B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/

Σχετικά έγγραφα
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Section 8.3 Trigonometric Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Finite Field Problems: Solutions

Section 7.6 Double and Half Angle Formulas

Areas and Lengths in Polar Coordinates

Cosmological Space-Times

Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

derivation of the Laplacian from rectangular to spherical coordinates

If we restrict the domain of y = sin x to [ π 2, π 2

Higher Derivative Gravity Theories

Every set of first-order formulas is equivalent to an independent set

Inverse trigonometric functions & General Solution of Trigonometric Equations

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Solutions to Exercise Sheet 5

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CRASH COURSE IN PRECALCULUS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Answer sheet: Third Midterm for Math 2339

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Geodesic Equations for the Wormhole Metric

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lifting Entry (continued)

The Simply Typed Lambda Calculus

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order RLC Filters

EE512: Error Control Coding

Homework 3 Solutions

Section 9.2 Polar Equations and Graphs

Spherical Coordinates

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

10.7 Performance of Second-Order System (Unit Step Response)

Derivation of Optical-Bloch Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

Variational Wavefunction for the Helium Atom

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Example Sheet 3 Solutions

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Lecture 26: Circular domains

Homework 8 Model Solution Section

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

SPECIAL FUNCTIONS and POLYNOMIALS

Differentiation exercise show differential equation

Exercises to Statistics of Material Fatigue No. 5

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math221: HW# 1 solutions

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Srednicki Chapter 55

Trigonometric Formula Sheet

Forced Pendulum Numerical approach

ST5224: Advanced Statistical Theory II

D Alembert s Solution to the Wave Equation

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Uniform Convergence of Fourier Series Michael Taylor

Approximation of distance between locations on earth given by latitude and longitude

Solution to Review Problems for Midterm III

Name: Math Homework Set # VI. April 2, 2010

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

6.3 Forecasting ARMA processes

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

An Inventory of Continuous Distributions

Bounding Nonsplitting Enumeration Degrees

Multi-dimensional Central Limit Theorem

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

A Note on Intuitionistic Fuzzy. Equivalence Relation

Parametrized Surfaces

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Tutorial Note - Week 09 - Solution

( y) Partial Differential Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

3+1 Splitting of the Generalized Harmonic Equations

Statistical Inference I Locally most powerful tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Dark matter from Dark Energy-Baryonic Matter Couplings

Example 1: THE ELECTRIC DIPOLE

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Transcript:

! " # $#% &'(*

!""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". The metri of Spae-Time... 5. The redshift... 6. Distanes... 7.4 Angular Sie... 8.5 The Volume... 9.6 ow to ompute ω... 9.7 The sale parameter....8 Time sales... #$ $ %&Λ'"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". General harateristis... " The solution of and t in parametri form.... The ubble and deeleration parameters... 4.4 elation between ω and ψ... 4 " Expressing ψ in the observables and... 4 "( The geometri distane... 5.7 The o-moving volume... 6.8 Time Sales... 7.8. The loo-ba time τ... 7.8. The age of the Universe (t expressed in and... 8 #% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". Introdutory emars.... The general solution...., and t in terms of the parameter A....4, and τ in terms of A and....5 The geometri distane and volume elements... 6 * % % Λ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", 4. Zero-density model with >... 8 4. The Lemaître model: Λ> and... -&.$ $/% """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( A. The Metri... 6 A. The Einstein Euations... 6 A. General elations... 7 -& #$$ %Λ' """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", B. General elations (... 8 B. ; < /... 9 B. ; > /... 4 B.4 ;... 4 B.5 ; /... 4 B.6 ;... 4 -&#% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""* -4&5 %6 %""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""** D. Zero-Density Model with >... 44 D. The Einstein model... 45 D. The De Sitter model... 45 D.4 The Lemaître model... 46

