Ordinalzahl-Registermaschinen und Modelle der Mengenlehre

Σχετικά έγγραφα
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

2 Composition. Invertible Mappings

Example Sheet 3 Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Uniform Convergence of Fourier Series Michael Taylor

Statistical Inference I Locally most powerful tests

Every set of first-order formulas is equivalent to an independent set

Chap. 6 Pushdown Automata

Bounding Nonsplitting Enumeration Degrees

Finite Field Problems: Solutions

EE512: Error Control Coding

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fractional Colorings and Zykov Products of graphs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Homomorphism in Intuitionistic Fuzzy Automata

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Chapter 3: Ordinal Numbers

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Commutative Monoids in Intuitionistic Fuzzy Sets

The challenges of non-stable predicates

Section 8.3 Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ST5224: Advanced Statistical Theory II

1. Introduction and Preliminaries.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions to Exercise Sheet 5

4.6 Autoregressive Moving Average Model ARMA(1,1)

C.S. 430 Assignment 6, Sample Solutions

The Simply Typed Lambda Calculus

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

Space-Time Symmetries

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Lambda Model Characterizing Computational Behaviours of Terms

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

Formal Semantics. 1 Type Logic

Problem Set 3: Solutions

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

5. Choice under Uncertainty

Mellin transforms and asymptotics: Harmonic sums

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2. Soundness and completeness of propositional logic

Areas and Lengths in Polar Coordinates

Hauptseminar Mathematische Logik Pcf Theorie (S2A2) Das Galvin-Hajnal Theorem

Matrices and Determinants

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

New bounds for spherical two-distance sets and equiangular lines

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solution Series 9. i=1 x i and i=1 x i.

Local Approximation with Kernels

Math221: HW# 1 solutions

Reminders: linear functions

Second Order RLC Filters

Mean-Variance Analysis

THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

From the finite to the transfinite: Λµ-terms and streams

Oscillatory integrals

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

F19MC2 Solutions 9 Complex Analysis

Wenn ihr nicht werdet wie die Kinder...

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝ ΠΙΝΑΚΑΣ ΟΣ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ ΠΙΝΑΚΑ ΠΙΝΑΚΑ ΤΟΠΟΘΕΤΗΣΗΣ

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 34 Bootstrap confidence intervals

( y) Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 21: Properties and robustness of LSE

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order Partial Differential Equations

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Chapter 2. Ordinals, well-founded relations.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

An Inventory of Continuous Distributions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ

Transcript:

Ordinalzahl-Registermaschinen und Modelle der Mengenlehre b y Peter Koepke Universität Bonn Abstract: Wir verallgemeinern gewöhnliche Registermaschinen auf natürlichen Zahlen zu Maschinen, deren Register beliebige Ordinalzahlen enthalten können. Eine Ordinalzahl-Registermaschine kann ein rekursives beschränktes Wahrheitsprädikat auf den Ordinalzahlen berechnen. Die Klasse der Mengen von Ordinalzahlen, die sich aus dem Wahrheitsprädikat ablesen lassen, erfüllt eine natürliche Theorie SO. SO ist die Theorie der Ordinalzahlmengen in einem Modell der Mengenlehre. Daraus folgt eine neuartige Charakterisierung der konstruktiblen Mengen: eine Menge von Ordinalzahlen ist Ordinalzahlberechenbar genau dann, wenn sie Element des Gödelschen Universums L ist. 1

a) the zero instruction Z( n) changes the contents of R n to 0, leaving all other registers unaltered; b) the successor instruction S( n) increases the ordinal contained in R n, leaving all other registers unaltered; c) the transfer instruction T( m, n) replaces the contents of R n by the ordinal r m contained in R m, leaving all other registers unaltered; d) the jump instruction J( m, n, q) is carried out within the program P as follows: the contents r m and r n of the registers R m and R n are compared, but all the registers are left unaltered; then, if r m = r n, the ORM proceeds to the qth instruction of P; if r m r n, the ORM proceeds to the next instruction in P. 2

Let P = I 0, I 1,, I s 1 be a program. A triple I: θ ω, R: θ ( ω Ord) is an (ordinal register) computation by P if the following hold: a)... b)... c) If t < θ and I( t) state( P) then t + 1 < θ; the next configuration is determined by the instruction I I( t) : i. if I I( t) is the zero instruction Z( n) then let I( t + 1 ) = I( t) + 1 and define R( t + 1 ) : ω Ord by R k ( t + 1 ) = { 0, if k = n R k ( t), if k n ii.... iii.... d) If t < θ is a limit ordinal, the machine constellation at t is determined by taking inferior limits: k ω R k ( t) = liminf r t I( t) = liminf r t R k ( r) ; I( r). 3

O rdi nal addi ti on, c omputi ng gamma = al pha + be ta: 0 alpha : =0 1 beta : =0 2 gamma: =0 3 i f al pha=al pha the n go to 7 4 alpha : =alpha +1 5 gamma: =gamma+1 6 go to 3 7 i f beta=beta then STOP 8 beta : =beta +1 9 gamma: =gamma+1 1 0 go to 7 4

