Neutrino experiments and nonstandard interactions

Σχετικά έγγραφα
Solar Neutrinos: Fluxes

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Hadronic Tau Decays at BaBar

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The NOνA Neutrino Experiment

Ó³ Ÿ. A , º 9Ä Ä ³ μ 1

Ηλιακά νετρίνα. Πρόβλημα ηλιακών νετρίνων, ταλαντώσεις.

Three coupled amplitudes for the πη, K K and πη channels without data

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Ó³ Ÿ , º 7(170) Ä Ê³μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Index , 332, 335, 338 equivalence principle, , 356

The Simply Typed Lambda Calculus

Example Sheet 3 Solutions

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Homework 8 Model Solution Section

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Matrices and Determinants

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664


measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Section 7.6 Double and Half Angle Formulas

Magnetised Iron Neutrino Detector. (MIND) at a Neutrino Factory. Neutrino GDR Meeting, Paris, 29 April 2010

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Areas and Lengths in Polar Coordinates

Variational Wavefunction for the Helium Atom

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 21: Scattering and FGR

Math221: HW# 1 solutions

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Approximation of distance between locations on earth given by latitude and longitude

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Graded Refractive-Index

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Statistical Inference I Locally most powerful tests

Section 8.2 Graphs of Polar Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

An Inventory of Continuous Distributions

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

EE512: Error Control Coding

Instruction Execution Times

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Dark matter from Dark Energy-Baryonic Matter Couplings

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Differential equations

Nuclear Physics 5. Name: Date: 8 (1)

Strain gauge and rosettes

derivation of the Laplacian from rectangular to spherical coordinates

Physics of CP Violation (III)

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.4 Superposition of Linear Plane Progressive Waves

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

5.4 The Poisson Distribution.

Areas and Lengths in Polar Coordinates

Fourier Analysis of Waves

Questions on Particle Physics

PARTIAL NOTES for 6.1 Trigonometric Identities

Derivation of Optical-Bloch Equations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

IIT JEE (2013) (Trigonomtery 1) Solutions

Section 9.2 Polar Equations and Graphs

1 String with massive end-points

Το άτομο του Υδρογόνου

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lifting Entry (continued)

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Spherical Coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

EE101: Resonance in RLC circuits

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Calculating the propagation delay of coaxial cable


Μηχανική Μάθηση Hypothesis Testing

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Durbin-Levinson recursive method

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Ηλιακά νετρίνα. Εικόνα 1 Πυρηνικές αντιδράσεις στο κέντρο του ηλίου. * σ ve : 9.3*10-45 cm 2 (E/Mev) 2

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Transcript:

Neutrino experiments and nonstandard interactions p. 1 Neutrino experiments and nonstandard interactions Omar G. Miranda Romagnoli Cinvestav

Neutrino experiments and nonstandard interactions p. 2 Contents Neutrino flavors Neutrino oscillations Solar and atmospheric Neutrinos Beyond the Standard Model

Neutrino flavors Neutrino experiments and nonstandard interactions p. 3

Neutrino experiments and nonstandard interactions p. 4 Neutrino flavors For neutrinos coming from the decay: n p + e + ν we observe the reaction ν + p n + e + When neutrinos are coming from the decay: we observe the reaction π µ + ν ν + p n + µ +

Neutrino experiments and nonstandard interactions p. 5 Neutrino experiments without oscillations Muon neutrinos on nuclei CHARM, CDHS, NuTeV R ν = σ(ν µn ν µ X) σ(ν µ N µ X) Muon neutrinos on electrons CHARM II σ(ν µ e ν µ e )

Neutrino experiments and nonstandard interactions p. 6 Neutrino experiments without oscillations NuTeV PRL 88 9182 (22); NNPDF NPB 823 195 (29); Bentz et al PLB 693 462 (21) NuTeV [Bentz et al.] NuTeV [NNPDF Coll.] NuTeV SM [Global EW fit].21.22.23.24.25 sin 2 θ W [on-shell]

Neutrino experiments and nonstandard interactions p. 7 Neutrino experiments without oscillations Electron neutrinos on nuclei Bugey, Chooz... Electron neutrinos on electrons LAMPF, Irvine (Reines, Gurr, Sobel),..., MUNU, Texono σ(ν e e ν e e )

Neutrino experiments and nonstandard interactions p. 8 Neutrino experiments without oscillations Barranco, OGM, Rashba PLB 662 431 (28): sin 2 θ W =.259 ±.25 TEXONO PRD 81 721 (21): sin 2 θ W =.251 ±.39 χ 2 4 3 2 global Irvine Krasnoyarsk Rovno LAMPF LSND MUNU 9 % C. L. 1 1 σ.5.1.15.2.25.3.35.4.45.5.55 sin 2 θ W

