Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Matrices and Determinants

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

New bounds for spherical two-distance sets and equiangular lines

4.6 Autoregressive Moving Average Model ARMA(1,1)

Concrete Mathematics Exercises from 30 September 2016

Homework 8 Model Solution Section

Other Test Constructions: Likelihood Ratio & Bayes Tests

Tridiagonal matrices. Gérard MEURANT. October, 2008

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

Homework 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Trigonometric Formula Sheet

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Empirical best prediction under area-level Poisson mixed models

ST5224: Advanced Statistical Theory II

Srednicki Chapter 55

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

The ε-pseudospectrum of a Matrix

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Space-Time Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

CRASH COURSE IN PRECALCULUS

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

( y) Partial Differential Equations

On the Galois Group of Linear Difference-Differential Equations

The Simply Typed Lambda Calculus

Parametrized Surfaces

CE 530 Molecular Simulation

Every set of first-order formulas is equivalent to an independent set

Approximation of distance between locations on earth given by latitude and longitude

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

w o = R 1 p. (1) R = p =. = 1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Areas and Lengths in Polar Coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Solutions to Exercise Sheet 5

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Orbital angular momentum and the spherical harmonics

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Finite difference method for 2-D heat equation

Uniform Convergence of Fourier Series Michael Taylor

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 13 - Root Space Decomposition II

( ) 2 and compare to M.

Two generalisations of the binomial theorem

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Second Order RLC Filters

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem Set 3: Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

3+1 Splitting of the Generalized Harmonic Equations

Quadratic Expressions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Math221: HW# 1 solutions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6. MAXIMUM LIKELIHOOD ESTIMATION

Reminders: linear functions

Numerical Analysis FMN011

Section 9.2 Polar Equations and Graphs

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

6.3 Forecasting ARMA processes

The Pohozaev identity for the fractional Laplacian

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Product Identities for Theta Functions

Local Approximation with Kernels

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion

Section 7.6 Double and Half Angle Formulas

Lecture 26: Circular domains

Transcript:

Finite size Emptiness Formation Probability for the XXZ spin chain at = 1/2 Luigi Cantini luigi.cantini@u-cergy.fr LPTM, Université de Cergy-Pontoise (France) CFT AND INTEGRABLE MODELS Bologna, September 12-15, 2011 Based on arxiv:1109.???? Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 1 / 21

XXZ spin chain at = 1 2 Hamiltonian of the XXZ spin chain H N ( ) = 1 2 N i=1 σxσ i x i+1 + σyσ i y i+1 + σzσ i z i+1 = q + q 1 2 [Razumov, Stroganov 00] = 1 2 g.s. energy E = 3N 4 N odd (N = 2n + 1) Periodic boundary conditions: σ α N+1 = σα 1. Two-fold degenerate ground state Ψ ± 2n+1, rational-valued components. N even (N = 2n) Twisted periodic boundary conditions: σ z N+1 = σz 1, while σ ± N+1 = e±i 2π 3 σ ± N+1, where σ± = σ x + ±iσ y. A single ground state Ψ e 2n, complex valued components. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 2 / 21

Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i + 1 2 µ = ±, e Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 3 / 21

Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i + 1 2 µ = ±, e we define also a Pseudo EFP ( E ẽ2n(k) Ψ e 2n, ) k i=1 p+ i Ψ e 2n = (Ψ e 2n, Ψe 2n ). Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 3 / 21

Emptiness Formation Probability (EFP) The definition of the EFP ( (Ψ µ E µ N (k) = N ), ) k i=1 p+ i Ψ µ N (Ψ µ N, Ψµ N ), p + i = σz i + 1 2 µ = ±, e we define also a Pseudo EFP ( E ẽ2n(k) Ψ e 2n, ) k i=1 p+ i Ψ e 2n = (Ψ e 2n, Ψe 2n ). They have an analytical, factorized form! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 3 / 21