.!$ $ $$%%$% $ %! % $ 7 %$ %$ %7/$ " $ % %% -% $% "5$ 5 %-$ % / $% -$%5 8(5 8(/ " % % $% % % / %$ -./ 7 /$ $ / %% %$ -$% 9-5: $ "! / % $ $ $$ % 6/ ;$! %" $ : $%88( % % $ % 7< $%% "! % / % $ / / % " $ / % 7 % - /% %% "5$ %/ % %$ $ %" % - $ >$%? / $ %& $ % /% / % $ %/ / $ 4 @ 7< $%% % % $ $ - " % % $ A $ - /. /% * " $ 'ρ " $ % $ % / / $%% " " % $ /%$ % $ / % $ / $%% % $ 9$/"! $ $ / / % A $ % % $ "! %$ $ % % ' %! % $ % % %"!%/7%$ 7 $% $ $"#! $% $ ;/ 7: % $ @ "!$ / % -$%% B<$ $"

$ $ % $%%$ %" 6/%! % % -/ % $%! $ $ $%" / $%$ % - $% $ % % $ $ $ %$ % % %"!%/ % % % ".% % $ $$ @7$% " C"" $ $ : @& $D$. & http://www.ira.inaf.it/~deruiter" E$$ $% $ %%" $% $: @@7 $% " 4

Introdution / % -7%$ % $ $%% % -$% / $ % $ %- % $ $ "6/%% %$%% $ %"6 %% $% $ $% FF $ % D ' $ 7 7 'G "! 7 $ % 7< $%% / $ % % / %$ % Λ % %7 / % / % $ % /%" $ % $ $$ %7/$ " % < %" #! $ % / $ $ % /%$ ;/ 7: % $ @ "! &!% -/%$% / $! $ $ %" 5 $ % / #$$ % *%$ % $ % " $ % % / / / % $%" %$/% -" $ $$% %$ - 4". The metri of Spae-Time!% $ $ 7$ % ;/ 7: % $ & dr r dθ r sin θdφ ds dt ( t r 4 /%θφ $ - / ;'; " 7$ θ φ $ /I% - % 7$ " $ / < /% % /%% 7B"!' % %'B ' %" 5

$ % $ $ / / ω& r sinω r 4 #'Bω''%' r sinhω r 4 / $ $%& ω r sin r 4 ; $ $/ / - G'-- '-" %$ '" $$ $ & sin ω ds dt ( t{ dω ( dθ sin θdφ } $ %% %". The redshift #$ $ " $$ % - ;": ; % %$ ; % $ $" %/ /.&' ω $ - % θ'φ' & ω t t dt 6

% $ $ / "# & ω t t t t dt G ';G;" % ν G %& ν ν em obs. Distanes! %/ ωg "6 % % % / " $ %$ $5'.G*π4 5%-.%$ - 4 $ " % / 8( "(77("! % %- % $ / "! @% 4 / & A π π D sin( θ dθdφ 4πD D $ " %% $ 7 & π π sin ω sin ω A sinθ dθ dφ 4π ω " / %/ %- $/ & P P S. A 4π sin( ω / %% % J ωkg % $ " We put the observer at ω and the soure at ero, but in the end put ba the observer at ero; this an be done beause spae-time is homogeneous and isotropi 7

: / $ %% " % ε $'ν $ $ "! $ % $ $ $. $' ε $G $" # & % ν/'ν $GB< ε/'ε $GB< " 5 $/ & % % " % $/ $' /GB< $ / B< $ % %" % FF/ $%- $./ & n Pobs ε obs Pem /(. t obs # %& Pem S 4π ( o rg : %$ 4& D ( r g / /%$ %- / %$ / % / $ / / B< %- ν $ νb< ".4 Angular Sie %$%%< θ& θ'9g θ 9 % < θ " 7$ ωθφ ωθ θφ " %/ -$% $ /% " : $ $ $ $$ /% " %% 9 $ / /'ω'φ' '9 '; θ & 8

θ : $ θ ' ;GB< % $%5'.G*π4 θ'9g θ $ $/ & ( L. rg D r g ( dθ ( d θ D (.5 The Volume 7$ /I / - " % $/ /I 7$%$ $ %$ % $ ""%$"#$ $ " & sin ω sin ω dv ( ω, θ, ϕ dω dθ sinθdφ! ωθφ %$ ω& ω sin ω V ( ω 4π dω $ ω < ω' ω< % %$ % $%G< <".6 ow to ompute ω 9 / $ $ / % - θφ"5 ' ω t dt t ( t ω '"! 7 - $D< % ω'ωd< %$ " $D <" 9

