CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR
|
|
- Παίων Ασπάσιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Journal of Quality Measureent and Analysis Jurnal Penguuran Kualiti dan Analisis JQMA 8(2) 202, CERTAIN PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY A GENERALISED DERIVATIVE OPERATOR (Sifat Tertentu bagi Fungsi Analisis yang Ditarif oleh Pengoperasi Terbitan Teritla) AISHA AHMED AMER & MASLINA DARUS ABSTRACT In this paper, soe iportant properties of analytic functions with negative coefficients defined by a generalised derivative operator are investigated The properties include the necessary and sufficient conditions, radius of starlieness, convexity and close-to-convexity Keywords: derivative operator; radius of starlieness; convexity; close-to-convexity ABSTRAK Dala aalah ini diaji beberapa sifat penting bagi fungsi analisis berpeali negatif yang ditarif oleh pengoperasi terbitan teritla Sifat tersebut terasulah syarat perlu dan cuup, jejari ebabintangan, ecebungan dan deat-dengan-ecebungan Kata unci: pengoperasi terbitan; jejari ebabintangan; ecebungan; deat-denganecebungan Introduction Let A denote the class of functions f in the open unit disc U = { z C : z < }, and let T denote the subclass of A consisting of analytic functions of the for f( z) = z, ( z U ), =2 which are analytic in the unit disc U Definition Let f A Then f is said to be convex of order µ (0 µ < ) if and only if zf ( z ) R + > µ, z U f ( z) Definition 2 Let f A Then f is said to be starlie of order µ (0 µ < ) if and only if zf ( z ) R > µ, z U f ( z) Aer and Darus (20; 202) have recently introduced a new generalised derivative operator I ( λ, λ, lnf, ) ( z) as follows: 2 37
2 Aisha Ahed Aer & Maslina Darus Definition 3 Let f A, then the generalised derivative operator is given by where I ( λ, λ, lnf, ) ( z)= z, () 2 =2 ( + λ ( ) + l) = cn (, ), ( + l) ( + λ2 ( )) ( n + ) λ2 λ 0, l 0, and cn (, )= () n, N = {0,,2,}, Definition 4 Let a function f be in T Then f is said to be in the class of ταβλ (,,, λ, l, n) if, 2 R I (λ,λ 2,l,n) f (z) z[i (λ,λ 2,l,n) f (z)] > α I (λ,λ 2,l,n) f (z) z[i (λ,λ 2,l,n) f (z)] where n, N 0 = {0,,2,}, l 0, 0 α <, and 0 β < 0 + β, (2) The faily ταβλ (,,, λ 2, l, n) is a special interest as it contains any well-nown classes of analytic univalent functions This faily is studied by (Najafzadeh & Ebadian 2009), and also (Tehranchi & Kularni 2006a; 2006b) 2 Necessary and Sufficient Conditions Theore 2 Let f T Then f ταβλ (,,, λ2, l, n) if and only if, [( + α) ( α + β)] a < (3) β =2 Proof: Let us assue that f ταβλ (,,, λ2, l, n) So by using the fact that R( ω) > α ω + β if, and only if [ ( i i R ω + αe θ ) α θ ] > β I ( λ, λ2, lnf, ) ( z) and letting ω = [ zi ( λ, λ, lnf, ) ( z )] So 2 in (2), we obtain [ ( i i R ω + αe θ ) α θ ] > β 38
3 Certain properties for analytic functions defined by a generalised derivative operator then z =2 iθ iθ R ( + αe ) αe β > 0, z =2 β ( β ) α ( ) R iθ e =2 =2 =2 > 0 i The above inequality ust hold for all z in U Letting z = re θ where 0 r <, we obtain iθ β [( β) + αe ( )] ar =2 R ar =2 > 0 i By letting r through half line z = re θ and by ean value theore, we have R β β + α [( ) ( )] ar > 0, =2 then we get [( + α) ( α + β)] a β =2 < Conversely, let (3) holds We will show that (2) is satisfied and so f ταβλ (,,, λ2, l, n) By using the fact that R ( ω)> β if and only if ω ( + β) < ω+ ( β), it is enough to show that ω ( + α ω + β) < ω+ ( α ω + β), if R = ω+ ( α ω + β) = 2 z βz [ + ( β) + α α] zi [ ( λ, λ, lnf, ) ( z)] 2 =2 This iplies that z R> 2 β [ + ( + α) ( α + β) ] zi [ ( λ, λ, lnf, ) ( z)] 2 =2 39
4 Aisha Ahed Aer & Maslina Darus Siilarly, if L = ω ( α ω + β), we get z L< β + [ + ( + α) ( α + β) ] zi [ ( λ, λ, lnf, ) ( z)] 2 =2 It is easy to verify that R L >0 and so the proof is coplete Corollary 2 Let f ταβλ (,,, λ2, l, n), then a β < [( + α) ( α + β)] Proof: For 0 µ <, we need to show that Now, let us show that zf ( z ) < µ f ( z) zf ( z ) f ( z ) = f ( z) =2 ( ) =2 =2 ( ) a z a z =2 <µ µ a z =2 µ < By Theore 2, it is enough to consider ( µ )[( + α) ( α + β)] z < ( µ )( β) Theore 22 Let f ταβλ (,,, λ2, l, n) Then f is convex of order µ (0 µ < ) in z < r = r ( αβλ,,, λ, l, n, µ ) where 2 2 ( µ )[( + α) ( α + β)] r2( αβλ,,, λ ( µ )( β) Proof: For 0 µ <, we need to show that Now again let us show that zf ( z ) < µ f ( z) 40