Conjectures [Razumov, Stroganov 00] E 2n+1 (k 1) E 2n+1 (k) = E + 2n+1 (k 1) E + 2n+1 (k) = (2k 2)!(2k 1)!(2n + k)!(n k)! (k 1)!(3k 2)!(2n k + 1)!(n + k 1)! (2k 2)!(2k 1)!(2n + k)!(n k + 1)! (k 1)!(3k 2)!(2n k + 1)!(n + k)! E e 2n(k 1) E e 2n (k) = (2k 2)!(2k 1)!(2n + k 1)!(n k)! (k 1)!(3k 2)!(2n k)!(n + k 1)! E ẽ2n(k 1) = E ẽ2n (k) (2k 2)!(2k 1)!(2n + k 1)!(n k)! q (k 1)!(3k 3)!(3k 1)(2n k)!(n + k 1)! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 4 / 21

Some partial results Asymptotics N [Maillet et al. 02] ( ) 3k 2 3 k lim E Γ(j 1/3)Γ(j + 1/3) N(k) = N 2 Γ(j 1/2)Γ(j + 1/2). j=1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 5 / 21

Some partial results Asymptotics N [Maillet et al. 02] ( ) 3k 2 3 k lim E Γ(j 1/3)Γ(j + 1/3) N(k) = N 2 Γ(j 1/2)Γ(j + 1/2). j=1 Norm [Di Francesco et al. 06] E ± 2n+1 (n) = A HT (2n + 1) 1 = n j=1 (2j 1)! 2 (2j)! 2 (j 1)!j!(3j 1)!(3j)! E ẽ2n(n) = ( q) n A 2 n = ( q) n CSSC(2n) 1 where: A n = # of n n Alternating Sign Matrices A HT (2n + 1) = # of (2n + 1) (2n + 1) Half-Turn Symmetric Alternating Sign Matrices Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 5 / 21

CSSC(2n, k 1) E ẽ2n(k 1) CSSC(2n, k 1) E ẽ2n (k) = q CSSC(2n, k) CSSC(2n, k 1) = # of lozange tilings of a regular hexagon of side length 2n, which are invariant under a rotation of π/3 and have a star shaped frozen region of length k, (CSSC(2n) := CSSC(2n, 0) = CSSC(2n, 1)) 2n 3k Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 6 / 21

Integrability R-matrix with Twist matrix R i,j (z) = a(z) = a(z) 0 0 0 0 b(z) c 1 (z) 0 0 c 2 (z) b(z) 0 0 0 0 a(z) qz q 1 q q 1 z, b(x) = z 1 q q 1 z, c 1 (z) = (q q 1 )z q q 1 z, c 2(z) = (q q 1 ) q q 1 z. Ω(φ) = ( e iφ 0 0 e iφ ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 7 / 21

R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 8 / 21

R-Ω commutation Yang-Baxter equation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 8 / 21

R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Yang-Baxter equation R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Transfer matrix T N (y z {1,...,N}, φ) = tr 0 [R 0,1 (y/z 1 )R 0,2 (y/z 2 )... R 0,N (y/z N )Ω 0 (φ)] Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 8 / 21

R-Ω commutation [R i,j (x), Ω i (φ) Ω j (φ)] = 0 Yang-Baxter equation R i,j (z i /z j )R i,k (z i /z k )R j,k (z j /z k ) = R j,k (z j /z k )R i,k (z i /z k )R i,j (z i /z j ) Transfer matrix T N (y z {1,...,N}, φ) = tr 0 [R 0,1 (y/z 1 )R 0,2 (y/z 2 )... R 0,N (y/z N )Ω 0 (φ)] Crucial idea! Consider the ground state with spectral parameters Ψ µ N Ψµ N (z), T N(y z {1,...,N}, φ)ψ µ N (z) = 1Ψµ N (z) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 8 / 21

quantum Knizhnik Zamolodchikov (qkz) equations [Razumov, Stroganov & Zinn-Justin 07] The ground state satisfies a specialization q = e 2πi/3 of the U q (sl 2 ) qkz equations Ř i,i+1 (z i+1 /z i )Ψ µ N (..., z i, z i+1,... ) = Ψ µ N (..., z i+1, z i,... ) With σψ µ N (z 1, z 2,..., z N 1, z N ) = DΨ µ N (z 2,..., z N 1, z N, sz 1 ). σ(v 1 v 2 v N 1 v N ) = v 2 v N 1 v N v 1 Ř i,i+1 (z) = P i,i+1 R i,i+1 (z) P i,j (e µ i e ν j ) = e ν i e µ j, s = q 6, D = q 3N q 3(sz N +1)/2. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 9 / 21

