ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ



Σχετικά έγγραφα
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 1 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Έλεγχος των θεμάτων που τίθενται στις γραπτές εξετάσεις των μαθητών : αναγκαιότητα των διδακτικών στόχων

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ»

Αναλυτικό Πρόγραμμα Μαθηματικών

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΗΣ Τ.Θ.Δ.Δ. ΘΕΜΑ Β. B. Το αντίστοιχο διάγραμμα Venn είναι το παρακάτω:

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

Άλγεβρα και Στοιχεία Πιθανοτήτων

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Ενδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα

Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)

Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος

ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.

Γεωμετρία. I. Εισαγωγή

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

Θέμα: «Χαιρετισμός Σχολικής Συμβούλου Μαθηματικών» Αγαπητοί συνάδελφοι,

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

Να φύγει ο Ευκλείδης;

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.


ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΝΝΟΙΕΣ ΜΕΤΡΗΣΗΣ

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

Στοχεύοντας στην ανάπτυξη της Υπολογιστικής Σκέψης. Α. Γόγουλου Τμήμα Πληροφορικής & Τηλεπικοινωνιών, ΕΚΠΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

4.3 Δραστηριότητα: Θεώρημα Fermat

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ Απόλυτες τιμές Α Λυκείου. 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15

Ρόδος, 26/04/2017. Αρ. Πρωτ.: 58 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. Ε. & Δ.Ε. Ν.

Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα

Θέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά»

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

Σας εύχομαι καλή μελέτη και επιτυχία.

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

1. Θεωρητικό υπόβαθρο για τη Μαθηματική Εκπαίδευση.

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Η παρατήρηση της τάξης των μαθηματικών και ο αναστοχασμός ως εργαλεία επαγγελματικής μάθησης και ανάπτυξης

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΟΔΗΓΟΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

ΔΗΜΗΤΡΗΣ ΜΠΟΤΣΑΚΗΣ, PhD. Φυσικός /Σχολικός Σύμβουλος Φυσικών Επιστημών ΠΔΕ Βορείου Αιγαίου ΠΔΕ Στερεάς Ελλάδος

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

Α1. Οι γραπτές προαγωγικές, απολυτήριες και πτυχιακές εξετάσεις διενεργούνται με την ευθύνη του Διευθυντή και των διδασκόντων σε κάθε ΕΠΑ.Λ.

Θέμα: «Προαγωγικές και απολυτήριες εξετάσεις στα Μαθηματικά»

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α

Transcript:

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΙΑ ΤΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ (ΓΕΝΙΚΟ ΛΥΚΕΙΟ - ΕΠΑΛ) 1 η ΕΚΔΟΣΗ - ΑΘΗΝΑ 2014-1-

ΠΡΟΔΙΑΓΡΑΦΕΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σύμφωνα με το Πρόγραμμα Σπουδών Μαθηματικών (ΠΣ), η διδασκαλία των μαθηματικών στην Α Λυκείου επιδιώκει: Την ένταξη σ ένα θεωρητικό πλαίσιο των μαθηματικών γνώσεων που έχουν αποκτήσει οι μαθητές στο Γυμνάσιο, την επέκταση και την εμβάθυνση τους. Την ενεργητική εμπλοκή των μαθητών στη διερεύνηση προβλημάτων, στη δημιουργία και τον έλεγχο εικασιών, στην ανάπτυξη στρατηγικών επίλυσης προβλήματος και πολλαπλών αποδεικτικών προσεγγίσεων, στην ανάπτυξη διάφορων τρόπων σκέψης (επαγωγική, παραγωγική). Την κατανόηση και χρήση της μαθηματικής γλώσσας, των συμβόλων και των αναπαραστάσεων των μαθηματικών αντικειμένων, την ανάπτυξη της ικανότητας μετάφρασης από τη φυσική στη μαθηματική γλώσσα και αντίστροφα καθώς και την ανάπτυξη της ικανότητας των μαθητών να επικοινωνούν μαθηματικά. Την ανάπτυξη ικανότητας εννοιολογικών συνδέσεων εντός των Μαθηματικών αλλά και μεταξύ των Μαθηματικών και άλλων γνωστικών περιοχών. Την ανάπτυξη ικανοτήτων χρήσης των Μαθηματικών ως εργαλείο κατανόησης και ερμηνείας του κόσμου. Με βάση τα παραπάνω, τα γενικά χαρακτηριστικά των τεσσάρων θεμάτων που θα περιλαμβάνει ένα διαγώνισμα αναλύονται ως εξής: -2-