5 Certain properties for analytic functions defined by a generalised derivative operator =2 ( ) =2 a z =2 µ a z =2 µ ( ) a z a z =2 < <µ By Theore 2, it is again enough to consider ( µ )[( + α) ( α + β)] z < ( µ )( β) Theore 23 Let f ( z) ταβλ (,,, λ2, l, n) Then f ( z ) is close-to-convex of order µ (0 µ < ) in z < r = r3( αβλ,,, λ 2, l, n, µ ) where ( µ )[( + α) ( α + β)] r3( αβλ,,, λ ( β) Proof: For 0 µ <, we ust show that f ( z ) < µ Siilarly we show that ( ) = =2 =2 f z a z a z µ =2 a µ < z By Theore 2, the above inequality holds true if, ( µ )[( + α) ( α + β)] z < ( β) 3 Radius of Starlieness, Convexity and Close-to-convexity In this section, we will calculate Radius of Starlieness, Convexity and Close-to-convexity for the class (,,, 2, l, n) ταβλ λ 4
6 Aisha Ahed Aer & Maslina Darus Theore 3 Let f ταβλ (,,, λ2, l, n) Then f is starlie of order µ (0 µ < ) in z < r = r( αβλ,,, λ, l, n, µ ), where 2 ( µ )[( + α) ( α + β)] r( αβλ,,, λ ( µ )( β) Proof: For 0 µ <, we need to show that Now, we have to show that zf ( z ) < µ f ( z) zf ( z ) f ( z ) = f ( z) =2 ( ) =2 =2 ( ) a z a z =2 <µ µ a z =2 µ < By Theore 2, it is enough to consider ( µ )[( + α) ( α + β)] z < ( µ )( β) Theore 32 Let f ταβλ (,,, λ2, l, n) Then f is convex of order µ (0 µ < ) in z < r = r ( αβλ,,, λ, l, n, µ ), where 2 2 ( µ )[( + α) ( α + β)] r2( αβλ,,, λ ( µ )( β) Proof: For 0 µ <, we need to show that We have to show that zf ( z ) < µ f ( z) 42
7 Certain properties for analytic functions defined by a generalised derivative operator =2 ( ) =2 a z =2 ( ) a z a z =2 <µ µ a z =2 µ < By Theore 2, it is enough to consider ( µ )[( + α) ( α + β)] z < ( µ )( β) Theore 33 Let f ταβλ (,,, λ2, l, n) Then f is close-to-convex of order µ (0 µ < ) z < r = r ( αβλ,,, λ, l, n, µ ), where in 3 2 ( µ )[( + α) ( α + β)] r3( αβλ,,, λ ( β) Proof: For 0 µ <, we ust show that f ( z ) < µ We have to show that ( ) = =2 =2 f z a z a z µ =2 a µ < z By Theore 2, the above inequality holds true if ( µ )[( + α) ( α + β)] z < ( β) Acnowledgeent The wor presented here was partially supported by UKM-ST-06-FRGS
8 Aisha Ahed Aer & Maslina Darus References Aer A A & Darus M 20 On soe properties for new generalized derivative operator Jordan Journal of Matheatics and Statistics (JJMS) 4(2): 9-0 Aer A A & Darus M 202 On preserving the univalence integral operator Applied Sciences 4: 5-25 Najafzadeh Sh & Ebadian A 2009 Neighborhood and partial su property for univalent holoorphic functions in ters of Koatu operator Acta Universitatis Apulensis 9: 8-89 Tehranchi A & Kularni SR 2006a Soe integral operators defined on p-valent functions by using hypergeoetric functions Studia Univ Babes, Bolyai Matheatica (Cluj) : Tehranchi A & Kularni SR 2006b Study of the class of univalent functions with negative coefficients defined by Ruscheweyh derivative J Rajasthan acadey of Physical Science 5(): School of Matheatical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia UKM Bangi Selangor DE, MALAYSIA E-ail: eaer_80@yahooco, aslina@uy* * Corresponding author 44
Entisar El-Yagubi & Maslina Darus
Journal of Quality Measurement Analysis Jurnal Pengukuran Kualiti dan Analisis JQMA 0() 04 7-6 ON FEKETE-SZEGÖ PROBLEMS FOR A SUBCLASS OF ANALYTIC FUNCTIONS (Berkenaan Permasalahan Fekete-Szegö bagi Subkelas
Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013
Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad
On a Subclass of k-uniformly Convex Functions with Negative Coefficients
International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Meromorphically Starlike Functions at Infinity
Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 48(2)(2016) pp. 11-18 Meromorphically Starlike Functions at Infinity Imran Faisal Department of Mathematics, University of Education, Lahore,
Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points
Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and
n=2 In the present paper, we introduce and investigate the following two more generalized
MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M. S. SAROA, GURMEET SINGH AND GAGANDEEP SINGH
ASIAN JOURNAL OF MATHEMATICS AND APPLICATIONS Volume 14, Article ID ama17, 13 ages ISSN 37-7743 htt://scienceasiaasia SECOND HANKEL DETERMINANT FOR SUBCLASSES OF PASCU CLASSES OF ANALYTIC FUNCTIONS M S
On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points
Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with
The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions
Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS
MATEMATIQKI VESNIK 65, 1 (2013), 14 28 March 2013 originalni nauqni rad research paper CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS M.K.
