2 Lagrangian and Green functions in d dimensions

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

8.324 Relativistic Quantum Field Theory II

α & β spatial orbitals in

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

8.323 Relativistic Quantum Field Theory I

1 Complete Set of Grassmann States

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Finite Field Problems: Solutions

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Section 8.3 Trigonometric Equations

Math221: HW# 1 solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Statistical Inference I Locally most powerful tests

Constant Elasticity of Substitution in Applied General Equilibrium

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

derivation of the Laplacian from rectangular to spherical coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

LECTURE 4 : ARMA PROCESSES

Areas and Lengths in Polar Coordinates

Journal of Theoretics Vol.4-5

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2 Composition. Invertible Mappings

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

ST5224: Advanced Statistical Theory II

Inverse trigonometric functions & General Solution of Trigonometric Equations

Higher Derivative Gravity Theories

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Concrete Mathematics Exercises from 30 September 2016

Approximation of distance between locations on earth given by latitude and longitude

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Other Test Constructions: Likelihood Ratio & Bayes Tests

C.S. 430 Assignment 6, Sample Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

On a four-dimensional hyperbolic manifold with finite volume

Solution Set #2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

( y) Partial Differential Equations

Homework 3 Solutions

Section 9.2 Polar Equations and Graphs

Matrices and Determinants

Example Sheet 3 Solutions

Phasor Diagram of an RC Circuit V R

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Solutions to Exercise Sheet 5

EE512: Error Control Coding

Section 7.6 Double and Half Angle Formulas

Problem Set 3: Solutions

A Class of Orthohomological Triangles

Lecture 2. Soundness and completeness of propositional logic

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Space-Time Symmetries

F19MC2 Solutions 9 Complex Analysis

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CRASH COURSE IN PRECALCULUS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

4.6 Autoregressive Moving Average Model ARMA(1,1)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

1 String with massive end-points

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Tridiagonal matrices. Gérard MEURANT. October, 2008

Solution Series 9. i=1 x i and i=1 x i.

The Simply Typed Lambda Calculus

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Uniform Convergence of Fourier Series Michael Taylor

Variational Wavefunction for the Helium Atom

The challenges of non-stable predicates

The one-dimensional periodic Schrödinger equation

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Local Approximation with Kernels

Derivation for Input of Factor Graph Representation

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

An Inventory of Continuous Distributions

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Srednicki Chapter 55

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Instruction Execution Times

Transcript:

Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use η =.. Lagrangan, counterterms, and Feynman rules Consder the scalar lagrangan wth cubc nteracton L = φ m φ 6 d gµ 6 φ. where φ s the renormalzed fnte feld, and m and g renormalzed fnte parameters, but not drectly dentfable as physcal parameters. It also depends on d to regularze the loop ampltudes, and a scale µ to make the couplngs dmensonless n d dmensons. The counterterm lagrangan L c.t. = δz φ δm φ 6 d δgµ 6 φ δτφ. contans poles n ɛ and also depends on arbtrarly chosen fnte constants c. Addng the counterterm Lagrangan to the orgnal lagrangan, we obtan the full Lagrangan L = L + L c.t. = + δz φ m + δm φ 6 d g + δgµ 6 φ δτφ. Renormalzed ampltudes are fnte as ɛ, but depend on m and g, as well as µ and c. The choce of c s determned by the renormalzaton scheme. If we choose an on-shell scheme, m and g wll be drectly related to physcal propertes. The c wll nvolve log µ, and the ampltudes wll be ndependent of µ. Alternatvely, n an MS or MS scheme, the c only cancel poles and do not depend on µ. Physcal couplngs are functons of m, g, and µ. Ignorng the tadpole counterterm for now, we can defne φ = + δz / φ, m = + δz m + δm, g = µ 6 d + δz / g + δg.4 and then rewrte L = φ m φ 6 g φ.5 showng that physcal quanttes depend only on two parameters m and g. Ths then can be used to derve renormalzaton group equatons.