Neutrino experiments and nonstandard interactions p. 9 Neutrino oscillations Pontecorvo (1957,1967), Maki, Nakagawa, Sakata (1962) Massive ν s : the massive states ν i (i=1,2,3) are not equal to the flavor states (weak interactions) ν a (e, µ, τ) ν a = i U ai ν i Time: t = ν a (x, t = ) = i U ai e ip ix ν i Time: t > ν a (x, t) = i U ai e ip ix ie i t ν i Ultrarrelativistic ν-s m i p i E i = m 2 i + p2 i p i + m2 i 2p i y x t ν a (x, t) = i U ai e i m 2 i 2p t i ν i

Neutrino experiments and nonstandard interactions p. 1 Two neutrinos conversion Probability ν e ν µ P νe ν µ (x) = sin 2 (2θ) sin 2 πx Losc oscillation lenght Losc 25 km ( ) ( ) E 1 5 ev 2 MeV m 2

Neutrino experiments and nonstandard interactions p. 11 Oscillations in matter Wolfenstein 1978, Mikheev & Smirnov 1985 Neutral currents (NC): exchange of Z Charge currents (CC): exchange of W ± V e = ( 2G F N e N ) n, V µ = V τ = ( 2G F N ) n 2 2 Evolution equation i d dt ν e ν µ = m2 4E cos 2θ + 2 G F N e m 2 4E sin 2θ m 2 4E sin2θ m 2 4E cos 2θ ν e ν µ..

Neutrino experiments and nonstandard interactions p. 12 Constant density case Conversion probabilitiy ν e ν µ : ( P(ν e ν µ ; L) = sin 2 2θ m sin 2 π L ) l m, Mixing angle in matter sin 2 2θ m = ( m 2 2E ) 2 sin 2 2θ ( m 2 2E cos 2θ 2G F N e )2 + ( m 2 2E ) 2 sin 2 2θ Resonance 2G F N e = m2 2E cos 2θ

Neutrino experiments and nonstandard interactions p. 13 Three families U = R 23 (θ 23 ; )R 13 (θ 13 ;δ)r 23 (θ 23 ; )P, R 13 (θ 13 ;δ) = cos θ 13 sinθ 13 e iδ 1. sin θ 13 e iδ cosθ 13 P = diag(e iα, e iβ, 1)

Neutrino experiments and nonstandard interactions p. 14 Three families c 12 c 13 s 12 c 13 s 13 e iδ (s 12 c 23 + c 12 s 23 s 13 e iδ ) (c 12 c 23 s 12 s 23 s 13 e iδ ) s 23 c 13 (s 12 s 23 c 12 c 23 s 13 e iδ ) (c 12 s 23 + s 12 c 23 s 13 e iδ ) c 23 c 13 P(ν α ν β ) = X δ αβ 4 X i>j R j + 2 X i>j I 2 Uαj U βj e i m 2 j L 2E = n o Uαi U αju βi Uβj sin 2 n o Uαi U αju βi Uβj sin m 2! ij 4E L! m2 ij 2E L (1)

The solar interior Neutrino experiments and nonstandard interactions p. 15

Neutrino experiments and nonstandard interactions p. 16 Nuclear reactions in the Sun p + p 2 H + e + + ν e p + e + p 2 H + ν e (pp) 99.6 % (pep).4 % 2 H + p 3 He + γ 85 % 3 He + 3 He 4 He + 2p 15 % 3 He + 4 He 7 Be + γ 2 1 5 % 3 He + p 4 He + e + + ν e 99.87 %.13 % 7 Be + e 7 Li + ν e 7 Be + p 8 B + γ ( 7 Be) ( 8 B) 7 Li + p 2 4 He 8 B 8 Be + e + + ν e 8 Be 2 4 He

Neutrino experiments and nonstandard interactions p. 17 solar neutrino spectrum Bahcall s home page

Neutrino experiments and nonstandard interactions p. 18 Homestake Experiment, R.Davis 68 ν e + 37 Cl e + 37 Ar Pontecorvo 46

Neutrino experiments and nonstandard interactions p. 19 Homestake Experiment, R. Davis 68 ν e + 37 Cl e + 37 Ar Pontecorvo 46

Neutrino experiments and nonstandard interactions p. 2 Super-Kamiokande ν e + e ν e + e and ν x + e ν x + e Event/day/bin 2 Super-Kamiokande θ Sun 5-2 MeV 1-1. -.5..5 1. cos θ Sun

Neutrino experiments and nonstandard interactions p. 21 Super-Kamiokande Predicted 8 B neutrino flux: 4.85 1 6 cm 2 s 1 Super-Kamiokande I PLB 539 179 (22); PRD 73 1121 (26) φ = 2.35 ±.2 (stat ±.8 (syst) 1 6 cm 2 s 1 Super-Kamiokande II PRD 78 322 (28) φ = 2.38 ±.5 (stat ±.16 (syst) 1 6 cm 2 s 1 Super-Kamiokande III PRD 83 521 (211) φ = 2.32 ±.4 (stat ±.5 (syst) 1 6 cm 2 s 1

Neutrino experiments and nonstandard interactions p. 22 SNO 2 PRL 89 1131 2 ν e + d p+ p + e (CC), ν x + d p + n + ν x (NC), ν x + e ν x + e (ES). φ e = 1.76 +.5.5 (stat.)+.9.9 (syst.) φ µτ = 3.41 +.45.45 (stat.)+.48.45 (syst.) φ SNO NC = 6.42+1.57 1.57 (stat.)+.55.58 (syst.)

