Stationary ARMA Processes

Σχετικά έγγραφα
Stationary ARMA Processes

2. ARMA 1. 1 This part is based on H and BD.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Module 5. February 14, h 0min

Stationary Univariate Time Series Models 1

Introduction to the ML Estimation of ARMA processes

6.3 Forecasting ARMA processes

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Example Sheet 3 Solutions

Lecture 2: ARMA Models

EE512: Error Control Coding

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

Homework 3 Solutions

Solution Series 9. i=1 x i and i=1 x i.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Approximation of distance between locations on earth given by latitude and longitude

Matrices and Determinants

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Concrete Mathematics Exercises from 30 September 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

5. Partial Autocorrelation Function of MA(1) Process:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Durbin-Levinson recursive method

Inverse trigonometric functions & General Solution of Trigonometric Equations

2 Composition. Invertible Mappings

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ARMA Models: I VIII 1

derivation of the Laplacian from rectangular to spherical coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Numerical Analysis FMN011

Section 9.2 Polar Equations and Graphs

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order RLC Filters

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Quadratic Expressions

The Simply Typed Lambda Calculus

Probability and Random Processes (Part II)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Introduction to Time Series Analysis. Lecture 16.

Finite Field Problems: Solutions

C.S. 430 Assignment 6, Sample Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm

Areas and Lengths in Polar Coordinates

Lecture 15 - Root System Axiomatics

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

w o = R 1 p. (1) R = p =. = 1

Section 7.6 Double and Half Angle Formulas

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ST5224: Advanced Statistical Theory II

Srednicki Chapter 55

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Uniform Convergence of Fourier Series Michael Taylor

Mean-Variance Analysis

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Second Order Partial Differential Equations

Statistical Inference I Locally most powerful tests

Risk! " #$%&'() *!'+,'''## -. / # $

Every set of first-order formulas is equivalent to an independent set

SOLVING CUBICS AND QUARTICS BY RADICALS

Μηχανική Μάθηση Hypothesis Testing

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Homework 8 Model Solution Section

Lecture 21: Properties and robustness of LSE

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Lecture 34 Bootstrap confidence intervals

( y) Partial Differential Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math 6 SL Probability Distributions Practice Test Mark Scheme

D Alembert s Solution to the Wave Equation

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Variational Wavefunction for the Helium Atom

Tridiagonal matrices. Gérard MEURANT. October, 2008

Assalamu `alaikum wr. wb.

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

CE 530 Molecular Simulation

10.7 Performance of Second-Order System (Unit Step Response)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Solutions to Exercise Sheet 5

TMA4115 Matematikk 3

Transcript:

University of Pavia 2007 Stationary ARMA Processes Eduardo Rossi University of Pavia

Moving Average of order 1 (MA(1)) Y t = µ + ǫ t + θǫ t 1 t = 1,...,T ǫ t WN(0, σ 2 ) E(ǫ t ) = 0 E(ǫ 2 t) = σ 2 E(ǫ t ǫ t j ) = 0 j 0 E(Y t ) = E(µ + ǫ t + θǫ t 1 ) E(Y t ) = µ + E(ǫ t ) + θe(ǫ t 1 ) E(Y t ) = µ Eduardo Rossi c - Macroeconometria 2

Moving Average of order 1 (MA(1)) E(Y t µ) 2 = E(ǫ t + θǫ t 1 ) 2 = E(ǫ 2 t + θ 2 ǫ 2 t 1 + 2θǫ t 1 ǫ t ) = σ 2 + θ 2 σ 2 + 0 = (1 + θ 2 )σ 2 First Autocovariance γ(1) = E(Y t µ)(y t 1 µ) = E(ǫ + θǫ t 1 )(ǫ t 1 + θǫ t 2 ) = E(ǫ t ǫ t 1 + θǫ 2 t 1 + θǫ t ǫ t 2 + θ 2 ǫ t 1 ǫ t 2 ) = 0 + θσ 2 + 0 + 0 = θσ 2 Higher Autocovariances are all zero γ(j) = E[(Y t µ)(y t j µ)] = 0 Eduardo Rossi c - Macroeconometria 3