The propagator and three-pont vertex are gven by p m + ε, wth counterterms δm + δz p, 6 d gµ.6 δg µ 6 d.7. Two-pont functon We now construct the two-pont Green functon T φφ = p m + Σ δm + δz p p m p m + = + Σ + δm δz p + p m p m = Σ + δm δz p p m p m = p m Σ δm + δz p = Γ p where Σ s the self energy dagram, and Γ p the PI two-pont functon. Expandng.8 Σp = Σm p + Σ m pp m p + Op m p.9 about the physcal mass m p, we fnd that the denomnator of the two-pont Green functon s m p m Σm p δm + δz m p + Σ m p + δzp m p + Op m p. The physcal mass s determned by the solutons of and the two-pont functon at the pole s gven by m p m Σm p δm + δz m p =. T φφ = R p m p where the fnte feld renormalzaton s gven by R = Σ m p + δz.. Now make the one-loop approxmaton, settng m p = m n the terms that are already frst order, to fnd m p = m + Σm + δm δz m.4 R = + Σ m δz.5

. Self energy The one-loop self energy s Σp, m = gµ 6 d d d l π d l m + ε l + p m + ε.6 evdently UV dvergent for d 4 and IR dvergent for m = for d. Σp, m = g µ 6 d I = g µ 6 d = g µ 6 d m d 4 d 4 Γ 4 d 4π d/ Γ 6 d 4π d/ = g µ 6 d p d 4 Γ 6 d d 44π d/ dx m x xp ε d 4 dx x x p m dx x x m d 4 p d 4.7 wth the expected UV poles n d = 4, 6,. In the massless lmt we have d 4 dxx x = Γ d /Γd so Σp, = g µ 6 d p d 4 d 4 Γ 6 d d Γ 4π d/ Γd.8 wth the IR pole at d =. We also obtan p p, m = g µ 6 d m d 6 Γ 6 d 4π d/ = g µ 6 d p d 6 Γ 6 d 4π d/ dx x x x x p m d 6 dx x x x x m p d 6.9 In the massless lmt we have d 6 p p, = g µ 6 d p Γ 6 d 4π d/ Γd Γ d.

.4 Three-pont functon The three-pont functon s Γ p, p = g + δgµ 6 d + gµ 6 d = g + δgµ 6 d + d d l π d l + p m + ε l + p + p m + ε l m + ε gµ 6 d I p, p, p p. Ths has a UV dvergence for d 6. From the loop ntegral notes, we have so I p, p, p = Γ p, p = µ 6 d 6 d Γ 4π d/ g + δg + g µ 6 d Γ 6 d 4π d/ wth the expected UV poles at d = 6, 8,. dβ dβ dβ δ β m β β p β β p + p β β p d/. dβ dβ dβ δ β m β β p β β p + p β β p In the massless m = lmt, and wth two legs onshell p = p =, we have Γ p, p = µ 6 d = µ 6 d = µ 6 d g + δg + g µ 6 d d 6 p + p 4π d/ Γ 6 d dβ β d 6 g + δg + g µ 6 d d 6 p + p 4π d/ Γ 6 d d 4 g + δg + g µ 6 d Γ 6 d d 4 d Γ Γ 4π d/ p + p d 4Γd β d/. dβ β d 6 dβ β d 6 β d 4.4 For l = l + p, the denomnator goes as l l p l p, gvng an IR dvergence n d = 4. In fact, looks lke a double pole, suggestng also a collnear dvergence?.5 Four-pont functon The PI four-pont functon has contrbutons from three topologcally-dstnct box functons Γ 4 = Bs, t + Bt, u + Bu, s.5 4

where where Bs, t = = gµ 6 d gµ 6 d I 4 s, t = 4 d d l π d l m + ε l + p m + ε l + p + p m + ε l + p + p + p m + ε 4 I4 s, t.6 8 d Γ 4π d/ 4 j= δ 4 d j c jβ j j j β dβ j m j β j <j β β j P j 4 d/.7 We see the expected UV dvergence for d 8. Choosng c =, and lettng external legs be on-shell P = P = P 4 = P 4 = m I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s 4 d/.8 In the massless lmt I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j β β t β β 4 s 4 d/.9 If the external legs are on-shell, then n the l lmt, the denomnator goes to l l p l p 4 and thus has an IR dvergence n d = 4..6 Four-pont scatterng ampltude Frst we compute the sum of all one-loop truncated dagrams M = Γ 4 + Γ s Γ s Γ s + Γ t Γ t Γ t + Γ u Γ u Γ u = Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u The one-loop external leg correctons yeld 4 Rm p Γ 4 Γ s m Γ s Γ t Γ t Γ u Γ u =.. 5

LSZ tells us to multply ths by 4 = p m Rm. to obtan the scatterng ampltude M = Rm Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u. 6