Neutrino experiments and nonstandard interactions p. 23 SNO 2 Outer H 2 O Inner H 2 O D 2 O Acrlyic Vessel PSUP

Neutrino experiments and nonstandard interactions p. 24 SNO 2 s -1 ) 6 cm -2 (1 φ µτ 8 7 6 5 4 3 2 1 SNO φ ES SNO φ CC SNO φ NC φ SSM 1 2 3 4 5 6 φ e 6 (1-2 cm -1 s )

Neutrino experiments and nonstandard interactions p. 25 theory vs. experiment [Bahcall s home page]

Neutrino experiments and nonstandard interactions p. 26 solar neutrino spectrum Bahcall s home page

Neutrino experiments and nonstandard interactions p. 27 Borexino experiment survival probability ν e P ee :.8.7.6.5.4.3 7. Be - Borexino pp - all solar 8. B - all solar All solar without Borexino MSW Prediction.2.1-1 1 1 1 [MeV] Borexino PRL 17 14132 (211) E ν

Neutrino experiments and nonstandard interactions p. 28 SNO experiment.9.8.7.6 P νe ν e 1σ band SNO Borexino 7 Be pp - All solar ν experiments Pνe νe.5.4.3.2 SNO 119.763 1 1 1 1 1 E ν (MeV)

KamLAND 2 PRL 9 2182 3 2 15 reactor neutrinos geo neutrinos accidentals 1 Events/.425 MeV 5 25 2 15 2.6 MeV analysis threshold KamLAND data no oscillation best-fit oscillation sin 2 2θ = 1. m 2 = 6.9 x 1-5 ev 2 1 5 2 4 Prompt Energy (MeV) ( ) ν e + p n + e + : P νe ν µ (x) = sin 2 (2θ) sin 2 m 2 4E x Neutrino experiments and nonstandard interactions p. 29 6 8

Neutrino experiments and nonstandard interactions p. 3 KamLAND 2 PRL 9 2182 3 1-3 ) 2 (ev 2 1-4 m 1-5 1-6 Rate excluded Rate+Shape allowed LMA Palo Verde excluded Chooz excluded.2.4.6.8 1 2 sin 2θ

Neutrino experiments and nonstandard interactions p. 31 SNO 2 log( m /ev ) 2 2-3 -4-5 -6 (a) SMA LMA -7 LOW -8-9 -1 9% CL 95% CL 99% CL 99.73% CL -11-12 VAC -4-3 -2-1 1 2 log(tan θ)

Other solutions Barranco et al PRD 66 939 (22) Neutrino experiments and nonstandard interactions p. 32

6σ 5σ 4 σ 3 1 2σ σ σ Data fit KamLAND PRL 1 22183 (28) 2 χ 2 15 1 5 4σ 3σ 2σ 1σ ) 2 (ev -4 1 KamLAND 95% C.L. 99% C.L. 99.73% C.L. best fit m 2 21 Solar 95% C.L. 99% C.L. 99.73% C.L. best fit -1 1 1 tan 2 θ 12 m 2 = 7.59 1 5 ev 2, tan 2 θ =.47 1 2 3 4 χ 2 Neutrino experiments and nonstandard interactions p. 33

Neutrino experiments and nonstandard interactions p. 34 m 2 21 and sin 2 θ 12 8.5 m 2 21 [ 1-5 ev 2 ] 8. 7.5 7..2.3.4 sin 2 θ 12 sin 2 θ 12 =.312 +.17.15, m2 21 = 7.59+.2.18 1 5 ev 2 Schwetz, Tortola, Valle New J.Phys. 13 (211) 634

Atmospheric Neutrinos Neutrino experiments and nonstandard interactions p. 35

Neutrino experiments and nonstandard interactions p. 36 Atmospheric Neutrinos We will have the decays: and π + µ + + ν µ µ + e + + ν e + ν µ π µ + ν µ µ e + ν e + ν µ

Neutrino experiments and nonstandard interactions p. 37 Atmospheric Neutrinos 3 2 Sub-GeV e-like P < 4 MeV/c 3 2 Sub-GeV µ-like P < 4 MeV/c 6 4 multi-ring Sub-GeV µ-like 1 1 2 Number of Events -1 -.5.5 1-1 -.5.5 1-1 -.5.5 1 3 Sub-GeV e-like 4 Sub-GeV µ-like multi-ring P > 4 MeV/c P > 4 MeV/c 2 3 1 Multi-GeV µ-like 1 15 1-1 -.5.5 1 5 Multi-GeV e-like 2 1-1 -.5.5 1-1 -.5.5 1 2 15 Multi-GeV µ-like PC 1 5 5 15 1 5-1 -.5.5 1 cosθ -1 -.5.5 1 cosθ -1 -.5.5 1 cosθ

