ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Σχετικά έγγραφα
Other Test Constructions: Likelihood Ratio & Bayes Tests

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Statistical Inference I Locally most powerful tests

Instruction Execution Times

The Simply Typed Lambda Calculus

Homework 8 Model Solution Section

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

5.4 The Poisson Distribution.

ST5224: Advanced Statistical Theory II

Calculating the propagation delay of coaxial cable

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

Block Ciphers Modes. Ramki Thurimella

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Προσομοίωση BP με το Bizagi Modeler

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Fractional Colorings and Zykov Products of graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Μηχανική Μάθηση Hypothesis Testing

Reminders: linear functions

Models for Probabilistic Programs with an Adversary

Υλοποίηση Δικτυακών Υποδομών και Υπηρεσιών: OSPF Cost

Parametrized Surfaces


Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The challenges of non-stable predicates

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Matrices and Determinants

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Numerical Analysis FMN011

Math 6 SL Probability Distributions Practice Test Mark Scheme

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

New bounds for spherical two-distance sets and equiangular lines

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Concrete Mathematics Exercises from 30 September 2016

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Solutions to Exercise Sheet 5

( y) Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Congruence Classes of Invertible Matrices of Order 3 over F 2

EE512: Error Control Coding

5. Choice under Uncertainty

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Problem Set 3: Solutions

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Aluminum Electrolytic Capacitors (Large Can Type)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

TMA4115 Matematikk 3

Areas and Lengths in Polar Coordinates

EE101: Resonance in RLC circuits

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Lecture 34 Bootstrap confidence intervals

Partial Differential Equations in Biology The boundary element method. March 26, 2013

4.6 Autoregressive Moving Average Model ARMA(1,1)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

ΑΛΓΟΡΙΘΜΙΚΑ ΘΕΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ

Internet protocol stack Encapsulation Connection oriented VS connectionless services Circuit Switching Packet Switching Store-and-forward switches

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Exercises to Statistics of Material Fatigue No. 5

the total number of electrons passing through the lamp.

C.S. 430 Assignment 6, Sample Solutions

Modbus basic setup notes for IO-Link AL1xxx Master Block

Every set of first-order formulas is equivalent to an independent set

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

10.7 Performance of Second-Order System (Unit Step Response)

Example Sheet 3 Solutions

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

Architecture οf Integrated Ιnformation Systems (ARIS)

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

w o = R 1 p. (1) R = p =. = 1

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Monolithic Crystal Filters (M.C.F.)

Aluminum Electrolytic Capacitors

The circle theorem and related theorems for Gauss-type quadrature rules

derivation of the Laplacian from rectangular to spherical coordinates

Theorem 8 Let φ be the most powerful size α test of H

Transcript:

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Network constraints Effective bandwidths 1

Network control for various service types ATM and IP supports statistical multiplexing Network control different for guaranteed and elastic services Guaranteed services User-network contract Call Admission Control - CAC Open loop control Elastic services (ABR): no CAC, except for MCR (Minimum Cell Rate) Closed loop control Network constraints & effective bandwidths - 3 Time scales of network control Traffic & Congestion Control Functions Selective cell discard, frame discard, priority control and scheduling, Usage Parameter Control (UPC), traffic shaping Response time Cell time Feedback controls Round-trip propogation time Routing, Call Admission Control (CAC) Network management control Connection interarrival time order of minutes Pricing months, years Network constraints & effective bandwidths - 4 2

Routing and CAC Traffic Contract destination source X Routing: find path from source to destination that fulfils user requirements (bandwidth, QoS) Call Admission Control (CAC): performed at every switch, determines whether there are enough resources to accept a call Network constraints & effective bandwidths - 5 Call Admission Control (CAC) k traffic classes (actual or contract types) n 1 class i contributes n sources k n i C: capacity B: buffer QoS constraint (contract obligation): CLP < p (eg p=10-8 ) What ( n,, ) do not violate QoS constraints? 1 K n k Approaches to CAC: Non-dynamic: based only on traffic contract parameters Dynamic: includes on-line measurements and contract parameters Network constraints & effective bandwidths - 6 3

Acceptance region n2 P(overflow)= p acceptable P(overflow) p P(overflow) > p non-acceptable CAC based on PCR n1 Network constraints & effective bandwidths - 7 Simplifying the problem of CAC Use Effective Bandwidths: acceptance condition: Can we define α1, α, * K k C such that α i depends on source traffic statistics, as well as traffic mix, capacity, buffer, QoS C* depends on traffic mix, capacity, buffer, and QoS Calculation of α i can be done off-line The true acceptance region is well approximated YES! n α + K+ n α C 1 1 k k * Network constraints & effective bandwidths - 8 4

