Multi-dimensional Central Limit Theorem

Σχετικά έγγραφα
Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

1 Complete Set of Grassmann States

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

α & β spatial orbitals in

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

LECTURE 4 : ARMA PROCESSES

C.S. 430 Assignment 6, Sample Solutions

8.324 Relativistic Quantum Field Theory II

A Class of Orthohomological Triangles

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

EE512: Error Control Coding

6. MAXIMUM LIKELIHOOD ESTIMATION

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

Phasor Diagram of an RC Circuit V R

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

A Note on Intuitionistic Fuzzy. Equivalence Relation

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Statistical Inference I Locally most powerful tests

Every set of first-order formulas is equivalent to an independent set

The challenges of non-stable predicates

The one-dimensional periodic Schrödinger equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

12. Radon-Nikodym Theorem

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Pricing of Options on two Currencies Libor Rates

Finite Field Problems: Solutions

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Reminders: linear functions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Srednicki Chapter 55

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Example Sheet 3 Solutions

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Lecture 15 - Root System Axiomatics

w o = R 1 p. (1) R = p =. = 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The Simply Typed Lambda Calculus

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

8.323 Relativistic Quantum Field Theory I

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Solution Series 9. i=1 x i and i=1 x i.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

From the finite to the transfinite: Λµ-terms and streams

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fractional Colorings and Zykov Products of graphs

Chapter 3: Ordinal Numbers

2 Lagrangian and Green functions in d dimensions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 21: Properties and robustness of LSE

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 2. Soundness and completeness of propositional logic

Derivation for Input of Factor Graph Representation

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CRASH COURSE IN PRECALCULUS

Mean-Variance Analysis

Math221: HW# 1 solutions

Homework for 1/27 Due 2/5

Differential equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Parametrized Surfaces

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές


Second Order RLC Filters

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

A Conception of Inductive Logic: Example

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

SOLVING CUBICS AND QUARTICS BY RADICALS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Μηχανική Μάθηση Hypothesis Testing

Areas and Lengths in Polar Coordinates

Transcript:

Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t (); t () t are d to (), t () t 0 { } () t tme () t () t t t As, ( t) becomes a Gaussan random process. t, t,, t are jontly Gaussan for any and for any samplng nstants. { } t

Jont Characterstc Functon of a Random Vector defne ts jont characterstc functon as ( ) Defnton. For a -dmensonal random vector,,,, jωx jωx jω (,,, x Φ ω ω ω ) (,,, ) e e e f x x x dxdxdx where f x, x,, x s the jont pdf of. Usng the expectaton notaton, j( ω+ ω+ + ω Φ ) ( ω, ω,, ω ) e ( g) When the random varables { } are statstcally ndependent, j j ( ω ω ω ) ω ω j,,, Φ e e e ω In the one-dmensonal case, j Φ ω e ω Our vectors are row vectors. Usng matrx notaton, ( ω ω ω ) ( ) Let ω,,, and,,,. hen ω and eq. g s wrtten as ω + ω + + ω j e ( g) Φ ω ω

3 Jont Characterstc Functon of a Subset ( ) Let,,,. ( ) ( ) ( ) Consder a subset of the random varables, say,,,,, <. he jont characterstc functon of,,, can be found easly from the jont char functon of,,, : Φ,,, Φ ( ω, ω,, ω ) (,,, ) e e e f,,, x x x dxdx dx + jω x jω x jω x jω x jω x jω x (,,,,,, ) e e e f,,,,,, x x x x x dxdx dx dx dx + + +,,,,,, ( ω, ω,, ω, ω+ 0,, ω 0) Example ( ω, ω ) ( ω, ω 0, ω ) Φ Φ, 3,, 3 3 3 ( ω ) ( ω, ω 0, ω 0) Φ Φ,, 3 3

4 Covarance Matrx of a Random Vector Consder a -dmensonal random vector,,,. Defne and λ cov(, ) j j j j λ λ λ λ λ λ Λ λ λ λ Λ s referred to as the covarance matrx of the random vector. property he dagonal elements of the covarance matrx s σ λ cov, j,,, jj j j j that s, the varance of. j property For j, that s, λ cov, λ Λ j j j j j s symmetrcal. property he correlaton coeffcent s cov (, ) j λj ρj σσ σσ j j hus λ ρ σσ j j j

5 property When s a zero mean random vector, that s, 0 for every,,,, In that case, ote that λ j j Λ ( )

