ψ 0011 ψ 0110 ψ 0010 ψ 0111 + ψ 0011 ψ 1001 ψ 0001 ψ 1011 + ψ 0011 ψ 1010 ψ 0010 ψ 1011 + ψ 0101 ψ 1001 ψ 0001 ψ 1101 + ψ 0101 ψ 1100 ψ 0100 ψ 1101 + ψ 0110 ψ 1010 ψ 0010 ψ 1110 + ψ 0110 ψ 1100 ψ 0100 ψ 1110 + ψ 1001 ψ 1100 ψ 1000 ψ 1101 + ψ 1010 ψ 1100 ψ 1000 ψ 1110 ) = 0; A = ( ψ 0101 ψ 0110 ψ 0100 ψ 0111 +ψ 1001 ψ 1010 ψ 1011 ψ 1000 ) ( ψ 0011 + ψ 0101 + ψ 0110 + ψ 1001 + ψ 1010 + ψ 1100 ) 0. It follows that F( ψ,φ) = A 1 +A 0. if ψ is 3-separable.
3 and If ψ is fully separable, then ψ = (a 1 0 +a 1 ) 1 (b 1 0 +b 1 ) (c 1 0 +c 1 ) 3 (d 1 0 +d 1 ) 4 = a 1 b 1 c 1 d 1 0000 +a 1 b 1 c 1 d 0001 +a 1 b 1 c d 1 0010 +a 1 b 1 c d 0011 +a 1 b c 1 d 1 0100 +a 1 b c 1 d 0101 +a 1 b c d 1 0110 +a b c d 0111 +a b 1 c 1 d 1 1000 +a b c 1 d 1001 +a b 1 c d 1 1010 +a b 1 c d 1011 +a b c 1 d 1 1100 +a b c 1 d 1101 +a b c d 1 1110 +a b c d 1111, F( ψ,φ) = ( ψ 0011 ψ 0101 ψ 0001 ψ 0111 + ψ 0011 ψ 0110 ψ 0010 ψ 0111 + ψ 0011 ψ 1001 ψ 0001 ψ 1011 + ψ 0011 ψ 1010 ψ 0010 ψ 1011 + ψ 0101 ψ 0110 ψ 0100 ψ 0111 + ψ 0101 ψ 1001 ψ 0001 ψ 1101 + ψ 0101 ψ 1100 ψ 0100 ψ 1101 + ψ 0110 ψ 1010 ψ 0010 ψ 1110 + ψ 0110 ψ 1100 ψ 0100 ψ 1110 + ψ 1001 ψ 1010 ψ 1000 ψ 1011 + ψ 1001 ψ 1100 ψ 1000 ψ 1101 + ψ 1010 ψ 1100 ψ 1000 ψ 1110 ) = 0. The equalities above confirs the stateent in Eq.(1), when restricted to 4-qubit pure states. For the general case, we use the notation and proof ethod given in [5, 9]. Suppose that ρ = ψ ψ is a k-separable pure state under the partition of {1,,,N} into k pairwise disjoint subsets: {1,,,N} = k l=1 A l, with A l = {j l 1,j l,,j l l } and Hence, ψ = ψ 1 j 1 1 j ψ 1 k 1 j k 1 j k k = a i 1 1 i i 1 1 1 1 i 1 1 i 1 1,,i1 1 j11 j11 a i k 1 i i k k 1 i k k k i k 1,,ik k i 1 1,,i1 1,,i k 1,,ik k a i 1 1 i 1 1 a i k 1 i k k i 1 1 i1 1 i k 1 ik k j 1 1 j 1 1 j k 1 jk k. j k 1 jk k ρ i s t d j s s,t t +1 d j s t + d Nd N+1+1, ĩ s t d j s s,t t +1 d j s t + d = a Nd N+1+1 i 1 a 1 i1 1 i k 1 i a a. k k ĩ 1 1 ĩ1 1 ĩ k 1 ĩk k The su is over all possible values of {i s t s {1,,,k},t {1,,, s}}, d i =, when i N +1 and d N+1 = 1. We shall distinguish between the cases in which both indices j and j correspond to different parts A l and A l, or the sae parts A l, 1 l l k, with respect to ψ. By direct calculation, one has the following: when j and j are in the sae part; φ ρ φ = φ ρ φ φ ρ φ φ ρ φ + φ ρ φ, () φ ρ φ = φ i ρ φ i φ,j ρ φ,j = φ φ Π + j ρ Π j φ φ, (3) when j and j are in the different parts (j A l,j A l with l l ). Here, φ i = 00 010 0, with 1 in the i-th subspace H i, and φ,j = 0 010 010 010 0, such that all subspaces are in the state 0, except for the subspaces H i, H j and H j, which are in the state 1. For a given φ, the nuber of φ s, with j and j in sae part, is at ost ax{(n k 1),N k}. Notice that the axial nuber of subsystes contained in a part of a k-partition is N k+1. Suppose that A 1 A A k is a k-partition of {1,,,n}, where A l = {j1 l}, for l = 1,,,k 1, and A k = {j1 k,jk,,jk N k+1 }. When i, j and j are in the sae part A k, the nuber of φ s is (N k 1). When i belongs to A 1 A A k 1, while j and j belong to A k, the nuber of φ s is N k. Therefore, the nuber of φ s satisfying j and j in the sae part is at ost ax{(n k 1),N k}. This nuber is denoted as N k.