.7 The sale parameter : % %; G; 'B< " %;'; $ @! & 8πGρ d p d ( ρ dt dt ρ Λ $%% " @ / / 7 $$ $ "! $ % %% / ρ %Λ"%$ % 7< / %% -$%$% % ρ γ $ % ' @ / $ & d d ( ρ ( ρ dt d!$$ D//%$ %$ & 8 πgρ %& Λ p 8πG!% %& Λ Λ

.8 Time sales % $$ / /$ D" "'D % % / $ %" D 7 % D//% $ / % / $ #$ $ % Λ' % D 7 " $$ $ %7/$ τ t τ t We see that t t τ, and t τ. The name loo-ba time is obvious.

The standard (Friedmann model: Λ. General harateristis #$$ % $$$%%$ %%$ -% % / % $" 5 Λ' $ $%@ & 8πGρ / $/ Λ' $% 'σ @ " L #$$ %% / σρ % " @ %/ ;D& '±"!% 'B >M ' 'M ' <M The solution of and t in parametri form % #$7@ % $ % % $ "! FF %$ %ψ ;';ψ 'ψ " ; $ $/ & d dt dψ dψ But negative pressure now has beome a definite possibility, sine the Quintessene models have been proposed. I should get around disussing these too.

dt d d / dψ d t dψ dψ dt / dψ dψ Gψ';G & d d dψ dψ %& a ( os ψ. 5 ';G ψ& a sin ψ t ψ. % % %& #' - '- - G'- & ;' 'Jψ K ' 'G Jψ ψk #'B & ;'B 'Jψ K 'B 'G Jψψ K #' ψ 'ψ G ψ G 'ψbψ G( $%/ < %$ "& ;' 'ψ G ' 'ψ G(! %$ ;/ %GD $ % "@%$ψ 6 / / / / / ( a t t - %$ /D'G $;' GD": 'G* % & ( t t /

. The ubble and deeleration parameters D / %%& $ $ $%& os ψ os ψ -% %''B /%/ " #' / %/ ; " %$ $% "$ & D' 'G G ' G".4 elation between ω and ψ $% %/ %7$ ω %$ %ψ"5 G;'ψG " & t dt ψ ω dψ ψ t & d sin( ψ / dψ a ( os ψ ω ψ ψ ωψ $ < 7&ω$ / ω' %ψ /% % ;'ψ'" Expressing ψ in the observables and 5 ψ '7 Gψ/ - $;;';GB< & os ψ os ψ G& 4

os ψ ( : $% % %/%$&ω / %$ % / - D<" %/ $ %$ " - ' %$% %%" % %$%% / % - $/ /% % #$$ % 7$ % "! % Λ " The geometri distane N/ % ' ω G & sin ( ψ ψ sin ψ os ψ os ψ sin ψ r g : % "/ $ & / r ( ( g ( / J 7 GK'G; D & / r ( ( g ( $ $% 8, " 5% $ %#$ %8 % $/ $ - <"!% % $% % / " % %$ -$% $ % / /$ $ < " %8OO / % / $$% %. 88O "# %$ 4';B< $/ & '7B< G '7 <B G G " / Mattig's formula was derived without any referene to partiular values of, or, and indeed, it is valid for all and all. For we an tae the limit by expanding the suare-root term in powers of up to the seond order. Zero- and first order terms in in the numerator anel exatly, so the limit exists. 5

: <B< & 4'GD <B<G % $%/ %/ "! % $ A'B < G & D ( Q %% % $B <BA GB <BA % % % $%& D ( ( /.7 The o-moving volume %$% %$ / $$ %& π sin ω V ( ω ω : %% ω $D< "% % % %$ -%% / /%! /% $%% / $/ $ & $ % %% $ %% ω $% "*" % / "D $ %% %$ / % $ %": % / %" ' % $ %"5 ω'<b< G GB< - ' %J - B B-K& ω ln( $ $ $%PG ω'ωωq& 4 ( V ( π ln( 4 ( dv d 4π ( ( 6