Neutrino experiments and nonstandard interactions p. 38 Atmospheric Neutrinos Super-Kamiokande PRD 74 322 (26)

Neutrino experiments and nonstandard interactions p. 39 Atmospheric Neutrinos Data/Prediction (null osc.) 1.8 1.6 1.4 1.2 1.8.6.4.2 1 1 1 2 1 3 1 4 L/E (km/gev) Super-Kamiokande PRL 93 1181 (24)

Accelerator Neutrinos Neutrino experiments and nonstandard interactions p. 4

Neutrino experiments and nonstandard interactions p. 41 neutrino oscillations Schwetz, Tortola, Valle New J. Phys. 13 634 (211) 4 m 2 31 [ 1-3 ev 2 ] 3 2 MINOS global atmospheric 1.25.5.75 1 sin 2 θ 23

Neutrino experiments and nonstandard interactions p. 42 neutrino oscillations Schwetz, Tortola, Valle New J. Phys. 13 634 (211) m 2 31 [1-3 ev 2 ] 5 4 3 2 1 GLOBAL SK+K2K+MINOS Sol + Reactors 9% CL (2 dof) Reactors.5.1.15 sin 2 θ 13

Neutrino experiments and nonstandard interactions p. 43 neutrino oscillations T2K PRL 17 4181 (211) π π/2 2 Δm23 > δ CP -π/2 Best fit to T2K data 68% CL 9% CL -π

Neutrino experiments and nonstandard interactions p. 44 neutrino oscillations Schwetz, Tortola, Valle New J. Phys. 13 634 (211) parameter best fit ±1σ 2σ 3σ m 2 21 [1 5 ev 2 ] 7.59 +.2.18 7.24 7.99 7.9 8.19 m 2 31 [1 3 ev 2 ] 2.5 +.9.16 (2.4 +.8.9 ) 2.25 2.68 (2.23 2.58) 2.14 2.76 (2.13 2.67) sin 2 θ 12.312 +.17.15.28.35.27.36 sin 2 θ 23.52 +.6.7.52 ±.6.41.61.42.61.39.64 sin 2.13 +.7.5 θ 13.16 +.8.6 δ.61 +.75.65.41 +.65.7 π π.4.28.1.35.5.31.1.39 2π 2π

Neutrino experiments and nonstandard interactions p. 45 Nonstandar interactions Beside the Standard Model Lagrangian: L eff = 2 2G F ([ ν β γ ρ Ll β ][ fγ ρ Lf ] + h.c.) m2 2 2G F P,f,β g f P [ ν βγ ρ Lν β ][ fγ ρ Pf] 4E cos 2θ + 2G F N e m 2 4E sin 2θ m 2 4E sin2θ m 2 4E cos 2θ

Neutrino experiments and nonstandard interactions p. 46 Non Standard Interactions (NSI) Most extensions of the SM predict neutral current non-standard interactions (NSI) of neutrinos which can be either flavor preserving (FD or NU) or flavor-changing (FC). NSI effective Lagragian: L NSI eff = αβfp ε fp αβ 2 2G F ( ν α γ ρ Lν β )( fγ ρ Pf) e, u, d e, u, d Here α, β = e, µ, τ; f = e, u, d; P = L, R; L = (1 γ 5 )/2; R = (1 + γ 5 )/2

Neutrino experiments and nonstandard interactions p. 47 R/ p parity violating SUSY An example of non-standard neutrino-electron and neutrino quark interactions: L = λ ijk ẽ k R ( ν i L) c e j L + λ ijk d j L d k Rν i L +... Barger, Giudice & Han 89 See e.g. Roulet 91, Amanik et al 5

Solar ν Oscillations and NSI with quarks Neutrino experiments and nonstandard interactions p. 48

Neutrino experiments and nonstandard interactions p. 49 Solar ν Oscillations and NSI with quarks H NSI = 2G F N f ( ε ε ε ). with ε = sin θ 23 ε fv eτ ε = sin 2 θ 23 ε fv ττ ε fv ee and ε fv ττ = ε fl ττ + ε fr ττ

Neutrino experiments and nonstandard interactions p. 5 Non Standard Interactions H NSI = 2G F N f ( ε ε ε ). Mixing angle in matter + NSI ( ) m 2 2E sin 2θ + 2 2G F εn d tan 2θ m = m 2 2E cos 2θ 2G F N e +. 2G F ε N d Resonance m2 2E cos 2θ 2G F N e + 2G F ε N d =. ε > N e N d

Neutrino experiments and nonstandard interactions p. 51 Data fit OGM, Tortola, Valle JHEP 61:8,26 m 2 SOL [ev2 ] 1-4 1-5.2.4.6.8 1 sin 2 θ SOL.2.4.6.8 1 sin 2 θ SOL

Neutrino experiments and nonstandard interactions p. 52 Data fit Tortola, OGM, Valle, JHEP 61:8,26 1-3 m 2 SOL [ev2 ] 1-4 1-5 LMA-I LMA- LMA-D 1-6.2.4.6.8 1 sin 2 θ SOL.2.4.6.8 1 sin 2 θ SOL