Inhomogenous EFP Using the solution of the U q (sl 2 ) qkz equations at level 1. we define an inhomogenous version of the EFP E µ N (k; y {1,...,2k}; z {1,...,N k} ) (P N,k (z)(ψ µ N (q 6 y {k+1,...,2k} ;z)), k i=1 p+ i Ψ µ N (y {1,...,k};z)) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) with P N,k (z) = N i=k+1 (z ip + i + p i ). and of the Pseudo EFP E ẽn (k; y {1,...,2k}; z {1,...,N k} ) ( Ψ µ N (k;q 6 y 1 {k+1,...,2k} ;z 1 ), k ) i=1 p+ i Ψ µ N (k;y {1,...,k};z) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 10 / 21

Inhomogenous EFP Using the solution of the U q (sl 2 ) qkz equations at level 1. we define an inhomogenous version of the EFP E µ N (k; y {1,...,2k}; z {1,...,N k} ) (P N,k (z)(ψ µ N (q 6 y {k+1,...,2k} ;z)), k i=1 p+ i Ψ µ N (y {1,...,k};z)) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) with P N,k (z) = N i=k+1 (z ip + i + p i ). and of the Pseudo EFP E ẽn (k; y {1,...,2k}; z {1,...,N k} ) ( Ψ µ N (k;q 6 y 1 {k+1,...,2k} ;z 1 ), k ) i=1 p+ i Ψ µ N (k;y {1,...,k};z) 1 i<j k (qy i q 1 y j )(qy i+k q 1 y j+k ) We shall compute these and then take the specialization z i = y j = 1. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 10 / 21

Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 11 / 21

Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 11 / 21

Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) 3 Recursion relation for z j = q ±2 z i z i 2k l=1 qy l q 1 z i q q 1 E µ N (k; y; z) z j =q 2 z i E µ N 2 (k; y; z \ {z i, z j }) 1 l N k l i,j (qz l q 1 z i )(q 3 z i q 1 z l ) (q q 1 ) 2 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 11 / 21

Properties of E µ N (k; y; z) and of E ẽ2n (k; y; z) 1 Symmetries under z i z j, y i y j. 2 Specialization z i = 0 or z i lim z 2n 2n+1 E 2n+1 (k; y; z) E z 2n+1 2n(k; e y; z \ z 2n+1 ) E e 2n+2(k; y; z) z2n+2 =0 E + 2n+1 (k; y; z \ z 2n+2) 3 Recursion relation for z j = q ±2 z i 2k l=1 qy l q 1 z i q q 1 E ẽ2n(k; y; z) zj =q 2 z i E ẽ2n 2 (k; y; z \ {z i, z j }) 1 l 2n k l i,j (qz l q 1 z i )(q 3 z i q 1 z l ) (q q 1 ) 2 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 12 / 21

Properties of E µ N (k; y; z) and of E ẽn (k; y; z) 4 Factorized cases E e/ẽ (qz i q 1 z j )(qz j q 1 z i ) 2k (k; y; z) = (q q 1 ) 2 1 i<j k E + 2k+1 (k + 1; y; z) = E 2k+1 (k; y; z) = 1 i<j k 1 i<j k+1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2 k i=1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2. z 2 i Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 13 / 21

Properties of E µ N (k; y; z) and of E ẽn (k; y; z) 4 Factorized cases E e/ẽ (qz i q 1 z j )(qz j q 1 z i ) 2k (k; y; z) = (q q 1 ) 2 1 i<j k E + 2k+1 (k + 1; y; z) = E 2k+1 (k; y; z) = 1 i<j k 1 i<j k+1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2 k i=1 (qz i q 1 z j )(qz j q 1 z i ) (q q 1 ) 2. z 2 i These properties completely determine E µ N (k; y; z) and E ẽ2n(k; y; z)! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 13 / 21

Combinatorial point q = e 2πi/3 Let ρ, σ be strictly increasing infinite sequences of nonnegative integers. Introduce the following matrices z ρ 1 1 z ρ 2 1... z ρr+s 1 0 0... 0 z ρ 1 2 z ρ 2 2... z ρr+s 2 0 0... 0............ z ρ 1 r z ρ 2 r... zr ρr+s 0 0... 0 0 0... 0 z σ 1 1 z σ 2 1... z σr+s 1 M ( ρ, σ) (r, s; y; z) = 0 0... 0 z σ 1 2 z σ 2 2... z σr+s 2............ 0 0... 0 z σ 1 r z σ 2 r... zr σr+s y ρ 1 1 y ρ 2 1... y ρr+s 1 y σ 1 1 y σ 2 1... y σr+s 1............ y ρ 1 2s y ρ 2 2s... y ρr+s 2s y σ 1 2s y σ 2 2s... y σr+s 2s Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 14 / 21