'G'@ 7 5 $ %" %$ $ω$%& 4 V ( ω πω $% r g : & { ( / } ω V ( π dv d 6π / ( 5 / ( "ω 'ω7 ω G & {( / } V ( π ( arsin ( / dv d 4π / ( ( In all other ases we use ω and V(ω..8 Time Sales.8. The loo-ba time τ By definition τ t t t!$%< ' τ' ' τ'"#$ % $ψ " τ/ ψ sin τ ψ sin ψ / ψ / 7

8 %$ ψψ $ / /%D<" %! -% - τ / /% 'G" '" %$ / %& $ $ /% $ %& ' $% ;G ';' %& %$$ % - τ" 'M"#$ "& & 'B" ψ'7 G'ψ'πG"%ψ' ψb< GB< '<GB< &.8. The age of the Universe (t expressed in and. - D $ψ "" & τ t t ψ ψ τ ( / τ aros / π τ / sin ( / t ψ ψ

'" %% ;';'GD t / %/ / %$ % $%" 'G"N/ " % & t / '"% %$%''& t π : $% #$$ %$% " 9

Flat Models (, Λ. Introdutory emars : - @ 7 5 $ %%$ %' $ " < $%% %$%% / $ % / % % % $ " L % 7 $ % / $ % $%" %%% / $ 7#$ $ % % $ " FF% $ % Λ & % $%%$ %/ & % $ 8,, "% $ %/ %" $ $% / % %$ / % %$ / Λ / /%/ ": $ %$ % $%% $ $ / / % $ %$ % "! % %$ %% $ Λ%! $ %Ω'GΩ Λ 'G / % $ % % / $ $%"!%%/% @ / $ $ D//%$ %$ $ σ'*πnρgd & Λ ( σ σ! $ % $ % σ Λ Ω 'σ Ω Λ 'ΛGD "! $ / ΩBΩ Λ ''" $ %/ - % /'ΩGΩ Λ "

Figure The -σ plane. The lines representing Friedmann models and flat models are drawn. # $%% % %/ / < 5 $ % *" @ 7 5 $ % "!" 7σ% " % ΩΩ Λ S ": < & % σ'λ' σ'b' %$% % %$% % % " %%% %/ / /% %$ % * % / / $% /%/ - "!% /$ %$ %'Λ "! % %% - %%$ % % % Λ$ $% %%#$$ %". The general solution @ '& 8πGρ Λ

Λ!/ % % $ & ε!λ ε'λs ε'b%& A N/ " & ΛS&ΛGD '7σσG%T'σGσ " Λ&σSG %T'σG7σ " : % %%Dτ " % Λ % / %% / %& σ G $%% - % %$ #$ $ % G $% " $ %%% Λ": & D 'T& ( εa 8πGρ Λ γ A A / / sinγ t Λ sinh / ( γt 8πGρ Ω M Λ Ω Λ / γ Λ Ω Λ 5 %%$ %7 $%% % %; $/%/ $% /% 7 $ $ /%$ $ /% - $ %$ "!%%/

% % $ - " L % % $ % $%" % $ % /$% % $ / / $ %/% & Ω'G Ω Λ 'G'G"$ % $ $ %" & / sinh / ( t., and t in terms of the parameter A #$ %% $$ %Λ/γ ' G γ 'JB GK G & Λ ( A t #& / Λ Ω Λ A ( Ω A Λ ( A / ln{ A / A ( A / } Ω / Λ Ω ln / Ω M Λ.5 t.4 /.9!/ % %@ 7 5 % D,πNρG GD G"# D ΛG D 5 *" "5$%$%/ / ΛS" / Λ.4, and τ in terms of A and