Neutrino experiments and nonstandard interactions p. 53 Nonstandar interactions 2 9.5 χ 2 15 1 3σ m 2 SOL [1-5 ev 2 ] 9 8.5 8 7.5 5 9% CL 7.2.4.6.8 1-3 sin 2 θ SOL m 2 SOL [ ev2 ] 1-4 1-5 9% CL 3σ 1-6.2.4.6.8 1 5 1 15 2 sin 2 θ SOL χ 2 Escrihuela, Miranda, Tortola, Valle, Phys.Rev.D8:159,29

Neutrino experiments and nonstandard interactions p. 54 Predictions for the probability.7.6 global best fit BF without NSI BF dark side < P ee >.5.4 pp (all) 7 Be (Borexino) 8 B (Borexino).3 8 B (SNO).2 1 1 E [MeV]

Neutrino experiments and nonstandard interactions p. 55 NSI-d constraints from Solar + Kamland 2 15 χ 2 1 5 9% C.L. 9% C.L. -1 -.5.5 1 ε -1 -.5.5 1 ε

Neutrino experiments and nonstandard interactions p. 56 NSI-d constraints from Solar + Kamland Palazzo, Valle PRD 8 9131 (29)

Neutrino experiments and nonstandard interactions p. 57 NSI-d constraints for ν e and ν τ R e = σ(ν en νx) + σ( ν e N νx) σ(ν e N ex) + σ( ν e N ēx) = ( g Le) + ( g Re ) Constraints from CHARM II experiment ε L ee.3 < ε L ee <.3 ε R ee.6 < ε R ee <.5 ε L eµ ε L eµ <.5 ε R eµ ε R eµ <.5 ε L eτ ε L eτ <.5 ε R eτ ε R eτ <.5 CHARM II Collaboration, P. Vilain et. al. Phys. Lett. B335 246 (1994) Davidson, Peña-Garay,Rius,Santamaria JHEP 33:11 (23) hep-ph/3293

Neutrino experiments and nonstandard interactions p. 58 NSI-d constraints for ν e ν + d ν + p + n SNO NC is proportional to g 2 A ǫ A = α=e,µ,τ P eα NC ǫ da αα, da ε ττ 3 2 1 CHARM (99%CL) solar + KamLAND (99%CL) -1-2 -1 1 2 da ε ee

Neutrino experiments and nonstandard interactions p. 59 NSI-d constraints for ν µ R µ = σ(ν µn νx) + σ( ν µ N νx) σ(ν µ N µx) + σ( ν µ N µx) = ( g Lµ) + ( g Rµ ) NuTeV [Bentz et al.] NuTeV [NNPDF Coll.] NuTeV SM [Global EW fit].21.22.23.24.25 sin 2 θ W [on-shell] Escrihuela, Miranda, Tortola, Valle, PRD 83 932 (211)

Neutrino experiments and nonstandard interactions p. 6 NSI-d constraints for ν µ R µ = σ(ν µn νx) + σ( ν µ N νx) σ(ν µ N µx) + σ( ν µ N µx) = ( g Lµ) + ( g Rµ ) 1 1.5 NNPDF da ε µµ.5 qa ε µτ Bentz et al. -.5 CHARM + CDHS.5 1 dv ε µµ -1-1 -.5.5 1 qv ε µτ Escrihuela, Miranda, Tortola, Valle, PRD 83 932 (211)

Neutrino experiments and nonstandard interactions p. 61 NSI-d constraints for ν µ.2.1 NNPDF.1.5 da ε µµ da ε µµ -.1 Bentz et al. -.5 -.2 -.1 -.5.5.1 dv ε µµ -.1 -.2 -.1.1.2 dv ε µµ

Neutrino experiments and nonstandard interactions p. 62 NSI-d constraints for ν µ Global with NuTeV reanalysis NSI with down NSI with up NU NU NNPDF Bentz at al..42 < ǫ dv µµ <.42.44 < ǫ uv µµ <.44.91 < ǫ da µµ <.91.15 < ǫ ua µµ <.18.42 < ǫ dv µµ <.42.44 < ǫ uv µµ <.44.72 < ǫ da µµ <.57.94 < ǫ ua µµ <.14 FC FC NNPDF/Bentz et al..7 < ǫ dv µτ <.7.7 < ǫ uv µτ <.7.39 < ǫ da µτ <.39.39 < ǫ ua µτ <.39 Escrihuela, Miranda, Tortola, Valle, PRD 83 932 (211)

Neutrino experiments and nonstandard interactions p. 63 NSI-e Laboratory constraints Laboratory experiments: 1. Reactor neutrinos 2. LEP data (e + e ν νγ) 3. CHARM