Bulletin of the. Iranian Mathematical Society
ISSN: 1017-060X Print ISSN: 1735-8515 Online Bulletin of the Iranian Mathematical Society Vol 41 2015, No 3, pp 739 748 Title: A certain convolution approach for subclasses of univalent harmonic functions
On Classes Of Analytic Functions Involving A Linear Fractional Differential Operator
International Journal of Pure and Applied Mathematical Sciences. ISSN 972-9828 Volume 9, Number 1 (216), pp. 27-37 Research India Publications http://www.ripublication.com/ijpams.htm On Classes Of Analytic
ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR
Novi Sad J. Math. Vol. 39, No. 1, 29, 47-56 ON A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS INVOLVING CHO-SRIVASTAVA OPERATOR G. Murugusundaramoorthy 1, S. Sivasubramanian 2, R. K. Raina 3 Abstract. The authors
Some Properties of a Subclass of Harmonic Univalent Functions Defined By Salagean Operator
Int. J. Open Problems Complex Analysis, Vol. 8, No. 2, July 2016 ISSN 2074-2827; Copyright c ICSRS Publication, 2016 www.i-csrs.org Some Properties of a Subclass of Harmonic Univalent Functions Defined
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 2, 2, 62-73 ISSN 37-5543 www.ejpam.com Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3
ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator
Stud. Univ. Babeş-Bolyai Math. 58(23), No. 2, 7 8 Neighborhood and partial sums results on the class of starlike functions involving Dziok-Srivastava operator K. Vijaya and K. Deepa Abstract. In this paper,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
A Novel Subclass of Analytic Functions Specified by a Family of Fractional Derivatives in the Complex Domain
Filomat 31:9 (2017), 2837 2849 https://doi.org/10.2298/fil1709837e Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat A Novel Subclass
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
AN APPLICATION OF THE SUBORDINATION CHAINS. Georgia Irina Oros. Abstract
AN APPLICATION OF THE SUBORDINATION CHAINS Georgia Irina Oros Abstract The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential
STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR
Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k,
Acta Math. Univ. Comenianae Vol. LXXVIII, 2(2009), pp. 245 254 245 SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS C. SELVARAJ
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums
Normalization of the generalized K Mittag-Leffler function ratio to its sequence of partial sums H. Rehman, M. Darus J. Salah Abstract. In this article we introduce an operator L k,α (β, δ)(f)(z) associated
F A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Certain Subclass of p Valent Starlike and Convex Uniformly Functions Defined by Convolution
Int. J. Oen Problems Comt. Math., Vol. 9, No. 1, March 2016 ISSN 1998-6262; Coyright c ICSRS Publication, 2016 www.i-csrs.org Certain Subclass of Valent Starlie and Convex Uniformly Functions Defined by
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
On class of functions related to conic regions and symmetric points
Palestine Journal of Mathematics Vol. 4(2) (2015), 374 379 Palestine Polytechnic University-PPU 2015 On class of functions related to conic regions and symmetric points FUAD. S. M. AL SARARI and S.LATHA
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
On Numerical Radius of Some Matrices
International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Lecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Approximation of Entire Functions of Slow Growth 1
General Mathematics Vol. 14, No. 2 (2006), 59 76 Approximation of Entire Functions of Slow Growth 1 Ramesh Ganti and G. S. Srivastava Abstract In the present paper, we study the polynomial approximation
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
arxiv: v1 [math.ra] 19 Dec 2017
TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some