6 Covarance Matrx of the Sum Vector ( ) Let,,, be a zero-mean -dmensonal random vector. Let Λ denote the covarance matrx of : Λ. Consder ndependent vectors,,, statstcally dentcal to. Defne the sum vector as. hen Λ Λ ( g3) () t ();{ ()} t t are d to (), t () t 0 () t tme () t () t Proof Snce s a zero mean random vector, Λ t t As, ( t) becomes a Gaussan random process. { t, t,, t ( )} are jontly Gaussan for any and for any samplng nstants. t ( )( ) whch s + + + + + + + j j j notng j j 0 for j Λ Λ Λ

7 Jont Characterstc Functon of the Sum Vector Let and assume { } are d to. hen ln ω Φ ω ln Φ ( g4) Proof Φ ( ω) e jω e jω e j ω notng { } are ndependent e j ω ω Φ Φ ω notng { } are dentcal to

8 Jont CF of a zero-mean random vector For a -dm random vector, ts jont characterstc functon s where Φ ( ω) e ( ω ω ω ) ( ) ω,,, and,,,. ω jω ω + ω + + ω Defne the random varable W as ( ω ω ω ) W jω j + + + hen Φ ( ω) e W W W3 + W + + +! 3! ( m ) ow assume s a zero-mean random vector. he nd term of eq. m s For a zero-mean vector, j ( ω ω ω ) W j + + + 0 and thus W 0. 3rd term of eq.m: ( ω ω ω ) W j + + + ( ω ω ω )( ω ω ω ) + + + + + + j ω ω j j recallng the covarance λ when 0 j j j j ωλ ω ωλ ω j j ( m)

9 Mult-dmensonal Central Lmt heorem Let and { } be d to, where 0. hen where ωλ ω lm Φ ( ω) e ( m3) Λ Λ. s referred to as a zero-mean Gaussan random vector when ts jont characterstc functon s the form shown n eq.m3. Proof From eq. m and m, 3 ω W W W Φ + + + + 3! 3! ωλ ω + ω ln Φ ln ωλ + f 3 3 ω 3 u u Recallng ln( + u) u + ; u < 3 ω ln Φ ωλω + f 3 3 + other terms From eq. g4, 3 f 3 Fnally ω ln Φ ω ln Φ ωλω + f 3 + other terms lm ln Φ ( ω) ωλω and from eq. g3, Λ Λ.

0 Jont Char Functon of non-zero mean Gaussan Let be a Gaussan random vector wth mean m and covarance matrx Λ. hen ts jont CF s ωλ ω Φ e ω + jωm A Gaussan random vector s completely defned by the mean and ts covarance matrx. Proof. Defne Y m. hen Y s a zero-mean Gaussan random vector, and t s easy to see Λ Λ. Y From eq.m3, Φ Y ω exp ωλyω. hus ω exp ( jω ) Φ ( jω( Y m ) ) exp + exp Φ Y ( jωy ) exp ( jωm ) ω exp ( jωm ) exp ωλyω + jωm exp ωλω + jωm notng Λ Λ Y

Formal Defnton of Gaussan Random Vector s a Gaussan random vector (or the component random varables are jontly Gaussan) f and only f ts jont characterstc functon s Φ ω exp ωλω + jωm where m s the mean vector and Λ s the covarance matrx. he jont pdf f f ( π ) ( x) can be found by the nverse Fourer transform: ( ) ( x) exp x m Λ x m Λ Example For, m Λ [ μ] [ ] σ Φ ω exp ωσ ω+ jωμ

For, m Λ ( ) [ μ μ ] jontly Gaussan wth correlaton coeffcent ρ ( ) λ σ λ cov, λ cov (, ) λ σ ( ) cov, recallng ρ σσ σ ρσσ ρσσ σ Φ ω exp ωλω + jωm ω ωλ ω [ ω ω ] ωm σ ρσσ ω [ ωω] ρσ ω σ σ ω σ + ωω ρσ σ + ω σ [ ω ω ] μ μ ωμ + ω μ ω σ + ωω ρσ σ + ω σ Φ ω + + exp j ( ωμ ω μ )

3 he jont pdf of a Gaussan random vector s For, x m ( ) ( x x ) f,.,. ( μ μ ) ( x μ x μ ) ( ) ( x) exp x m Λ x m Λ,. x m,. Λ Λ Λ σ ρσσ. ρσσ σ σ σ ρ σ σ σ σ ρ. Λ ( π ) σ ρσ σ ( x m ) Λ ( x m ) ρσσ. σ, / πσσ ( ρ ) σ ( x μ) ρσσ( x μ)( x μ) + σ ( x μ) σσ Fnally we have, for, f ( x, x ) e ( ρ ) ( ρ ) x μ x μ x μ x μ ρ + σ σ σ σ μ μ μ μ x x x x ρ + σ σ σ σ ( ρ )