Neutrino experiments and nonstandard interactions p. 64 The ν e e interaction σ(ν e e νe) = 2G2 F m ee ν π 2 4(1 + gl e + εel ee ) 2 + X ε el αe 2 + 1 3 (ge R + εer ee ) 2 + 1 3 α e X ε er αe 2 α e 3 5 Davidson, Peña-Garay,Rius,Santamaria JHEP 33:11 (23) hep-ph/3293:.7 < ε el ee <.1 1. < ε er ee <.5 at 9 % C L Berezhiani, Raghavan, Rossi PLB 535 27 (22) hep-ph/111138:.15 < ε el ee <.17.95 < ε er ee <.5 at 99 % C L

Neutrino experiments and nonstandard interactions p. 65 The ν e e interaction Experiment Energy (MeV) events measurement LSND ν e e 1-5 191 σ = [1.1 ± 1.5] E νe (MeV) 1 45 cm 2 Irvine ν e e 1.5-3. 381 σ = [.86 ±.25] σ V A Irvine ν e e 3. - 4.5 77 σ = [1.7 ±.44] σ V A Rovno ν e e.6-2. 41 σ = (1.26 ±.62) 1 44 cm 2 /fission MUNU ν e e.7-2. 68 1.7 ±.34 events day 1 1.5 Tritium Reactor LSND g L -.5-1 -2-1.5-1 -.5.5 1 1.5 2 g R

Neutrino experiments and nonstandard interactions p. 66 The ν µ e ν µ e interaction dσ theo CHARM dy = 2G2 F m e π E ν + g L 2 + α µ g 2 R + α µ ε L αµ 2 ε R αµ 2 (1 y) 2

Neutrino experiments and nonstandard interactions p. 67 The e + e ν νγ interaction σ theo LEP (s) = dx dc γ H(x,s γ ;s) σ theo (ŝ), H(x,s γ ;s) = 2α πxs γ [ ( 1 x ) 2 x 2 c 2 γ + 2 4 ], σ SM (s) = N νg 2 F 6π M4 Z (g2 R + g2 L ) s ˆ(s M 2 Z ) 2 + (M Z Γ Z ) 2 (! s + 2M 2 W + G 2 F π M2 W M2 W s + M 2 W s 2s s g L MZ 2 (s M2 Z ) " (s + M 2 W ) 2 (s MZ 2 )2 + (M Z Γ Z ) 2 s 2 log log s + M 2 W M 2 W s + M 2 W M 2 W!! M2 W s 3 2 #),

Neutrino experiments and nonstandard interactions p. 68 The e + e ν νγ interaction σ NU (s) = X α=e,µ,τ G 2 F 6π s + G2 F π εl eem 2 W σ FC (s) = X α β=e,µ,τ " (ε L αα) 2 + (ε R αα) 2 2(g L ε L αα + g R ε R MZ 2 αα) (s M2 Z ) # (s MZ 2 )2 + (M Z Γ Z ) 2 "! # (s + M 2 W ) 2 s + MW 2 s 2 log M2 W 3, s 2 G 2 F 6π s h (ε L αβ )2 + (ε R αβ )2i. M 2 W

Neutrino experiments and nonstandard interactions p. 69 Laboratory constraints L ε ee 1.5 -.5-1 -1.5 -.5.5 R ε ee L ε µµ.5 -.5-1 -.5.5 1 R ε µµ L ε ττ.5 -.5-1 -1 -.5.5 1 R ε ττ Barranco, Miranda, Moura, Valle PRD 77 9314 8

Neutrino experiments and nonstandard interactions p. 7 Laboratory constraints.5 ε ll L L,R ε µµ L,R ε ee -.5 L,R ε ττ -.5.5 ε ll R

Neutrino experiments and nonstandard interactions p. 71 Laboratory constraints Region at 9% C. L. one parameter previous limits ε L ee.14 < ε L ee <.9.3 < ε L ee <.8.5 < ε L ee <.1 ε R ee.3 < ε R ee <.18.4 < ε R ee <.15.4 < ε R ee <.14 ε L µµ.33 < ε L µµ <.55 εl µµ <.3 εl µµ <.3 ε R µµ.4 < ε R µµ <.53 ε R µµ <.3 ε R µµ <.3 ε L ττ.6 < ε L ττ <.4.5 < ε L ττ <.2 ε L ττ <.5 ε R ττ.4 < ε R ττ <.6.3 < ε R ττ <.4 ε R ττ <.5 Barranco, Miranda, Moura, Valle PRD 77 9314 8

Neutrino experiments and nonstandard interactions p. 72 Solar neutrinos solar neutrinos could be sensitive to the NSI with electrons Propagation could be affected Detection could also be affected! especially in SuperKamiokande

Neutrino experiments and nonstandard interactions p. 73 Solar neutrinos.1.1.1 ε el ee ε el ee ε el ee -.1 -.1 -.1-1 1 ε er ee -1 1 ε er ee -1 1 ε er ee Bolaños, OGM, Palazzo, Tortola, Valle PRD79:11312,29

Neutrino experiments and nonstandard interactions p. 74 Solar neutrinos 1 1 1.5.5.5 ε el ττ ε el ττ ε el ττ -.5 -.5 -.5-1.5-1 -.5.5 1 ε er ττ -1.5-1 -.5.5 1 ε er ττ -1.5-1 -.5.5 1 ε er ττ Bolaños, Miranda, Palazzo, Tortola, Valle Phys.Rev.D79:11312,29