Goedel pai ri ng, computi ng gamma = G( alpha, beta) : 0 alpha : =0 1 beta : =0 2 eta: =0 3 f lag: =0 3 gamma: =0 4 i f alpha=alpha and beta=beta then STOP 5 i f alpha =eta and and beta =eta and f lag=0 then alpha =0, f lag: =1, go to 4 f i 6 i f alpha =eta and and beta =eta and f lag=1 then eta: =e ta+1, al pha =eta, be ta =0, gamma: =gamma+1, go to 4 f i 7 i f beta <eta and f lag=0 then beta : =beta +1, gamma: =gamma+1, go to 4 f i 8 i f alpha <eta and f lag=1 then alpha : =alpha +1, gamma: =gamma+1, go to 4 f i 5

Theorem 1. Let H be an ordinal register computab le function. Define F: Ord 2 recursively: { 1 iff ν < α H( α, ν, F( ν) ) = 1 F( α) = 0 else Then F is ordinal register computable. 6

value: =2 %% s et value to undefi ned Mai nloop: nu: =las t( s tack) alpha: =llas t( stack) i f nu = alpha then 1 : do remove_las t_element_of( s tack) value: =0 %% s et value equal to 0 goto S ubloop end_do els e 2: do s tack: =s tack + 1 %% pus h the ordi nal 0 onto the s tac k goto Mai nloop end_do SubLoop: nu: =las t( s tack) alpha: =llas t( stack) i f alpha = UNDEFI NED then STOP els e do i f H( alpha, nu, value) =1 then 3: do remove_last_element_of ( s tack) value: =1 goto S ubloop end_ do else 4: do stack: =s tack + 2* ( 3* * y) %% pus h y+1 value: =2 %% s et value to undef i ned goto Mai nloop end_ do end_do 7

A bounded truth predicate: T( α) iff α is a bounded L T -sentence and ( α, <, G, T α) α. χ T ( α) = { 1 iff ν < α H( α, ν, χt ( ν) ) = 1 0 else where H( α, ν, χ) = 1 iff α is an L T -sentence and ( ξ, ζ < α ( α = c ξ c ζ ξ = ζ) or ξ, ζ < α ( α = c ξ < c ζ ξ < ζ) or ξ, ζ, η < α ( α = G ( c ξ, c ζ, c η ) η = G( ξ, ζ) ) or ξ < α ( α = R ( c ξ ) ν = ξ χ = 1 ) or ϕ < α ( α = ϕ ν = ϕ χ = 0) or ϕ, ψ < α ( α = ( ϕ ψ) ( ν = ϕ ν = ψ) χ = 1 ) or n < ω ξ < α ϕ < α ( α = v n < c ξ ϕ ζ < ξ ν = ϕ c ζ v n χ = 1 ) ). 8

1. Well-ordering axiom: α, β, γ( α < α ( α < β β < γ α < γ) ( α < β α = β β < α) ) a( α( α a) α( α a β( β < α β a) ) ) ; 2. Axiom of infinity ( existence of a limit ordinal) : α( β( β < α) β( β < α γ( β < γ γ < α) ) ) ; 3. Axiom of extensionality: a, b( α( α a α b) a = b) ; 4. Initial segment axiom: α a β( β < α β a) ; 5. Boundedness axiom: a α β( β a β < α) ; 6. Pairing axiom ( Gödel Pairing Function) : α, β, γ ( g( β, γ) α δ, ɛ( ( δ, ɛ) < ( β, γ) g( δ, ɛ) < α) ). Here ( α, β) < ( γ, δ) stands for η, θ( η = max ( α, β) θ = max ( γ, δ) ( η < θ ( η = θ α < γ) ( η = θ α = γ β < δ) ) ), where γ = max( α, β) abbreviates ( α > β γ = α) ( α β γ = β) ; 7. g is onto: α β, γ ( α = g( β, γ) ) ; 8. Axiom schema of separation: For all L SO -formulae φ( α, P 1,, P n ) postulate: P 1,, P n a b α ( α b α a φ( α, P 1,, P n ) ) ; 9. Axiom schema of replacement: For all L SO -formulae φ( α, β, P 1,, P n ) postulate: P 1,, P n ( ξ, ζ 1, ζ 2 ( φ( ξ, ζ 1, P 1,, P n ) φ( ξ, ζ 2, P 1,, P n ) ζ 1 = ζ 2 ) a b ζ ( ζ b ξ a φ( ξ, ζ, P 1,, P n ) ) ) ; 1 0. Powerset axiom: a b( z( α( α z) α( α z α a) = 1 ξ β( β z g( β, ξ) b) ) ). 9

Theorem 2. A set x of ordinals is ordinal computable if and only if it is an element of the constructible universe L. Proof. Let x Ord be ordinal computable by the program P from the ordinals δ 1,, δ n 1, so that for every α Ord: P: ( α, δ 1,, δ n 1, 0, 0, ) χ x ( α). By the simple nature of the computation procedure the same computation can be carried out inside the inner model L, so that for every α Ord: Hence χ x L and x L. ( L, ) P: ( α, δ 1,, δ n 1, 0, 0, ) χ x ( α). Conversely consider x L. Since ( Ord, S, <, =,, G) is a model of the theory SO there is an inner model M of set theory such that S = { z Ord z M }. Since L is the -smallest inner model, L M. Hence x M and x S. Let x = T( µ, α). By the computability of the truth predicate, x is ordinal register computable from the parameters µ and α. 1 0