Renormalzaton n sx dmensons For convenence, defne F x x p m.. Self energy n sx dmensons Evaluate eq..7 near sx dmensons d = 6 ɛ, expandng n ɛ to wrte Thus usng we obtan Σp, m = Σp, m = In the massless lmt m so g Γ + ɛ 4π ɛ ɛ = g 4π 4πµ ɛ dx m F ɛ m ɛ γ + + log dx m F = dx 4πµ m dx m F ɛ log F + Oɛ. m x xp = m p g m 4π p 4πµ ɛ γ + + log m m dx F log F p Σp, = dx x x g 4π Also evaluatng eq..9 near d = 6 ɛ p p, m = g Γ + ɛ 4π ɛ log p m p ɛ γ + 8 + log 4πµ ɛ dx x xf ɛ m + logx x = p log 4πµ p dx F log F + Oɛ = g 4πµ 4π ɛ γ + log dx x x ɛ log F + Oɛ m = g 4πµ 4π ɛ γ + log + m whch we could also have obtaned by takng the dervatve of eq..4 above...4 p 5 6 p m.5.6 dx x x log F + Oɛ.7 7

The massless lmt can alternatvely be obtaned by evaluatng eqs..8 and. near sx dmensons Σp, = g µ ɛ p ɛ ΓɛΓ ɛ ɛ 4π ɛ Γ4 ɛ = g p 4π ɛ γ + 8 p log 4πµ p p, = g µ ɛ p ɛ ΓɛΓ ɛ 4π ɛ Γ4 ɛ = g 4π ɛ γ + 5 p log 4πµ.8.9. Sx dmensonal wavefuncton and mass counterterms To render the feld renormalzaton R = + Σ m δz fnte, we choose the counterterm δz = g 4π ɛ + c φ. n order to absorb the UV pole n Σ m cf. eq..7. We evaluate where to obtan and thus dx x x log F = p m, m = g dx x x log x + x = π 7 8 g 4π R = + 4π.75448. F F p =m = x + x. ɛ γ + log c φ + γ log 4πµ m 4πµ m + π 7 6 + π 7 6..4 note that π 6.. R s now UV fnte, but stll has an IR dvergence when m. Ths means we wll not be able to do on-shell renormalzaton for the massless theory. Equaton.4 mples the mass counterterm must satsfy δm /ɛ = Σm /ɛ + m δz /ɛ so δm = g m 4π ɛ + c m.5 Then usng eq.. and = dx log F = dx F log F = log x + x dx = π x + x log x + x dx = π 9 8.48656.6 8

we evaluate Σm, m = m g 4π 5 ɛ γ + log 4πµ m + π + 4 6.7 From ths we can evaluate the physcal mass m p = m + Σm + δm δz m namely m p = m { + g 4π c φ c m + 5 γ + log 4πµ m } + π + 4 6.8. Renormalzed two-pont functon n sx dmensons Fnally, we evaluate the renormalzed two-pont functon n sx dmensons T φφ = where Γ p = p m + g m 4π p δz = Usng eq.. and m g 4π p m Σ δm + δz p = dx x x log F + Γ p 4πµ m dx F log F + c m + γ log m 4πµ p c φ + γ log, m 4πµ c φ + γ log dx F log F = m π p π 7 6 6 m.9.. we can also wrte these expressons as Γ p = p m + g m F dx F log + c 4π m + γ + π 4πµ m F log m c φ + γ + π 4πµ p log, m 4πµ p δz = g 4π F dx x x log + c φ + γ + π 7 F log m. 9

In the massless m lmt m F dx F log so that F p = p log dx x x log p m p m + 4 π Γ p p g log p + c 4π 4πµ φ + γ 8 Wth on shell renormalzaton.8 ths agrees wth Srednck eq... x x + log x + x..4 Alternatvely, usng eqs..8 and.9 n the massless lmt, wth δz gven by eq.. and δm absent Γ p = p g p log + c 4π 4πµ φ + γ 8 p δz = g p log + c 4π 4πµ φ + γ 5.5 In the MS scheme, we have c m = γ + log 4π and c φ = γ + log 4π so cf Srednck eq. 7.4 Γ p = p m + g m µ m dx F log F + log 4π m p p δz = g dx x x log F µ 4π log.6 m For the massless theory, MS gves Γ p = p g p δz = g 4π p log 8 4π µ p log 5 µ.7 On-shell renormalzaton, only avalable for m, mples R = 4πµ c φ + γ log = 7 π m Thus p δz = g 4π = g 4π dx x x log F + 7 π 6 F dx x x log F.8.9