Neutrino experiments and nonstandard interactions p. 75 Solar neutrinos Solar analysis Laboratory Previous limits ε L ee.36 < ε L ee <.63.14 < ε L ee <.9.5 < ε L ee <.1 ε R ee.27 < ε R ee <.59.3 < ε R ee <.18.4 < ε R ee <.14 ε L µµ.33 < ε L µµ <.55 εl µµ <.3 ε R µµ.4 < ε R µµ <.53 ε R µµ <.3 ε L ττ.16 < ε L ττ <.11.6 < ε L ττ <.4 ε L ττ <.5 ε R ττ 1.5 < ε R ττ <.31.4 < ε R ττ <.6 ε R ττ <.5 Bolaños, OGM, Palazzo, Tortola, Valle PRD79:11312,29

Neutrino experiments and nonstandard interactions p. 76 Improving NSI constraints ΦeΜ 15 1 5 5 1 15.2.4.6.8 Ε eμ Coloma, Donini, López-Pavón, Minakata 115.5936

Neutrino experiments and nonstandard interactions p. 77 Confusion problem for θ 13 R eµ A s 2 13 + B s 13 ǫ P + C ǫ 2 P + D ǫ Pǫ S + E ǫ 2 S + F s 13ǫ S ǫ S ǫ S eτ, ǫ P ǫ P eτ. Huber, Schwetz, Valle, PRD 66 136 2.

Neutrino experiments and nonstandard interactions p. 78 Confusion problem for θ 13 Neutrino factory + two different neutrino detectors sin 2 2θ 13 and δ marginalized Input: δ = π/4 sin 2 2θ 13 =.1 ε ee = ε eτ = ε ττ =.2.2.4 ε eτ.1 -.1 ε eτ.1 -.1 ε ττ.2 -.2 3 km -.2 -.2 -.4.4 ε eτ.1 -.1 ε eτ.1 -.1 ε ττ.2 -.2 7 km -.2 -.2 -.4.4 ε eτ.1 -.1 1 σ 2 σ 3 σ ε eτ.1 -.1 -.2 -.2 -.2 -.1.1.2 ε ee -.4 -.2.2.4 ε ττ ε ττ.2 -.2 -.4 -.2 -.1.1.2 ε ee Combined Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 712:2,27.

Neutrino experiments and nonstandard interactions p. 79 Confusion problem for θ 13 Neutrino factory + two different neutrino detectors ε ee and ε eτ marginalized ε ττ and ε eτ marginalized ε ee and ε ττ marginalized 6 δ 4 2 Input: δ = 3π/2 sin 2 2θ 13 =.1 ε ee = ε eτ = ε ττ = 3 km 6 δ 4 2 7 km 6 δ 4 2 1 σ 2 σ 3 σ Combined 1-4 1-3 1-4 1-3 sin 2 2θ 13 1-4 1-3 1-2 Ribeiro, Minakata, Nunokawa, S. Uchinami, R. Zukanovich-Funchal JHEP 712:2,27.

Confusion problem for θ 13 Neutrino factory + two different neutrino detectors Ε m eτ sensitivity 3Σ Ε m eτ sensitivity 3Σ 12 1 Optimum for standard performance indicators Symmetry axis 12 1 Symmetry axis L2 km 8 6 1 2.218 Magic baseline Ε m ΑΒ 1 2.4 Ε m ΑΒ 1 2.2 L2 km 8 6 1 2.58 Magic baseline 4 Ε m ΑΒ 1 2. Ε m ΑΒ 1 1.8 4 Ε m ΑΒ 1 1.6 2 EΜ 25 GeV GLoBES 28 Ε m ΑΒ 1 1.4 Ε m ΑΒ 1 1.4 2 EΜ 5 GeV GLoBES 28 2 4 6 8 1 12 L1 km 2 4 6 8 1 12 L1 km 12 1 Ε m ΜΤ sensitivity 3Σ 1 1.96 Symmetry axis 12 1 Ε m ΜΤ sensitivity 3Σ 1 2.227 Symmetry axis L2 km 8 6 Magic baseline L2 km 8 6 Magic baseline 4 4 2 EΜ 25 GeV GLoBES 28 2 EΜ 5 GeV GLoBES 28 2 4 6 8 1 12 L1 km 2 4 6 8 1 12 L1 km 12 1 Ε m ΤΤ sensitivity 3Σ Symmetry axis 1 2.12 12 1 Ε m ΤΤ sensitivity 3Σ Symmetry axis 1 2.338 L2 km 8 6 Magic baseline L2 km 8 6 Magic baseline 4 4 2 EΜ 25 GeV GLoBES 28 2 EΜ 5 GeV GLoBES 28 2 4 6 8 1 12 L1 km 2 4 6 8 1 12 L1 km Kopp, Ota, Winter, PRD 78 537 8 Neutrino experiments and nonstandard interactions p. 8

Neutrino experiments and nonstandard interactions p. 81 Improving NSI constraints [J. Barranco, OGM, T.I. Rashba JHEP 512:21 5] Neutrino-nuclei coherent scattering (for qr << 1) dσ dt = G2 F M 2π ((G V + G A ) 2 + (G V G A ) 2 1 T «2 `G 2 V E MT G2 A ν Eν 2 ), M is the nucleus mass; T recoil nucleus energy (from to T max = 2E 2 ν/(m + 2E ν )); E ν neutrino energy.