Moving Average of order 1 (MA(1)) MA(1) is covariance stationary regardless the value of θ. γ(j) = (1 + θ 2 )σ 2 + θσ 2 < j=0 If ǫ t is a Gaussian White Noise, then MA(1) is ergodic for all moments. Autocorrelation function ρ(j) γ(j) γ(0) ρ(j) 1 ρ(1) = ρ(j) = 0 j > 0 θσ 2 (1 + θ 2 )σ 2 = θ 1 + θ 2 Eduardo Rossi c - Macroeconometria 4

Moving Average of order 1 (MA(1)) The largest possible value for ρ(1) is 0.5. This occurs if θ = 1. The smallest is 0.5, θ = 1. For 0.5 < ρ(1) < 0.5 there are two different values of θ that could produce that autocorrelation. θ 1+θ 2 is unchanged if θ is replaced by 1/θ. Eduardo Rossi c - Macroeconometria 5

Invertibility MA(1): Y t = µ + ǫ t + θ 1 ǫ t 1 Y t = µ + (1 + θ 1 L)ǫ t Autocorrelation function: ρ(1) γ(1) γ(0) = θ 1 + θ 2 Replacing θ by 1/θ and assuming that the (unobserved) shock process has a variance of θ 2 σ 2 instead of σ 2 yields a process with the same autocovariance structure as the original process. The invertibility of (1 + θ 1 z) depends on the roots of 1 + θ 1 z = 0 Eduardo Rossi c - Macroeconometria 6

Invertibility invertibility requires θ < 1; if θ 1 the infinite sequence (1 θl + θ 2 L 2 θ 3 L 3 +...) would not be well defined. For a MA(q) there are 2 q representations of the process having the same correlogram. Identification problem. To overcome this problem we impose the invertibility condition. AR( ) representation: θ(l) 1 Y t = θ(1) 1 µ + ǫ t Eduardo Rossi c - Macroeconometria 7

Moving average of order q (MA(q)) Y t = µ + θ(l)ǫ t t = 1,...,T ǫ t WN(0, σ 2 ) θ(l) = 1 + θ 1 L +... + θ q L q E(Y t ) = µ E[(Y t µ) 2 ] = E[(θ(L)ǫ t ) 2 ] = E(ǫ 2 t + θ1ǫ 2 2 t 1 +... + θqǫ 2 2 t q) = (1 + θ1 2 +... + θq)σ 2 2 Eduardo Rossi c - Macroeconometria 8

Moving average of order q (MA(q)) because E(θ i θ j ǫ t i ǫ t j ) = 0 i j i, j = 0,...,q θ 0 = 1 The autocovariance function γ(j) = E[(θ(L)ǫ t )(θ(l)ǫ t j )] = E[(ǫ t +... + θ j ǫ t j +... + θ q ǫ t q )(ǫ t j + θ 1 ǫ t j 1 +... + θ q ǫ t q j )] = E(θ j ǫ 2 t j + θ 1 θ j+1 ǫ 2 t j 1 +... + θ q θ q j ǫ 2 t q) = (θ j + θ 1 θ j+1 +... + θ q θ q j )σ 2 j = 1,...,q γ(j) = 0 j > q Eduardo Rossi c - Macroeconometria 9

Example: MA(2) Y t = µ + ǫ t + θ 1 ǫ t 1 + θ 2 ǫ t 2 γ(0) = (1 + θ1 2 + θ2)σ 2 2 γ(1) = E[(ǫ t + θ 1 ǫ t 1 + θ 2 ǫ t 2 )(ǫ t 1 + θ 1 ǫ t 2 + θ 2 ǫ t 3 )] = θ 1 E(ǫ 2 t 1) + θ 1 θ 2 E(ǫ 2 t 2) = (θ 1 + θ 1 θ 2 )σ 2 γ(j) = 0 j = 3, 4,... Eduardo Rossi c - Macroeconometria 10