whch vanshes at p = m. On-shell renormalzaton also mples m p = m so c φ + γ log 4πµ m c m + γ log 4πµ m 4πµ c m + γ log so that the nverse propagator wth on-shell renormalzaton s Γ p = p m + g m π dx F log F + 4π = p m + g m 4π F dx F log F m = π 4 6 = 5 6π 8 m + + p m agreeng wth Srednck eq. 4.4 whch manfestly vanshes at p = m. Accordng to Srednck, p. 4, dx F log F = 4 + 5 8 m p m S tanh whch I verfed numercally. Mathematca gves dx F log F = p 5y 4 8 whch agrees numercally wth Srednck. Hence Γ p = p m + g π m + 4π + 4 y / tan y 4 y y.4 Three-pont functon n sx dmensons. π 4 p 6., S = 4m. S p π 9 p p 6 6 S tanh y = p m..4 S Evaluatng the three-pont functon n d = 6 ɛ, we get Γ p, p = µ ɛ g + δg + g µ ɛ Γɛ dβ dβ dβ δ β 4π ɛ ɛ m β β p β β p + p β β p = µ ɛ g + δg + g 4π ɛ + Oɛ.5 Choose the counterterm g δg = 4π ɛ + c g.6

to cancel the UV dvergence Γ p, p = µ ɛ g + g cg + Oɛ 4π.7 Instead evaluate the massless three-pont functon.4 wth two on-shell legs n sx dmensons Γ p, p = µ ɛ g + δg + g 4π ɛ log p + p γ + 4πµ = µ ɛ g + g c 4π g log p + p γ +.8 4πµ MS renormalzaton wth c g = γ + log 4π gves Γ p, p = µ ɛ g + g log p + p 4π µ +.9.5 Four-pont functon n sx dmensons Recall that Γ 4 = Bs, t + Bt, u + Bu, s.4 where Bs, t = g 4 I 4 s, t.4 and I 4 s, t = 4π 4 j= dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s.4 In the massless lmt, ths s accordng to Srednck.7 gven by Bs, t g4 4π 4 j= dβ j δ j β j β β t β β 4 s = g4 4π s π + log s + t t.4 I checked ths result numercally..6 Four-pont massless scatterng ampltude n sx dmensons The scatterng ampltude s M = Rm Γ 4 Γ s Γ s Γ t Γ t Γ u Γ u.44

where Rm = + g 4πµ c 4π φ + γ log + π 7 = + g m m 6 4π log + const µ.45 Rm has an IR dvergence as m but the expresson n brackets n eq..44 does not. Thus we can evaluate t n the massless lmt n MS renormalzaton Γ s log g s Γ s g 4π µ = s log g g g s 8 s 4π log sµ 5.46 9 4π µ and Bs, t Thus the scatterng ampltude s { M = Rm g g s 4π g t g u g4 π 4π u + s log.47 t log sµ + t log + π u 5 9 g 4π log t + u µ log + π s 5 9 g 4π log uµ + s log + π t 5 } 9.48 Ths s consstent wth Srednck.9. Fnally, wth s t u, and neglectng constants, ths together wth eq..45 gves M = g s g t g + g u 4π log sµ + 6 m log.49 µ.7 Infrared dvergences from collnear partcles Srednck very clearly explans how the emsson of collnear scalar partcles gves rse to IR dvergences such that eq. 6.4 M obs = M + g δ 4π log s.5 m Combnng ths wth the result above M obs = g s g t g + g u 4π 6 log sµ + m log µ + δ log s m.5

we see that the log m dependences cancels gvng M obs = g s g t g + g u 4π log sµ + log δ.5 whch s fnte n the m lmt, but depends on the resoluton of the detector. Ths equaton can be used to derve the one-loop beta functon. 4

4 Renormalzaton n four dmensons 4. Four dmensonal self energy As before, defne F x x p 4. m Evaluate eq..7 near four dmensons d = 4 ɛ, expandng n ɛ to wrte Thus Σp, m = g µ Γ + ɛ 4π ɛ If p <, we can recast = g µ 4π Σp, m = g µ 4π 4πµ ɛ dx F ɛ m ɛ γ + log ɛ γ + log 4πµ dx ɛ log F + Oɛ 4. m 4πµ m dx log F + Oɛ 4. p F = x x m p = m p m 4 S y, y = x, S = 4m > 4.4 p then p dx log F = log + Thus for p <, dx log F = m / / dy log S + y + log S y p = log + y=/ S + y log S + y S y log S y y m y= / p S S + y S y=/ = log + m log + y log S y 4 y y y= / p S + S = log + S log + log m S 4 S + = S log 4.5 S 4m p 4m + p log 4m p 5 { log p /m, p p < p /6m, p 4.6