Combinatorial point q = e 2πi/3 Define the following polynomials S ( ρ, σ) (r, s; y; z) = det M ( ρ, σ) (r,s;y;z) 1 i<j r (z i z j ) 2 1 i<j 2s (y i y j ). 1 i r (z i y j ) 1 j 2s Using the Laplace expansion along the first r + s columns we can write S ( ρ, σ) (r, s; y; z) as a bilinear in Schur polynomials I {1,...2s} I =s S ( ρ, σ) (r, s; y; z) = ( 1) ɛ(i ) i<j I (y i y j ) i<j I c (y i y j ) 1 i<j 2s (y i y j ) S ρ(r+s) (z, y I )S σ(r+s) (z, y I c), Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 15 / 21

Combinatorial point q = e 2πi/3 Now let us introduce the following family of integer sequences λ i (r) = 3i 3 + r, 2 λ(0) = {0, 1, 3, 4, 6, 7,... } λ(1) = {0, 2, 3, 5, 6, 8,... } λ(2) = {1, 2, 4, 5, 7, 8,... } We claim that E 2n+1 (k; y; z) S( λ(0), λ(1)) (2n + 1 k, k; y; z) E + 2n+1 (k; y; z) S( λ(1), λ(2)) (2n + 1 k, k; y; z) E2n(k; e y; z) S ( λ(0), λ(1)) (2n k, k; y; z) E ẽ2n(k; y; z) S ( λ(0), λ(2)) (2n k, k; y; z) Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 16 / 21

t specialization Setting and z = {z 1 = t 0, z 2 = t 1,..., z N k = t N k 1 } y = {y 1 = t N k,..., y 2k = t N+k 1 } the functions E µ N (k; y; z) and E ẽ2n(k; y; z), as rational functions of t, have simple factors. Using the usual t-numbers and t-factorial [i] t = ti 1 t 1 and [n] t! = n [i] t. i=1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 17 / 21

t specialization: result E2n(k e 1; t) E2n e (k; t) [2n + k 1] t![n k] t3![2k 1] t3![2k 2] t3! [2n k] t![n + k 1] t 3![k 1] t 3![3k 2] t! E ẽ2n(k 1; t) ( q)e ẽ2n (k; t) [2n + k 1] t![n k] t3![2k 1] t3![2k 2] t3! [2n k] t![n + k 1] t 3![k 1] t 3![3k 3] t![3k 1] t E 2n+1 (k 1; t) E 2n+1 (k; t) [2n + k] t![n k] t 3![2k 1] t 3![2k 2] t 3! [2n k + 1] t![n + k 1] t 3![k 1] t 3![3k 2] t! E + 2n+1 (k 1; t) E + 2n+1 (k; t) [2n + k] t![n k + 1] t3![2k 1] t3![2k 2] t3! [2n k + 1] t![n + k] t 3![k 1] t 3![3k 2] t! ( ) k 1 The coefficients in front are of the form t β [3]t 3 1. t 1 Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 18 / 21

What if q is generic? We have found a multiresidua formula n k {qz i } l=1 E µ 2n ɛ(µ) (k; y; z) dw l w α(µ) 2k j=1 (w l y j ) 2πi 2n k ɛ(µ) i=1 (w l qz i )(w l q 1 z i ) K n k(w) where ɛ(±) = ±1, ɛ(e) = ɛ(ẽ) = 0, α(+) = α(e) = 0, α(ẽ) = 1, α( ) = 2 and K N (w) = (w i w j ) 2 (qw i q 1 w j )(qw j q 1 w i ). 1 i<j N Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 19 / 21

Perspectives Consider other correlation functions. Other boundary conditions (e.g. open chain with diagonal K matrices) Higher spins or also U q (sl N ) spin chain. Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 20 / 21

Thank you! Cantini (LPTM Cergy-Pontoise) EFP at = 1/2 Bologna, 2011 21 / 21