4 By using the inequalities in () and (3), we have φ ρ φ = i 1,j N i + i i j A l,j A l,l l l,l {1,,,k} j A l,j A l,l l l,l {1,,,k} j,j A l,j j l {1,,,k} φ ρ φ + j,j A l,j j l {1,,,k} φ ρ φ φ φ Π + j ρ Π j φ φ ( ) φ ρ φ + φ ρ φ φ φ Π +j ρ Π j φ φ +N k φ ρ φ. j j Thus, the inequality in the stateent of the theore is satisfied by all k-separable N-partite pure states. It reainsto showthat the inequality holds if ρ is a k-separablen-partiteixed state. Indeed, the generalizationof the inequality to ixed states is a direct consequence of the convexity of the first suation in A(ρ,φ), the concavity of B(ρ,φ), and the second suation in A(ρ,φ), which we can see as follows. Suppose that ρ = p ρ = p ψ ψ is a k-separablen-partiteixed state, where ρ = ψ ψ is k-separable. Then, by the Cauchy-Schwarzinequality, ( k=1 x ky k ) ( k=1 x k )( k=1 y k ), we get φ ρ φ p φ ρ φ i j j i j j p φ φ Π + j ρ Π j φ φ i j j +N k φ φ Π + j ρ Π j φ φ = i i = i φi p ρ φ i φ,j p ρ φ,j +N k p φ ρ φ j j φ i p ρ φ i φ,j p ρ φ,j +N k φ ρ φ j j φ φ Π +j ρ Π j φ φ +N k φ φ Π + j ρ Π j φ φ, j j as desired. This copletes the proof. We can choose φ ad hoc to get different inequalities for detecting k-separability of different classes. For Theore, we have chosen φ to be an N-qubit product states with excitations (i.e. entries of φ are 1, while the reaining N entries are 0 ). The criterion perfors well to detect k-separability for N qubit Dicke states with excitations ixed with white noises. Theore Suppose that ρ is an N-partite density atrix acting on Hilbert space H = H 1 H H N, and φ i1i,,i = 0 010 010 010 0 is a state of H, where the local state in H l is 0, for l i 1,i,,i, and 1, for l = i 1,i,,i. Let F(ρ,φ) := A(ρ,φ) B(ρ,φ),
5 with A(ρ,φ) := ( φ i1,i j,,i ρ φ i1,,i j,i and i 1,,i j,,i,i j φ i1,,i j,,i φ i1,,i j,,i Π i j ρ Π ij φ i1,,i j,,i φ i1,,i j,,i ), B(ρ,φ) := N k φ i1,,i j,,i ρ φ i1,,i j,,i. i 1,i,,i Here, Π ij is the operator swapping the two copies of H ij in the twofold copy Hilbert space H := H H, and If the density atrix ρ is k-separable then N k := ax{(n k +1 ),( 1)(N k +),,(N k)}. F(ρ,φ) 0. In the following stateent, we consider a criterion which is suitable for any general quantu states. The states to be chosen are χ, χ α and χ β. Theore 3 Let V = { χ 1,..., χ } be a set of product states in H = H 1 H H N. If ρ is k-separable then T (ρ,χ) = ( ) χ α ρ χ β χ α χ β Π αβ ρ Π αβ χ α χ β N k χ α ρ χ α where χ α V χ β K α 0, K α := { χ β : χ α χ β = N with χ α, χ β V}, and χ α χ β is the nuber of coordinates that are equal in both vectors (i.e., χ α and χ β have only two different local states, say the i αβ -th and i αβ -th local states), while Π αβ is the operator swapping the two copies of H iαβ in H. Additionally, N k := ax s α,i1,i,,i N k+1, α,i 1,i,,i N k+1 where s α,i1,i,,i N k+1 is the nuber of states χ β in K α such that two of the states for the N k + 1 particles i 1,i,,i N k+1 in χ β are different fro that of χ α, when K α. Proof. By