The Infinite-Order Moving Average Process Y t = µ + ψ j ǫ t j j=0 ǫ t WN(0, σ 2 ) The infinite sequence generates a c.s. process provided that square summability holds ψj 2 < j=0 a slightly stronger condition is the absolute summability ψ j < j=0 Eduardo Rossi c - Macroeconometria 11

The Infinite-Order Moving Average Process E(Y t ) = µ γ(0) = E(Y t µ) 2 = lim T E(ψ 0ǫ t + ψǫ t 1 +... + ψ T ǫ t T ) = lim T (ψ2 0 + ψ 2 1 +... + ψ 2 T)σ 2 γ(j) = E[(Y t µ)(y t j µ)] = σ 2 (ψ j ψ 0 + ψ j+1 ψ 1 +...) Eduardo Rossi c - Macroeconometria 12

The Infinite-Order Moving Average Process An MA( ) with absolutely summable coefficients has absolutely summable covariances γ(j) < j=0 An MA( ) absolutely summable is ergodic for the mean. If ǫ t i.i.d.n(0, σ 2 ) then the process is ergodic for all moments. Eduardo Rossi c - Macroeconometria 13

The Autoregressive process of order 1 (AR(1)) Y t = c + φy t 1 + ǫ t ǫ t WN(0, σ 2 ) Y t = c T 1 j=0 Y t is c.s. if φ < 1. φ j + φ T Y t T + T 1 j=0 φ j ǫ t j Eduardo Rossi c - Macroeconometria 14

The Autoregressive process of order 1 (AR(1)) First Order Difference Equation (1 φl)y t = w t If φ < 1 then backward solution: y t = w t + φw t 1 +... If φ > 1 forward solution based on (1 φl) 1 = φ 1 L 1 1 φ 1 L 1 = φ 1 L 1 [1+φ 1 L 1 +φ 2 L 2 +...] (1 φl)(1 φl) 1 = 1 when it is applied to a bounded sequence {w t } t= the result is another bounded sequence. Applying (1 φl) 1 we are implicitly imposing a boundedness assumption. Eduardo Rossi c - Macroeconometria 15

The Autoregressive process of order 1 (AR(1)) Premultiplying by [1 + φ 1 L 1 +... + φ (T 1) L (T 1) ][ φ 1 L 1 ] the limit of this operator exists and is (1 φl) 1 when φ > 1 (1 φl) 1 = [ φ 1 L 1 ][1 + φ 1 L 1 +...] Applying this operator amounts to solving the difference equation forward. Eduardo Rossi c - Macroeconometria 16

The Autoregressive process of order 1 (AR(1)) For a AR(1) process with φ > 1: Y t = (1 φl) 1 ǫ t = [ φ 1 L 1 ][1 + φ 1 L 1 +...]ǫ t Y t = [ φ 1 L 1 ][ǫ t + φ 1 ǫ t+1 +...] = φ j ǫ t+j this is the unique stationary solution. This is regarded as unnatural since Y t is correlated with {ǫ s, s > t} a property not shared by the solution obtained when φ < 1. It is customary when modelling stationary time series to restrict attention to AR(1) processes with φ < 1 for which Y t has the representation in terms of {ǫ s, s t}. If φ = 1 there is no stationary solution. j=1 Eduardo Rossi c - Macroeconometria 17

The Autoregressive process of order 1 (AR(1)) When Y t is c.s. we can write: Y t = (c + ǫ t ) + φ(c + ǫ t 1 ) + φ 2 (c + ǫ t 2 ) +... when φ < 1 = c + cφ + cφ 2 +... + ǫ t + φǫ t 1 +... c = 1 φ + ǫ t + φǫ t 1 + φ 2 ǫ 2 t 2 +... }{{} MA( ) ψj =φ j ψ j = j=0 φ j = j=0 1 1 φ this ensures that the MA( ) representation exists. The AR(1) process is ergodic for the mean. Eduardo Rossi c - Macroeconometria 18

