Laplace s Equation in Spherical Polar Coördinates

Σχετικά έγγραφα
The Laplacian in Spherical Polar Coordinates

Areas and Lengths in Polar Coordinates

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Orbital angular momentum and the spherical harmonics

Areas and Lengths in Polar Coordinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

Tutorial Note - Week 09 - Solution

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Curvilinear Systems of Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.2 Differential Equations in Polar Coordinates

Fundamental Equations of Fluid Mechanics

Analytical Expression for Hessian

Matrix Hartree-Fock Equations for a Closed Shell System

Example 1: THE ELECTRIC DIPOLE

Orbital angular momentum and the spherical harmonics

derivation of the Laplacian from rectangular to spherical coordinates

Solutions Ph 236a Week 2

Homework 3 Solutions

Variational Wavefunction for the Helium Atom

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Spherical Coordinates

Geodesic Equations for the Wormhole Metric

Homework 8 Model Solution Section

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Approximation of distance between locations on earth given by latitude and longitude

Math221: HW# 1 solutions

1 String with massive end-points

Statistical Inference I Locally most powerful tests

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Solutions to Exercise Sheet 5

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 7.6 Double and Half Angle Formulas

Inverse trigonometric functions & General Solution of Trigonometric Equations

Derivations of Useful Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Problems in curvilinear coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

2 Composition. Invertible Mappings

Answer sheet: Third Midterm for Math 2339

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Section 8.2 Graphs of Polar Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

PARTIAL NOTES for 6.1 Trigonometric Identities

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Differential equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

If we restrict the domain of y = sin x to [ π 2, π 2

1 3D Helmholtz Equation

Section 9.2 Polar Equations and Graphs

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Srednicki Chapter 55

6.3 Forecasting ARMA processes

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Parametrized Surfaces

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CRASH COURSE IN PRECALCULUS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Strain and stress tensors in spherical coordinates

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

The challenges of non-stable predicates

Reminders: linear functions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

The Simply Typed Lambda Calculus

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ECE 468: Digital Image Processing. Lecture 8

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

physicsandmathstutor.com

r = x 2 + y 2 and h = z y = r sin sin ϕ

Lecture 26: Circular domains

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Tutorial problem set 6,

Uniform Convergence of Fourier Series Michael Taylor

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Course Reader for CHEN 7100/7106. Transport Phenomena I

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Transcript:

Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1 x y z attempt to wite using the chain ule x = x y = z = θ,φ y θ,φ z θ,φ The needed above patial deivatives ae: we have as a stating point fo doing the θ tems, φ = tan 1 y x θ x θ,φ θ y θ,φ θ z θ,φ φ x φ,θ φ y φ,θ φ z φ,θ = sin θ cos φ 1 x = sin θ sin φ y = cos θ 3 z d cos θ = sin θdθ = dz z 1 xdx ydy zdz

so that, fo example which is so that but, fo the z-equation, we have which is so one has Next, we have as an example so o which leads to sin θdθ = z x dx sin θdθ = cos θ sin θdθ = sin θdθ = sin θ cos φdx θ cos θ cos φ = x θ cos θ sin φ = y sin θdθ = dz z 1 zdz 1 z 3 dz = z 3 dz 1 z 3 dz = sin θ 3 dz θ = sin θ z tan φ = sin φ cos φ = tan1 y x 1 sin φ cos dφ = dy φ x y x dx 1 cos dφ = dy φ x y x dx φ = cos φ y sin θ φ = sin φ x sin θ 4 5 6 7 8

φ = 0 9 z 3 Given these esults above we wite z = cos θ sin θ θ 10 y = sin θ sin φ x = sin θ cos φ cos θ sin φ cos θ cos φ cos φ θ sin θ φ θ sin φ sin θ φ 11 1 Fom Equation 10 we fom z = cos θ while fom Equation 11 we obtain y = sin θ sin φ cos θ sin φ [ cos θ sin θ θ [ sin θ sin θ sin φ cos θ sin φ [sin θ sin φ cos θ sin φ θ cos φ [sin θ sin φ cos θ sin φ sin θ φ fom Equation 1 we obtain [ sin θ cos φ x = sin θ cos φ cos θ cos φ cos θ cos φ [sin θ cos φ cos θ cos φ θ sin φ [sin θ cos φ cos θ cos φ sin θ φ cos θ sin θ θ θ θ cos φ sin θ φ θ cos φ sin θ θ cos φ sin θ θ sin φ sin θ θ sin φ sin θ θ sin φ sin θ φ φ φ φ φ 13 14 15 Exping, we have while fo the y-equation we have z = cos θ cos θ sin θ sin θ cos θ θ θ sin θ sin θ cos θ sin θ cos θ sin θ θ θ θ 16 y = sin θ sin φ 17 [ cos θ sin φ cos θ sin φ sin θ sin φ θ 18 θ