$ % $ % - D< < %7/$ τ< Λ& ( Λ / ( { A( } A ( A( L $ / $$ < % % %"! $ %'" <' '",O" # %7/$ & τ Λ A( / ln[{ A( } ] ln( / ln{ ( A } ln A ln A / Figure The loo-ba time for some flat models with positive osmologial onstant. The full lines represent models with: A.,.5,.. The A.5 model is lose to the Conordane model. Also shown are standard and / models (lower and upper full lines respetively. 4

5

#'"& ( ( ( ( 4 ( / <' "/ '"" : τ<'" %$" τ % "" 5$%$% ΛS" $B< $ % $% "%/ %$ % $ ".5 The geometri distane and volume elements $ %$ %$ "! & r g t t dt t t $< B< '; G; $ $%& / dζ rg ( A / { A( ζ }!% @ 74 5 r { } g / ( & A / dt sinh / γt 6

r g $%" % % $% $ %%%$% $ % "#$ $$ % % %$ '*π; G %%$ G<'*π; <" < % "" Figure : The geometri distane as a funtion of redshift, for A.,.5,. and.. For omparison also the Friedmann models with and.5 are shown 7

4 A seletion of Models with, Λ 4. Zero-density model with > %$ % %/ σ %$ & %/ % $ $/ $ $ % σ' -$"$$ % %$ "$%$/σσs $% Λ S " Λ % %$ / $ " # / @ ρ'& Λ Λ 5 % $ @ "σ's'" @%$Λ$ @ / & / $ %/%& / ( @ $ % % -%%;'; / % /$% ;'/ ": & / sin( t / /& sin( / t / 8

D//% %$ & / / ot( t & tan ( / t 5$ $$ & $ % % % % $ ' & ; $-$$GD G ' πgd G < 'πgd G " %$$ ' D 'G D 'πg*"! $/ %/ & ( / [os{ / ( t t } / sin{ ( t t $%-G-'%-G-G'-G-B -'%J -7 B-K/%% & / {( ( } ( r g sinhω %$% -$ %"L % '$ %% / σ Λ σ "! / % %$ / $% - " %7/$ / & / }] / arsin / ( ( τ / arsin & / ar tan t / $% $ %" 9

4. The Lemaître model: Λ> and 9 $U $ % $% $ % %/ /% / % % % " @ $ %" $%%$ % / @ "D % %-% / $ /D//% $%%Λ/%"; ;' ;G' ;G '" @ / $ & 8πG ρ Λ!%,πNρ' G; ' ρ> Λ": E Λ Λ Λ 4 5 $ %% %$ %$ %"! % $ $ %%$ 9 $U $ %": $$< $ %& e ( t t Λ 9 $U $ % $$$ % 8 $ /8( $ $ -%

% <'" $ %/ %"#$ $ -$%. 8(O "! 9 $U $ % 'B ΛI% @ $ %"D %%$ $ & 9 $U $ % /% % % @ $ % /" $ $ / $ % - $%% / % % "! % : / 8O "! % $ $ @ ;@ - ;G;@": $ $ @ % ρ @ ρ; ' ; 'ρ- ; @ 'αρ @; @ α" & αρ E αλ ρ x 4πGx @ - α/ $ & Λ x ( x x α x Λ x ( x α x %/ % / $/ & -SS & / x ( αλ / t & / @ 74 5 $ %&#S-S 9 $U $ %/ @ 74 5 $ %"K #- x Λ x t /

& Λ #- 9 $U $ %/ 4 5 $ %"L $$ %$ % Λ " 9 $U $ % $ -& - "#$ @ -G $$$& x x min Λ( α α / / $'"5 %'G % %% / $ - % % "/ %& % $%%%-$'α G "#$ $ %% % "D $ - %-G $ " $ $ ; $%% "! ρ 4 5 $ % " : -G$ / $ /%% < /%α " #α% & / / x min Λ( α ( x α x & x α x Λ

x /% -'α G B7$ Λ A α Λ B / / ( α ( x α / ( / 5 FF / & % / Λ x α / α / x Λ x α ( x Λ / / sinh{ ( t tm } ( α 5 $ $' % " %$ $ % < % /%α "! % < $ %"!/ $ %/ $ -% <' $ %& $ % <'"9 / % 7-9 $U $ % " 6 $ $$ &%/ /$ % $ % %$ % $ $ % " $% 9 $U $ %"