The Autoregressive process of order 1 (AR(1)) µ E(Y t ) = c 1 φ γ(0) = E[(Y t µ) 2 ] = E[(ǫ t + φǫ t 1 + φǫ t 2 +...) 2 ] = (1 + φ 2 + φ 4 +...)σ 2 = σ 2 /(1 φ 2 ) γ(j) = E[(Y t µ)(y t j µ)] = E[(ǫ t + φǫ t 1 + φ 2 ǫ t 2 +...)(ǫ t j + φǫ t j 1 + φ 2 ǫ t j 2 +...)] = (φ j + φ j+2 + φ j+4 +...)σ 2 = φ j (1 + φ 2 + φ 4 +...)σ 2 = σ 2 (φ j /(1 φ 2 )) Eduardo Rossi c - Macroeconometria 19

The Autoregressive process of order 1 (AR(1)) Autocorrelation function ρ(j) = γ(j) γ(0) = φj geometric decay. solution: γ(j) = φγ(j 1) γ(j) = φ j γ(0) Eduardo Rossi c - Macroeconometria 20

The AR(2) process Y t = c + φ 1 Y t 1 + φ 2 Y t 2 + ǫ t ǫ t WN(0, σ 2 ) (1 φ 1 L φ 2 L 2 )Y t = c + ǫ t The difference equation is stable provided that the roots of 1 φ 1 z φ 2 z 2 = 0 lie outside the unit circle. ψ(l) = (1 φ 1 L φ 2 L 2 ) 1 = ψ 0 + ψ 1 L + ψ 2 L 2 +... Eduardo Rossi c - Macroeconometria 21

The AR(2) process c µ = 1 φ 1 φ 2 The autocovariances Y t = µ(1 φ 1 φ 2 ) + φ 1 Y t 1 + φ 2 Y t 2 + ǫ t Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ǫ t multiplying both sides by (Y t j µ) and taking expectations produces E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +φ 2 E[(Y t 2 µ)(y t j µ)] + E[ǫ t (Y t j µ)] γ(j) = φ 1 γ(j 1) + φ 2 γ(j 2) j = 1, 2,... Eduardo Rossi c - Macroeconometria 22

The AR(2) process The autocovariances follow the same the second-order difference equation as does the process for Y t. The autocorrelations ρ(j) = φ 1 ρ(j 1) + φ 2 ρ(j 2) j = 1, 2,... Setting j = 1 For j = 2 ρ(1) = φ 1 + φ 2 ρ(1) ρ(1) = φ 1 1 φ 2 ρ(2) = φ 1 ρ(1) + φ 2 The variance of a c.s. AR(2) E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)]+φ 2 E[(Y t 2 µ)(y t µ)]+e[(ǫ t )(Y t µ)] Eduardo Rossi c - Macroeconometria 23

The AR(2) process E(ǫ t )(Y t µ) = E(ǫ t )[φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ǫ t ] = φ 1 0 + φ 2 0 + σ 2 γ(0) = φ 1 γ(1) + φ 2 γ(2) + σ 2 γ(0) = φ 1 ρ(1)γ(0) + φ 2 ρ(2)γ(0) + σ 2 Substituting ρ(1) and ρ(2) [ ] φ 2 γ(0) = 1 + φ 2 (φ 1 ρ(1) + φ 2 ) γ(0) + σ 2 1 φ 2 [ φ 2 = 1 + φ 2φ 2 ] 1 + φ 2 2 γ(0) + σ 2 1 φ 2 1 φ 2 Eduardo Rossi c - Macroeconometria 24

The AR(2) process γ(0) = = = = = [ 1 φ2 1 φ 2φ 2 ] 1 1 φ 2 2 σ 2 1 φ 2 1 φ 2 [ 1 φ2 φ 2 1 φ 2 φ 2 1 φ 2 2(1 φ 2 ) 1 φ 2 (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 (1 + φ 2 )[(1 φ 2 ) 2 φ 2 1 ] ] 1 σ 2 Eduardo Rossi c - Macroeconometria 25