Neutrino experiments and nonstandard interactions p. 82 Coherent scattering.6 T th = 4eV.6 T th = 1eV.4.4.2.2 uv ε ee uv ε ee -.2 76 Ge [9% C.L.] -.2 76 Ge [9% C.L.] 76 Ge [99%] 76 Ge [99%] -.4 76 28 Ge+ Si [9%] 76 28 Ge+ Si [99%] -.4 76 28 Ge+ Si [9%] 76 28 Ge+ Si [99%] -.6 -.6 -.4 -.2.2.4.6 dv ε ee -.6 -.6 -.4 -.2.2.4.6 dv ε ee J. Barranco, OGM, T.I. Rashba JHEP 512:21 5

Neutrino experiments and nonstandard interactions p. 83 Coherent scattering.6 T th = 4eV.6 T th = 1eV.4.4.2.2 uv ε τe uv ε τe -.2 76 Ge [9% C.L.] -.2 76 Ge [9% C.L.] 76 Ge [99%] 76 Ge [99%] -.4 76 Ge+ 28 Si [9%] -.4 76 Ge+ 28 Si [9%] 76 Ge+ 28 Si [99%] 76 Ge+ 28 Si [99%] -.6 -.6 -.6 -.4 -.2.2.4.6 dv ε τe -.6 -.4 -.2.2.4.6 dv ε τe J. Barranco, OGM, T.I. Rashba JHEP 512:21 5

Neutrino experiments and nonstandard interactions p. 84 Estimated bounds on NSI from TEXONO-like experiment (Ge+Si).6 T th = 4eV.6 T th = 4eV.4.4 uv ε ee.2 -.2 -.4 76 Ge [9% C.L.] 76 Ge [99%] 76 Ge+ 28 Si [9%] 76 Ge+ 28 Si [99%] -.6 -.6 -.4 -.2.2.4.6 dv ε ee uv ε τe.2 -.2 -.4 -.6 76 Ge [9% C.L.] 76 Ge [99%] 76 28 Ge+ Si [9%] 76 28 Ge+ Si [99%] -.6 -.4 -.2.2.4.6 dv ε τe 76 Ge+ 28 Si Tth =4eV ǫ dv ee <.36 ǫ uv ee <.38 ǫ dv τe <.48 ǫ uv τe <.5.6 T th = 1eV.6 T th = 1eV.4.4 76 Ge+ 28 Si Tth =1eV uv ε ee.2 -.2 -.4 76 Ge [9% C.L.] 76 Ge [99%] 76 28 Ge+ Si [9%] 76 28 Ge+ Si [99%] uv ε τe.2 -.2 -.4 76 Ge [9% C.L.] 76 Ge [99%] 76 28 Ge+ Si [9%] 76 28 Ge+ Si [99%] ǫ dv ee <.18 ǫ uv ee <.19 ǫ dv τe <.34 ǫ uv τe <.37 -.6 -.6 -.4 -.2.2.4.6 dv ε ee -.6 -.6 -.4 -.2.2.4.6 dv ε τe

Conclusions The solar neutrino problem remained unsolved for more than 3 years. It was the motivation, together with the atmospheric neutrino puzzle, for several experiments that have allowed to get a better knowledge of the Standard Model and of the neutrino properties. Neutrino physics counts now with several experiments that are improving the measurements of neutrino parameters and it is expected that new generation experiments could give a clue of the direction for physics beyond the Standard Model. Although we now better the neutrino masses diferences and mixings, there are many open question. Neutrino experiments and nonstandard interactions p. 85

Neutrino experiments and nonstandard interactions p. 86 R-parity breaking Susy λ ijk L i L Lj LĒk R λ ijk Li L Qj L D k R, (2) ν 2 ẽ Rk e 1 ν 2 λ 2j1 e 1 ẽ Lj e 1 λ 21k λ 21k ν 2 e 1 λ 2j1 ν 2 a) b) J. Barranco, OGM, T.I. Rashba PRD 76 738 (27)

Neutrino experiments and nonstandard interactions p. 87 R-parity breaking Susy J. Barranco, OGM, T I Rashba hep-ph/72175 λ d L 1j1-2 λ d R 11k 2.1.1 λ d 2 L current limit 1j1 TEXONO 1 ev beta beam TEXONO 4 ev SPS.1 1 2 3 4 5 6 7 8 9 1 mass*time/(m year) J. Barranco, OGM, T.I. Rashba PRD 76 738 (27)