usingthe saeproofethod asin [5, 9], weprovethat (4) holdsfor anyk-separablepurestates ρ = ψ ψ. Let T (ρ,χ) = A 1 +A, where A 1 is the su of ters χ α ρ χ β χ α χ β Π αβ ρ Π αβ χ α χ β in the first suation in (4). In this expression, the two different bits of χ α and χ β are in two different parts of a k-partition, while A is the su containing the suands in (4), such that the different bits of χ α and χ β are in the sae part of a k-partition. We first prove that T (ρ,χ) 0 for any 4-partite pure state. Let V = { χ 1,..., χ 4 } be a set of product states in H, where χ 1 = 0011, χ = 0101, χ 3 = 0110, and χ 4 = 1010. Then K 1 = { χ, χ 3, χ 4 }, K = { χ 1, χ 3 }, K 3 = { χ 1, χ, χ 4 }, and K 4 = { χ 1, χ 3 }. Thus, T (ρ,χ) = ( 4 i= ( χ 1 ρ χ i ) χ 1 χ i Π 1 ρ Π 1 χ 1 χ i + χ ρ χ 3 χ χ 3 Π 3 ρ Π 3 χ χ 3 + χ 3 ρ χ 4 4 χ 3 χ 4 Π 34 ρ Π 34 χ 3 χ 4 ) N k χ i ρ χ i = ( φ 0011 φ 0101 φ 0001 φ 0111 + φ 0011 φ 0110 φ 0010 φ 0111 + φ 0011 φ 1010 φ 0010 φ 1011 + φ 0110 φ 0101 φ 0100 φ 0111 + φ 0110 φ 1010 φ 0010 φ 1110 ) N k ( φ 0011 + φ 0101 + φ 0110 + φ 1010 ) = A 1 +A ; i=1 α (4)
When k = 3, there are six 3-partitions, i.e., 1 34, 1 3 4, 1 4 3, 3 14, 4 13, and 3 4 1. For χ 1, we have s 1,34 = 0, s 1,4 = 1, s 1,3 = 1, s 1,14 = 1, s 1,13 = 0, and s 1,1 = 0; for χ, we have s,34 = 1, s,4 = 0, s,3 = 1, s,14 = 0, s,13 = 0, and s,1 = 0; for χ 3, we have s 3,34 = 1, s 3,4 = 1, s 3,3 = 0, s 3,14 = 0, s 3,13 = 0, and s 3,1 = 1; for χ 4, we have s 4,34 = 0, s 4,4 = 0, s 4,3 = 0, s 4,14 = 1, s 4,13 = 0, and s 4,1 = 1. So, we get N 3 = 1. For the case 1 34: [ 4 ( A 1 = χ 1 ρ χ i ) χ 1 χ i Π 1 ρ Π 1 χ 1 χ i + χ 3 ρ χ 4 ] χ 3 χ 4 Π 34 ρ Π 34 χ 3 χ 4 i= = ( φ 0011 φ 0101 φ 0001 φ 0111 + φ 0011 φ 0110 φ 0010 φ 0111 + φ 0011 φ 1010 φ 0010 φ 1011 + φ 0110 φ 1010 φ 0010 φ 1110 ) = 0; ( A = χ ρ χ 3 ) χ χ 3 Π 3 ρ Π 3 χ χ 3 N 3 ( φ 0011 + φ 0101 + φ 0110 + φ 1010 ) = ( φ 0110 φ 0101 φ 0100 φ 0111 ) ( φ 0011 + φ 0101 + φ 0110 + φ 1010 ) 0. This iplies that T (ρ,χ) = A 1 +A 0. For the other 3-partitions, we can get the sae result T (ρ,χ) = A 1 +A 0, as 1 34. When k = 4, there is a single 4-partition, 1 3 4. Then, it is not possible for any two different bits to be in the sae partition. It follows that N 4 = 0 and T (ρ,χ) = A 1 = 0. For a k-separable 4-partite ixed state ρ = p ρ, where ρ = ψ ψ is k-separable, we have 4 T (ρ,χ) = χ 1 p ρ χ i χ 1 χ i Π 1 ( p ρ ) Π 1 χ 1 χ i i= + χ p ρ χ 3 χ χ 3 Π 3 ( p ρ ) Π 3 χ χ 3 6 + χ 3 p ρ χ 4 χ 3 χ 4 Π 34 ( p ρ ) Π 34 χ 3 χ 4 N k 4 i=1 χ i p ρ χ i [ 4 ( p χ 1 ρ χ i ) χ 1 χ i Π 1 (ρ ) Π 1 χ 1 χ i i= + χ ρ χ 3 ] χ χ 3 Π 3 (ρ ) Π 3 χ χ 3 = p T (ρ,χ) 0 which iplies that the inequality (4) holds for k-separable 4-partite states. Notice that for any k-separable pure states ρ = ψ ψ, if the two different bits of χ α and χ β are in two different parts, then χ α ρ χ β χ α χ β Π αβ ρ Π αβ χ α χ β = 0, otherwise χ α ρ χ β χα ρ χα + χ β ρ χ β 0. This iplies that inequality (4) holds for k-separable pure N-partite states ρ.