Statistical multiplexing gain Important consideration: Statistical multiplexing gain: increased utilization when allowing some loss rather than zero loss SMG N stat = Ndet Why: 99999% is much cheaper than 100% Enabled by burstiness of traffic sources and large capacity of transmission links Network constraints & effective bandwidths - 9 Statistical multiplexing gain (cont) Example of statistical multiplexing gain C=155 Mbps, CLP 10-7, Star Wars traffic mean=026 Mbps, peak=346 Mbps Peak rate allocation achieves utilization 75%! Network constraints & effective bandwidths - 10 5

Loading an elevator with boxes w i, v i What is the relative effective usage of a box? Equivalently, in what sense = k x or α 1 =k x α 2 W max, V max w 1, v 1 w 2, v 2 Key notion: substitution Network constraints & effective bandwidths - 11 Loading an elevator (cont) What is the relative effective usage of a box? Depends on which constraint is active: max weight or max volume Determined by operating point If max weight is active, then effective usage equals box s weight wi = W 2w 1w max i vi < V max W max, V max i Effective bandwidth = weight Network constraints & effective bandwidths - 12 6

Loading an elevator (cont) If max volume is active, then effective usage equals box s volume vi = V max wi < W max i i 2v 1v Effective bandwidth = volume W max, V max Network constraints & effective bandwidths - 13 Loading an elevator (cont) What is the relative effective usage of a box? Depends on which constraint is active: max weight or max volume Determined by operating point If max weight is active, then effective usage equals box s weight wi = W 2w max 2w 1w 1w i vi < V max W max, V max i Effective bandwidth = weight = volume Network constraints & effective bandwidths - 14 7

Example: resource usage Users SLAs (a) (b) Router Access Link Wide Area Network (c) All user connections have the same duration and volume Some QoS is supported at the access link What is the resource usage of each user? Network constraints & effective bandwidths - 15 Example: resource usage (cont) Users SLAs (a) (b) Router Access Link Wide Area Network (c) All user connections have the same duration and volume Some QoS is supported at the access link What is the resource usage of each user? Answer: depends! small capacity: a < b,c medium capacity: a=b < c large capacity: a=b=c Network constraints & effective bandwidths - 16 8

Effective bandwidth of traffic streams Broadband traffic has burstiness in different time scales Effective bandwidth (resource usage) depends on time scales which are important for buffer overflow How can we identify which time scales are important for overflow? Dependence on context 8 sec Star Wars MPEG-1 trace Network constraints & effective bandwidths - 17 An effective bandwidth formula Effective bandwidth of a source of type j X j [0,t]: load produced by source of type j in window t (s,t) = operating point of the link j [, ] [ ] sx t α j ( st, ) = 1 0 log Ee st depends on the link param (C,B), traffic mix, and CLP (= e -γ ) t: time parameter, related to time for buffer overflow s: space parameter, depends on link s multiplexing capability, exponential tilt parameter of distributions s = γ B, st = γ C where γ = log CLP Network constraints & effective bandwidths - 18 9

Mathematical justification N 1 =Nn 1 { B=Nb N { J =Nn J C=Nc Many sources asymptotic lim 1 J sx[,] t log P( overflow) = supinf nj log Ee 0 s( b+ ct) I N j= = 1 N t s If P(overflow) = e -γ then we must have ( ) P( overflow)= e NI + o N J j= 1 1 γ N jα j(,) s t C+ ( B ) t s = C eff where [ ] sx t α j st = 1 0 (,) logee j [, ] st Network constraints & effective bandwidths - 19 Operating point parameters s,t buffer B rate t 2 t 1 t During the overflow, the inputs have a different distribution with higher means: exponentially tilted distribution with parameter s (= distribution of most probable behaviour) Overflow period has duration t => we care for contribution of input sources in window t time scale of relevant burstiness = t 1, not t 2 time Network constraints & effective bandwidths - 20 10

Acceptance region for two source types N α (,) s t + N α (,) s t = C * 1 1 2 2 N 2 type 2 P(overflow) = e γ (Maximum overflow probability) effective capacity: C * = C + 1 B γ t s tangent (s,t) type 1 N 1 Network constraints & effective bandwidths - 21 Effective bandwidth for MPEG-1 traffic Star Wars MPEG-1 trace Network constraints & effective bandwidths - 22 11

Effective bandwidth for Ethernet traffic Bellcore Ethernet trace Network constraints & effective bandwidths - 23 Multiple QoS constraints Acceptance region described by multiple constraints Example: Priority queuing two classes: J1 > J2 for J 1 : Pdelay ( > B/ C) e γ 1 1 for J U J : P( buffer overflow) e γ 2 1 2 Two constraints: nα ( s, t ) K 1 1 1 1 1 nα ( s, t ) + n α ( s, t ) K 1 1 2 2 2 2 2 2 2 n 2 n 1 Network constraints & effective bandwidths - 24 12