If < p < 4m, we can analytcally contnue S = p 4m p = eα T, α = ± π, T = mplyng that ndependently of α + S dx log F = S log = e α + e α T log T = e S α T T p 4m p, < T < 4.7 arctan T 4.8 Thus for < p < 4m 4m dx log F = p p arcsn p 4m { p /6m, p + + π m 4m p, p 4m 4.9 In the massless m lmt so dx log F dx log Σp, = g µ 4π p m + logx x = log ɛ γ + + log Equvalently we could evaluate eq..8 at d = 4 ɛ p 4. m 4πµ + Oɛ 4. p Σp, = g µ 4πµ ɛ Γ + ɛγ ɛ 4π p ɛγ ɛ 4. and expand to obtan the same result. Also evaluatng eq..9 near d = 4 ɛ p p, m = g µ 4π m = g 4π µ m 4πµ ɛ Γ + ɛ dx x xf ɛ dx m x x F 4. whch s the dervatve of the expresson above. Takng the massless lmt we get p p, = g µ 4.4 4π p 6

4. Four dmensonal wavefuncton and mass counterterms Snce Σ p s UV fnte, so s the counterterm δz = g µ c φ 4π m 4.5 For m =, we must choose c φ =. Evaluatng x x x x dx = dx F x + x = π.9 4.6 we obtan p m, m = g µ 4π m π so the feld strength renormalzaton R = + Σ m δz s R = + g µ 4π m π c φ 4.7 4.8 Equaton.4 mples the mass counterterm must satsfy δm /ɛ = Σm /ɛ + m δz /ɛ so Next we evaluate dx log F = δm = g µ 4π ɛ + c m 4.9 dx log x + x = π.86 4. to obtan Σm, m = g µ 4π ɛ γ + log 4πµ + π + Oɛ 4. m Now we can evaluate the physcal mass m p = m + Σm + δm δz m to be m p = m + g µ c 4π φ + c m + γ log 4πµ m + π 4. 7

4. Renormalzed two-pont functon n four dmensons Fnally, we evaluate the renormalzed two-pont functon T φφ = p m Σ δm + δz p = Γ p 4. where Also Γ p = p m + g µ 4πµ p c 4π m γ + log + c m φ m p δz = g µ c 4π m φ dx x x F dx log F + Oɛ 4.4 4.5 In the massless lmt, wth c φ =, we have usng logx x dx = Γ p = p + g µ 4πµ c 4π m γ + + log + Oɛ 4.6 p On-shell renormalzaton mples R = so Thus p δz = whch vanshes at p = m. c φ = π g µ + π 4π m On-shell renormalzaton also mples m p = m so 4πµ c m + γ log m dx x x F = c φ π + = 5π 4.7 4.8 4.9 so that Γ p = p m + g µ 4π whch vanshes at p = m. 5π + π p m dx log F + Oɛ 4. 8

4.4 Three-pont functon n four dmensons The three-pont functon n d = 4 ɛ s Γ p, p = µ 6 d g + δg + g µ 6 d Γ 6 d 4π d/ = µ +ɛ g + δg + g µ +ɛ 4π Γ + ɛ ɛ dβ dβ dβ δ β m β β p β β p + p β β p dβ dβ dβ δ β m β β p β β p + p β β p d/ +ɛ 4. Ths s fnte for m so we can set ɛ = : Γ p, p = µ g + δg + g µ dβ dβ dβ δ β 4. 4π m β β p β β p + p β β p In the massless lmt, and wth p = p =, we have Γ p, p = µ +ɛ g + δg + g µ +ɛ Γ + ɛ 4π ɛ p + p = µ +ɛ g + δg + g µ 4π ɛ p + p Ths s also the result obtaned from eq..4. 4.5 Four-pont functon n four dmensons +ɛ ɛ γ γ ɛ + π β dβ β ɛ dβ β ɛ 4. The PI four-pont functon has contrbutons from three topologcally-dstnct box functons where Γ 4 = Bs, t + Bt, u + Bu, s 4.4 Lettng external legs be on-shell P = P = P 4 = P 4 = m I 4 s, t = Γ 4π 4 j= Bs, t = gµ +ɛ 4 I4 s, t 4.5 dβ j δ j β j m β β β β β β 4 β 4 β β β t β β 4 s 4.6 9

In the massless lmt I 4 s, t = 8 d Γ 4π d/ 4 j= dβ j δ j β j β β t β β 4 s 4.7 If the external legs are on-shell, then n the l lmt, the denomnator goes to l l p l p 4 and thus has an IR dvergence n d = 4. Need to study ths!