The AR(p) process Y t = c + φ 1 Y t 1 + φ 2 Y t 2 +... + φ p Y t p + ǫ t ǫ t WN(0, σ 2 ) provided that the roots of φ(z) = 1 φ 1 z... φ p z p = 0 all lie the unit circle. Covariance-stationary representation: Y t = µ + ψ(l)ǫ t = c + 1 φ 1 φ 2... φ p 1 1 φ 1 L... φ p L p ǫ t Eduardo Rossi c - Macroeconometria 26

The AR(p) process where ψ(z) = (1 φ 1 z... φ p z p ) 1 = φ(z) 1 and ψ j < j=0 The mean is µ = E(Y t ) = c 1 φ 1... φ p Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) +... + φ p (Y t p µ) + ǫ t Autocovariances are found by multiplying both sides by (Y t j µ) and taking expectations Eduardo Rossi c - Macroeconometria 27

The AR(p) process The autocovariance function φ 1 γ(j 1) + φ 2 γ(j 2) +... + φ p γ(j p) j = 1, 2,... γ(j) = φ 1 γ(1) +... + φ p γ p + σ 2 j = 0 Eduardo Rossi c - Macroeconometria 28

The AR(p) process Dividing the autocovariance function by γ 0 we obtain the Yule-Walker equations: ρ j = φ 1 ρ j 1 + φ 2 ρ j 2 +... + φ p ρ j p j = 1, 2,... Thus the autocovariances and autocorrelations follow the same p-th order difference equation as does the process itself. For distinct roots, their solutions take the form γ(j) = g 1 λ j 1 + g 2λ j 2 +... + g pλ j p where the eigenvalues (λ 1,...,λ p ) are the solutions to λ p φ 1 λ p 1... φ p = 0 Eduardo Rossi c - Macroeconometria 29

The Autoregressive Moving Average process (ARMA(p,q)) Y t = c + φ 1 Y t 1 +... + φ p Y t p + ǫ t + θ 1 ǫ t 1 +... + θ q ǫ t q (1 φ 1 L... φ p L p )Y t = c + (1 + θ 1 +... + θ q L q )ǫ t φ(l)y t = c + θ(l)ǫ t where φ(l) = 1 φ 1 L... φ p L p θ(l) = 1 + θ 1 +... + θ q L q the stationarity depends on the roots of 1 φ 1 z... φ p z p = 0 Eduardo Rossi c - Macroeconometria 30

The Autoregressive Moving Average process (ARMA(p,q)) If the roots are outside the unit circle then the inverse of φ(z) exists, then dividing by φ(l) both sides Y t = µ + ψ(l)ǫ t ψ(l) = θ(l) φ(l) c µ = 1 φ 1... φ p ψ j < j=0 Eduardo Rossi c - Macroeconometria 31

The Autoregressive Moving Average process (ARMA(p,q)) c = µ(1 φ 1... φ p ) Y t = µ(1 φ 1... φ p ) + φ 1 Y t 1 +... + φ p Y t p + ǫ t +... + θ q ǫ t q Y t µ = φ 1 (Y t 1 µ) +... + φ p (Y t p µ) + ǫ t + θ 1 ǫ t 1 +... + θ q ǫ t q The variance E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)] +... + φ p E[(Y t p µ)(y t µ)] +E[ǫ t (Y t µ)] + θ 1 E[ǫ t 1 (Y t µ)] +... + θ q E[ǫ t q (Y t µ)] E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] +... + φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ 1 +...)] +E[ψ 0 ǫ 2 t] + θ 1 E[ψ 1 ǫ 2 t 1] +... + θ q E[ψ q ǫ 2 t q] Eduardo Rossi c - Macroeconometria 32

The Autoregressive Moving Average process (ARMA(p,q)) E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] +... + φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ 1 +...)] +ψ 0 σ 2 + θ 1 ψ 1 σ 2 +... + θ q ψ q σ 2 An ARMA(p,q) process will have more complicated autocovariances for lags 1 through q than would the corresponding AR(p) process γ(j) = E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] +E[ǫ t (Y t j µ)] + θ 1 E[ǫ t 1 (Y t j µ)] +... + θ q E[ǫ t q (Y t j µ)] Eduardo Rossi c - Macroeconometria 33