finally [ sin θ sin φ cos φ cos φ sin θ φ sin θ φ cos θ sin φ [cos θ sin φ sin θ sin φ θ [ cos θ sin φ sin θ sin φ cos θ sin φ θ θ [ cos θ sin φ cos φ cos θ cos φ sin θ φ sin θ φθ cos φ [sin θ cos φ sin θ sin φ sin θ φ [ cos φ cos θ cos φ cos θ sin φ sin θ θ θφ [ cos φ sin φ cos φ cos φ sin θ sin θ φ sin θ φ = sin θ cos φ sin θ cos φ x [ cos θ cos φ cos θ cos φ sin θ cos φ θ θ [ sin φ sin φ sin θ cos φ sin θ φ sin θ φ cos θ cos φ [cos θ cos φ sin θ cos φ θ [ cos θ cos φ sin θ cos φ cos θ cos φ θ θ [ cos θ cos φ sin φ sin φ sin θ φ sin θ φθ sin φ [sin θ sin φ sin θ cos φ sin θ φ [ sin φ cos θ sin φ cos θ cos φ sin θ θ θφ [ sin φ cos φ sin φ sin θ sin θ φ sin θ φ Now, one by one, we exp completely each of these thee tems. We have 4 19 0 1 3 4 5 6 7 8 9 30 31 3 33 z = cos θ 34 cos θ sin θ 35 θ sin θ cos θ 36 θ sin θ 37 sin θ cos θ 38 θ sin θ cos θ 39 θ sin θ θ 40

5, fo the y-equation: y = sin θ sin φ 41 sin θ cos θ sin φ 18 4 θ cos θ sin θ sin φ 43 θ sin φ cos φ 19 44 φ cos φ sin φ 45 φ cos θ sin φ 0 46 cos θ sin θ sin φ 47 θ sin θ cos θ sin φ 48 θ cos θ sin φ 1 θ 49 cos θ cos φ sin φ sin 50 θ φ cos θ cos φ sin φ 51 sin θ φθ cos φ 5 cos φ sin φ 53 φ cos φ cos θ 54 sin θ θ cos θ cos φ sin φ 4 55 sin θ θφ cos φ sin φ 5 sin 56 θ φ cos φ sin θ φ 57 finally, fo the x-equation, we have x = sin θ cos φ 58 sin θ cos θ cos φ 6 59 θ sin θ cos θ cos φ 6 60 θ cos φ sin φ 61 φ sin φ cos φ 6 φ

cos θ cos φ 7 63 sin θ cos θ cos φ 64 θ sin θ cos θ cos φ 7 65 θ cos θ cos φ θ 66 cos θ cos φ cos φ sin φ 8 67 sin θ φ sin φ cos φ cos θ 68 sin θ φθ sin φ 9 69 sin φ cos φ 70 φ cos θ sin φ 31 71 sin θ θ cos θ sin φ cos φ 7 sin θ θφ sin φ cos φ 3 sin 73 θ φ sin φ sin θ φ 74 Gatheing tems as coefficients of patial deivatives, we obtain fom Equations 34, 41 58 6 fom Equations 35, 38, 4, 48, 54, 59, 65, 71 θ cos θ sin θ sin φ sin θ cos φ cos θ sin θ sin θ cos θ sin θ cos θ sin φ sin θ cos θ sin φ cos φ cos θ sin θ while we obtain fom Equations 40, 49, 66: sin θ cos θ cos φ sin θ cos θ cos φ cos θ sin φ sin θ cos θ sin θ θ 75 θ Fom Equations 37, 46, 5, 63, 69, sin θ cos θ sin φ sin θ cos θ sin φ cos φ cos θ cos φ sin φ Fom Equations 44, 50, 56, 61, 67 73 we obtain φ sin φ cos φ cos θ cos φ sin φ sin cos θ cos φ sin φ θ sin θ cos θ cos φ 1 θ 76 77 cos φ sin φ cos θ cos φ cos θ cos φ sin φ sin φ cos φ sin θ sin 0 78 θ

Fom Equations 57 74 we obtain φ cos φ sin θ sin φ sin θ 1 sin θ φ 79 The mixed deivatives yield, fist, fom Equations 45, 53, 6, 70 leading to cos φ sin φ cos φ sin φ sin φ cos φ sin φ cos φ 0 80 φ Fom Equations 36, 39, 47, 43 64, 60 Fom Equations 51 55 68 7 θ sin θ cos θ cos φ sin θ cos θ sin θ cos θ cos θ sin θ sin φ cos θ sin θ sin φ Gatheing togethe the non-vanishing tems, we obtain sin θ cos θ cos φ 0 81 cos θ cos φ sin φ cos φ sin φ φθ sin θ sin θ sin φ cos φ cos θ cos θ sin φ cos φ sin θ 0 8 sin θ 1 θ cos θ sin θ θ 1 sin θ which is one of the two classic foms fo. The othe is 1 1 sin sin θ sin θ θ θ θ φ φ 7 II. MAPLE EQUIVALENT Hee is a set of Maple instuctions which will get you the same esult: estat; f:=g,theta,phi; tx := sintheta*cosphi*difff,costheta*cosphi/*difff,theta -sinphi/*sintheta*difff,phi; tx:=exp sintheta*cosphi*difftx,costheta*cosphi/*difftx,theta -sinphi/*sintheta*difftx,phi; ty := sintheta*sinphi*difff,costheta*sinphi/*difff,theta cosphi/*sintheta*difff,phi; ty:=expsintheta*sinphi*diffty,costheta*sinphi/ *diffty,thetacosphi/*sintheta*diffty,phi; tz := costheta*difff, -sintheta/*difff,theta; tz := expcostheta*difftz,-sintheta/*difftz,theta; del := txtytz: del := algsubs costheta^=1-sintheta^, del : del := expalgsubs cosphi^=1-sinphi^, del ;