4 Weghted Sum of Gaussan Random Varables Let be a Gaussan random vector and defne Y as a lnear transformaton of Y A + b where dm, A s a matrx, and b s a -dmesonal constant vector. hen Y s also a Gaussan random vector wth Y + Y ( w ) m Am b and Λ AΛ A ote. A sum of Gaussan random varables s Gaussan. he component Gaussan random varables { } don't have to be ndependent for the sum to be Gaussan. Homewor. Weghted Sum of Gaussan Random Varables Prove that a transformaton of a Gaussan random vector s a Gaussan random vector. Hnt. ω( AΛ ) A ω jω m A b Show Φ ω e + + to prove Y s Gaussan wth Y Y + and Y m m A b Λ AΛ A ote. A can be a h matrx wth h<. Eq. w stll holds true.

5 Example: Lnear Combnaton of Gaussan Random Varables: Assume ~ ( μ, σ ) and ~ ( μ, σ) Suppose and are jontly Gaussan wth correlaton coeffcent ρ. Let Y a+ a Y In ths example, a a A 0 b 0 Y and Y are jonly Gaussan wth and m Y a a μ aμ+ aμ Am 0 μ μ a a σ ρσσ a ΛY AΛA 0 ρσ a σ σ 0 a a a a a a σ + ρ σσ + σ σ + ρ σσ aσ + ρaσσ σ σ + ρ σ σ + σ Covarance matrx shows VAR Y a a a a Λ Y Alternate method of fndng VAR Y : ( + ) VAR Y VAR a a (, ) VAR a + VAR a + COV a a σ σ a + a + aa a a σ σ a + a + a a σ σ, a + a + a a COV σ σ ρσσ a + a + a a

6 Suppose we are nterested n Y only. Let In ths example, Y a + a A [ a a ] he dmenson of Y can be smaller than that of. Y and s a Gaussan random varables wth m Y Covarance matrx Λ μ Am [ a a ] a + a μ μ μ σ ρσσ a Y AΛA [ a a] ρσ a σ σ Λ Y σ ρ σσ σ a + a a + a a σ s, and shows VAR Y + a a ρσ σ + a σ

7 Mult-dmensonal Central Lmt hm - Example 3 ( t) ( t); { ( t) } are ndependent random telegraph sgnals () t () t () t t 0 As t t t 3 3, ( t) becomes a Gaussan random process. t, t, t are jontly Gaussan. { } 3

8 Covarance Matrx of the Random elegraph Sgnal Samples ( t) s a random telegraph sgnal wth transton rate α [transtons/second] We have shown that ( t) s a WSS random process wth mean m ( t) 0 ; t t varance σ () () ; auto-correlaton, R τ e ατ In ths example, we wll tae 3 tme samples. ( t t t ) [ ] Samplng tme nstants are,, (,,3) seconds. 3 ( ) (),,,, 3 s a 3-dmensonal random vector. 3 0 for,,3 or n vector notaton, the mean vector m 0. λ cov(, ). j j Snce 0, j λ j j R ( t t ) e j α t Let Λ be the covarance matrc of the random vector. hen α 4α e e α α Λ e e 4α α e e j t Covarance Matrx of the Sum Vector Defne. hen Λ Λ.

9 Jont Characterstc Functon ( ),, a 3-dmensonal random vector 3 3 e e e f x x x3 dxdxdx 3 jωx jωx jω3x Φ 3 ( ω, ω, ω ) (,, ) where f x, x, x s the jont pdf of. 3 Usng expectaton notaton, j( ω+ ω+ ω33 Φ,, e ) e ( ω ω ω ) 3 Usng matrx notaton, ( ω ω ω ) ( ) Let ω,, and,,. hen ω 3 3 ω + ω + ω Φ ( ω) e jω 3 3 eq. e and s wrtten as For the sum vector, ( ),, a 3-dmensonal random vector 3 3 e e e f z z z3 dzdzdz 3 jωz jωz jω3z Φ 3 ( ω, ω, ω ) (,, ) where f z, z, z s the jont pdf of. 3 Usng matrx notaton, Φ e jω ω We do not now Φ ( ω) yet. However, as, we can fnd Φ ( ω) wthout nowledge of Φ ( ω).

0 Mult-dmensonal Central Lmt heorem As, Φ ω exp ωλω ( e) α 4α e e α α where Λ e e Λ 4α α e e Eq. e s the jont characterstc functon of a zero-mean Gaussan random vector. Jont pdf of the Gaussan Random Vector he jont pdf f ( z) can be found by the nverse Fourer transform from Φ ( ω) : f ( π ) ( ) ( z) exp zλ z wth 3. Λ