The Autoregressive Moving Average process (ARMA(p,q)) For j > q autocovariances are given by E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] +E[ǫ t (Y t j µ)] + θ 1 E[ǫ t 1 (Y t j µ)] +... + θ q E[ǫ t q (Y t j µ)] E[ǫ t q (Y t j µ)] = E[ǫ t q (ψ(l)ǫ t j )] = E[ǫ t q (ψ 0 ǫ t j + ψ 1 ǫ t j 1 +...)] = ψ 0 E[ǫ t q ǫ t j ] + ψ 1 E[ǫ t q ǫ t j 1 ] +... = 0 then E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +... + φ p E[(Y t p µ)(y t j µ)] Eduardo Rossi c - Macroeconometria 34

The Autoregressive Moving Average process (ARMA(p,q)) γ(j) = φ 1 γ(j 1)+φ 2 γ(j 2)+...+φ p γ(j p) j = q+1, q+2,... Thus after q lags the autocovariance function follow the p-th order difference equation governed by the autoregressive parameters. Eduardo Rossi c - Macroeconometria 35

The Autoregressive Moving Average process (ARMA(p,q)) There is a potential for redundant parameterization with ARMA processes. Consider a simple white noise process Y t = ǫ t Suppose both sides are multiplyied by (1 ρl): (1 ρl)y t = (1 ρl)ǫ t Both are valid representations, thus the latter might be described as an ARMA(1,1) process, with φ 1 = ρ and θ 1 = ρ. Since any value of ρ describes the data equally well, we will get into trouble trying to estimate the parameter ρ by maximum likelihood. Eduardo Rossi c - Macroeconometria 36

The Autoregressive Moving Average process (ARMA(p,q)) A related overparameterization can arise with an ARMA(p,q) model. Consider the factorization of the lag polynomial operators: (1 λ 1 L)(1 λ 2 L)...(1 λ p L)(Y t µ) = (1 η 1 L)...(1 η q L)ǫ t Assume that λ i < 1 for all i, so that the process is c.s.. If φ(l) and θ(l) have any roots in common, λ i = η j for some i and j, then both sides can be divided by (1 λ i L) p k=1,k i (1 λ k L)(Y t µ) = q k=1,k j (1 η k L)ǫ t Eduardo Rossi c - Macroeconometria 37

The Autoregressive Moving Average process (ARMA(p,q)) (1 φ 1L... φ p 1L p 1 )(Y t µ) = (1+θ 1L+...+θ q 1L q 1 )ǫ t where (1 φ 1L... φ p 1L p 1 ) p k=1,k i (1 λ k L) (1 + θ 1L +... + θ q 1L q 1 ) q k=1,k j (1 η k L) The stationary process ARMA(p,q) process is clearly identical to the stationary ARMA(p-1,q-1) process. Eduardo Rossi c - Macroeconometria 38

ARMA(1,1) Y t = c + φ 1 Y t 1 + ǫ t + θ 1 ǫ t 1 (1 φ 1 L)Y t = c + (1 + θ 1 L)ǫ t φ 1 < 1 ψ(l) = 1 + θ 1L 1 φ 1 L = (1 + θ 1L)(1 + φ 1 L + φ 2 1L 2 +...) ψ 0 + ψ 1 L + ψ 2 L 2 +... = (1 + θ 1 L)(1 + φ 1 L + φ 2 1L 2 +...) Eduardo Rossi c - Macroeconometria 39

ARMA(1,1) ψ 0 = 1 ψ 1 = θ 1 + ψ 1 ψ 2 = φ 2 1 + φ 1 θ 1... =... γ(0) = φ 1 E[(Y t 1 µ)(y t µ)]+e[ǫ t (Y t µ)]+θ 1 E[ǫ t 1 (Y t µ)] γ(0) = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ 1 +...)] + σ 2 + θ 1 ψ 1 σ 2 γ(1) = φ 1 γ(0) + θ 1 σ 2 γ(2) = φ 1 γ(1) Eduardo Rossi c - Macroeconometria 40