Decoupling bandwidths Is the effective bandwidth of a stream constant in a network? ( s3, t3) X t ( s X t 1, t1) X t α( st,) ( s2, t2) α (,) st α (,) st Effective bandwidth of a traffic stream defined for single link In general α(,) st α (,) st Under realistic multiplexing conditions (conditions for decoupling ) α(,) st = α (,) st Economic arguments suggest that (s,t) does not vary much s = γ, st = γ MC per unit c t = B C MC per unit b Network constraints & effective bandwidths - 25 The msa and lb tools The tools work on files with measurements of load in consecutive fixed length intervals The input has the following format: # epoch_in_msecs = 40 # bits_per_info_unit = 424 65 4 5 8 Network constraints & effective bandwidths - 26 13

Traffic analysis tools B: buffer C: capacity INPUT Buffer, Capacity traffic mix (percentage of each traffic type) traffic traces OUTPUT P(overflow) s,t parameters effective bandwidth Traffic trace: eg, 1 epoch=10 msec Epoch Cell or packet count 0 111 1 24 2 20 Network constraints & effective bandwidths - 27 The msa tool Functions: Trace file, link operating point => resource usage Link resources (capacity, buffer), traffic mix, load => QoS Link resources (capacity, buffer), traffic mix, QoS => load Capacity (buffer), traffic mix, load, QoS => buffer (capacity) With the use of scripts: QoS as a function of buffer size Load as a function of buffer size Acceptance region for two traffic types Network constraints & effective bandwidths - 28 14

Some management questions Users SLAs Network provider Router Access link Wide Area Network What combinations of user types can the provider accept? What is the effect of increasing the link resources or of traffic shaping on the multiplexing capability of the link? What traffic parameters should a user choose? Network constraints & effective bandwidths - 29 Resource dimensioning and traffic shaping Internet WAN p=23 Mbps, m=64 Kbps C=34 Mbps P(overflow)=10-6 Effects of traffic shaping depend on buffer size Network constraints & effective bandwidths - 30 15

Acceptance region C=155 Mbps, B=750 Kbytes P(overflow)=10-6 Internet WAN traffic: Type 1: m=1 Mbps, p=102 Mbps Type 2: m=03 Mbps, p=89 Mbps Acceptance region Network constraints & effective bandwidths - 31 Token bucket parameter selection Token (or leaky) bucket is a widely used traffic descriptor: ATM (GCRA) Internet (Integrated & Differentiated Services, MPLS) Policy-based management Token or leaky bucket (r,b): r is token rate, b is bucket size b For every conforming packet, an amount of tokens equal to the size of the packet is removed tokens generated at rate r Network constraints & effective bandwidths - 32 16

Indifference curve Traffic shaping affects the lower right portion of the indifference curve Network constraints & effective bandwidths - 33 Web-based interface for traffic engineering tools Interface: http://traceucnetuocgr/interface/src/indexhtml Tools & manuals: http://wwwicsforthgr/netgroup/msa/ Network constraints & effective bandwidths - 34 17

Conclusions Acceptance region defines the technology set of a network for guaranteed services Effective bandwidths provide a mathematically rigorous approximation of the acceptance region can be approximated by a set of linear constraints The effective bandwidth of a stream is a function of the operating point of the link defined by network resources and consistency of traffic mix The effective bandwidth is a good proxy for the relative resource usage among traffic streams Network constraints & effective bandwidths - 35 Experimental results Effective bandwidth for real traffic CLP estimation: theory vs simulation Achievable utilization: theory vs simulation Parameters s,t: theory vs simulation Parameter s,t for real traffic Parameters s,t for different traffic mix Network constraints & effective bandwidths - 36 18

Achievable utilization P(overflow)=10-7 Star Wars traffic C=34 Mbps C=155 Mbps Network constraints & effective bandwidths - 37 Parameters s,t: theory vs simulation Parameter s C=155 Mbps, Util=093 Star Wars traffic Parameter t Network constraints & effective bandwidths - 38 19

Parameter s for MPEG-1 traffic Star Wars Various contents, C=155 Mbps P(overflow)=10-7 Network constraints & effective bandwidths - 39 Parameter st for MPEG-1 traffic Star Wars Various content, C=155 Mbps P(overflow)=10-7 Network constraints & effective bandwidths - 40 20

Parameter t for MPEG-1 traffic Star Wars Various content, C=155 Mbps P(overflow)=10-7 Network constraints & effective bandwidths - 41 21