/% " N"8,,!"#$#%$5 7 %& %D %/ L E " "#$ # & % #'$( $ ##*"9 "$$*( " : "8,"L",*8 *" N""8(, - $$!%#!$ D %&9 ". /%.""@"V;# #$$ %./!; ""."O8 (". ""88O$%*$$$, $(* $/. O". "5% @"V5<."8(O*O," 5 "8( 8" 5 "8(/*8( " %"8OO$""."*,(8 " : / 5"8O,$$%#!: % 5&L E 4

5

Appendix A: Parameters and symbols used General Symbols <& & $ 4& %$ θ& %< 9 % < & %$ 7$ τ& %7/$ G < ψ& %$ % #$$ %Λ' A. The Metri sin ω ds dt ( t dω ( dθ sin θdφ ω& %7$ θ&%7$ φ& %7$ ; & %$ L"" 7$ - %%-" 8πGρ A. The Einstein Euations Λ p 8πG Λ ρ& $ % σ'*πnρgd & % ' Λ& $%% D& D//%$ D';G G; & %$ 'J ;G ;KG;G 6

A. General elations B<';G;& ω'g; $& % ' ωg & $ 4'B< ;& %$ θ'b< 9G; & %< ω '*π;pj ωkg Q ω$ω %$ 7

8 Appendix B: The Friedmann model (Λ 5 $ $%" B. General elations ( ( ( ( r g (deg ( 57. g r L θ V sin ( ω ω π ω os ( ψ a sin ( a t ψ ψ os ψ os os ψ ψ ψ ψ ω / / ( ( os ( / sin a ψ ψ os ψ

dv d τ t dv dω dω d ψ sin ψ sin ( / ψ ψ / sin ψ ψ a(oshψ a t (sinhψ ψ B. ; < / oshψ oshψ oshψ ω ψ ψ / ( sinhψ a ( oshψ oshψ V ( ω π sinh ω ω dv dω π (osh ω d d sinhψ ψ τ sinh ψ ψ 9

t (sinhψ ψ / ( a( osψ a t ( ψ sinψ B. ; > / osψ osψ osψ ω ψ ψ / ( sinψ a ( osψ osψ v( ω π ω sin ω dv dω π ( os ω d d ψ sinψ τ ψ sinψ t ( ψ sinψ / ( t B.4 ; 4

ω ln( t r g 4 ( V ( π ln( 4 ( dv ( / 4π d ( τ t ω t t / ( / B.5 ; / t r ω g V ( π / ( dv d τ t {( } / 6π 5 / ( ( / / 4

4 B.6 ; aros π ω r g / ( ( arsin ( V π / ( ( 4 d dv π aros / π τ π t

Appendix C: Flat Models ( ; Λ > 5 $ $%" / A / sinh γt 8πGρ A Λ γ Λ Λ ( A A A A / ( / / t A ln{ A ( A ( Λ Λ ( { A( } A( r g τ / dζ ( A / { A( ζ } } / ln[{ A( } ] ln( / ln{ ( A } ln A ln A 4

Appendix D: A Seletion of Other Models 5 *$ $%" / D. Zero-Density Model with > sin( / t / ρ Λ < / sin( t / & ( / [os{ / ( t t } ω arosh ( arosh / / ot( t / tan ( t / / / {( ( } ( r g V ( ω π ( sinh ω ω / arsin / ( ( τ / arsin / / t artan sin{ / / ( t t }] 44

Λ > E Λ ρ Λ E 4πG D. The Einstein model Λ > ρ exp{ ( t t } ω Λ r g 4 V ( π D. The De Sitter model 45

Λ > x E ρ α x ρ E @ & D.4 The Lemaître model x ( x α x / & -SSα G / @ 74 5 $ %" x Λ ( x x Λ x α α x / Λ t / / t -α G / 4 5 $ %" x x exp{ ( t t } Λ 46

- α G #$ #& Λ x α / ( α / / sinh ( t t & / t Λ {ln( α / : $ /%%/ α " 47