Suppose that ρ = p ρ is a k-separable ixed N-partite state, where ρ = ψ ψ is k-separable. It follow that T (ρ,χ) = χ α p ρ χ β χ α χ β Π αβ ( χ α V χ β K α N k χ α p ρ χ α α p χ α V χ β K α ] N k χ α ρ χ α = 0 which copletes the proof. α p T (ρ,χ), p ρ ) Π αβ χ 1 χ i ( ) χ α ρ χ β χ α χ β Π αβ (ρ ) Π αβ χ 1 χ i 7 Consider the faily of N-qubit ixed states By Theore 1, if ρ (DN ) = a D N DN a > then ρ (DN ) is k-nonseparable. Thus, if III. EXAMPLES (1 a)in +, where D N N = 1 C N 1 i j N C N (N )+N kc N C N (N )+N kc N N N k + N+1 (N ) φ. a > C N C N (N 5) (N 5)+N then ρ (DN ) are genuine entangled, which is exactly the sae as in [15]; if a > 9 17 then ρ(d4 ) is genuine entangled; if a > 5 13 then ρ(d4 ) is 3-nonseparable; if a > 3 11 then ρ(d4 ) is not fully-separable; if a > 5 1 = 0.3 then ρ(d5 ) is not fully-separable. However, the inequality in [13] detects that, if a > 1 9 then ρ(d4 ) is genuine entangled; if a > 9 13 then ρ (D4 ) is 3-nonseparable; if a > 3 11 then ρ(d4 ) is not fully-separable; if a > 0.7 then ρ (D5 ) is not a fully-separable 5-partite state. Consider the N-qubit state By Theore, if ρ (DN ) = (1 a)in +a D N N DN, where DN = 1 C N a > 1 i 1 i i N C N (N )+N kc N C N (N )+N kc N N N k + N (N ), φ i1,i,,i, then ρ (DN ) is k-nonseparable. For N = 5 and = 3, we get that if a > 5 13 then ρ(dn ) is 3-nonseparable, while the ethod in [13] fails. Consider the one-paraeter four-qubit state ρ = 1 a 16 I 16 +a φ φ, where φ = 1 ( 0011 + 0101 + 0110 + 1010 ).
By Theore 3, if a > 7 19 and a > 1 5 then ρ is 3-nonseparable and not fully-separable, respectively, while in [13], if a > 9 13 and a > 3 11, then ρ is 3-nonseparable and not fully-separable. Acknowledgents. This work is supported by the National Natural Science Foundation of China under Grant 11371005,1137147, 110147 and 11571313. SS would like to thank the Institute of Natural Sciences (INS) at Shanghai Jiao Tong University for the kind hospitality during copletion of this work. The support of INS is gratefully acknowledged. 8 [1] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod.Phys. 81, 865 (009). [] O. Gühne and G. Toth, Phys. Reports 474, 1(009). [3] M. Huber, F. Mintert, A. Gabriel, B. Hiesayr, Phys. Rev. Lett. 104, 10501(010). [4] O. Gühne and M. Seevinck, New J. Phys. 1, 05300(010). [5] T. Gao and Y. Hong, Phys. Rev. A 8, 06113 (010). [6] T. Gao and Y. Hong, Eur. Phys. J. D 61, 765 (011). [7] M. Huber, P. Erker, H. Schipf, A. Gabriel, B. C. Hiesayr, Phys. Rev. A 83, 040301(R) (011); Phys. Rev. A 84, 039906(E) (011) [8] Y. Hong, T. Gao, and F. L. Yan, Phys. Rev.A 86, 0633 (01). [9] T. Gao, Y. Hong, Y. Lu, and F. L. Yan, Europhys. Lett. 104, 0007 (013). [10] T. Gao, F. L. Yan, and S. J. van Enk, Phys. Rev. Lett 11, 180501 (014). [11] G. Toth, Phys. Rev. A 85, 03 (01). [1] Z. Chen,Z. Ma, J. Chen, S. Severini, Phys. Rev. A 85, 0630 (01). [13] A. Gabriel, B. C. Hiesayr, M. Huber, Quantu Infor. Copu. 10,89(010). [14] J. K. Stockton, J. M. Gereia, A. C. Doherty, and H. Mabuchi, Phys. Rev. A 67,011 (003). [15] M. Huber, P. Erker, H. Schipf, A. Gabriel, and B. Hiesayr, Phys. Rev. A(R) 83, 040301(011).