ΘΕΜΑ 1 Το πρώτο θέμα ελέγχει την ικανότητα των μαθητών να ανακαλούν και να αναπαράγουν έννοιες και διαδικασίες που έχουν διδαχθεί. Ενδεικτικά, τα θέματα αυτού του τύπου στοχεύουν στο να ελέγξουν αν οι μαθητές είναι ικανοί: 1. Να ανακαλούν από τη μνήμη τους ορισμούς, έννοιες, διαδικασίες, ιδιότητες και συμβολισμούς. 2. Να ανασύρουν πληροφορίες από ένα γράφημα ή ένα πίνακα. 3. Να αναγνωρίζουν μαθηματικά αντικείμενα κάτω από διάφορες μορφές (διαφορετικές εκφράσεις της ίδιας οντότητας). 4. Να αναγνωρίζουν παραδείγματα μιας έννοιας. 5. Να εκτελούν νοερούς υπολογισμούς προκειμένου να προβούν σε μια εκτίμηση. 6. Να χρησιμοποιούν σωστά μαθηματικούς συμβολισμούς, ορολογία, συστήματα/ μονάδες μέτρησης κλπ. 7. Να ταξινομούν/ομαδοποιούν μαθηματικά αντικείμενα στη βάση κοινών ιδιοτήτων τους. 8. Να αντιστοιχίζουν με βάση συγκεκριμένα κριτήρια. 9. Να επιλέγουν μεταξύ εναλλακτικών στηριζόμενοι σε ορισμούς και θεωρίες. 10. Να ελέγχουν την ορθότητα ενός απλού ισχυρισμού ή μιας συμβολικής έκφρασης. 11. Να αποδεικνύουν προτάσεις που περιλαμβάνονται στην εξεταστέα ύλη. ΘΕΜΑ 2 Το δεύτερο θέμα ελέγχει την ικανότητα των μαθητών να εφαρμόζουν θεωρίες, ιδιότητες και αλγόριθμους σε οικείες σε σχέση με τη διδασκαλία καταστάσεις (άμεση εφαρμογή). Ενδεικτικά, τα θέματα αυτού του τύπου στοχεύουν στο να ελέγξουν αν οι μαθητές είναι ικανοί: 1. Να εφαρμόζουν κατάλληλα ορισμούς, θεωρίες, αλγόριθμους σε προβλήματα παρόμοια με αυτά που έχουν διδαχθεί στην τάξη. 2. Να ερμηνεύουν έναν απλό ισχυρισμό που διατυπώνεται στην εκφώνηση του προβλήματος μεταφράζοντάς τον σε μαθηματικό μοντέλο. 3. Να επιλέγουν μια μέθοδο ή στρατηγική επίλυσης ενός απλού προβλήματος μεταξύ αυτών που έχουν ήδη διδαχθεί στην τάξη, και να την εφαρμόζουν με τρόπο σαφή και οργανωμένο. 4. Να επιχειρηματολογούν με σαφή αναφορά σε έννοιες και στους ορισμούς τους. 5. Να συλλέγουν και να ερμηνεύουν δεδομένα. 6. Να μοντελοποιούν με χρήση μαθηματικών εργαλείων (συμβόλων, τύπων, διαγραμμάτων, σχημάτων) που έχουν διδαχθεί, απλές καταστάσεις που περιγράφονται στη φυσική γλώσσα. -3-

7. Να ερμηνεύουν δεδομένα που δίνονται με σύμβολα, πίνακες, διαγράμματα και γραφήματα. 8. Να μεταφράζουν μια μορφή αναπαράστασης σε μια άλλη χρήσιμη για την επίλυση του προβλήματος. 9. Να σχεδιάζουν με ακρίβεια ακολουθώντας τις οδηγίες που τους δίνονται. 10. Να συγκρίνουν καταστάσεις εντοπίζοντας ομοιότητες και διαφορές. 11. Να εκφράζονται χρησιμοποιώντας σωστά τη μαθηματική γλώσσα και το συμβολισμό. 12. Να αιτιολογούν τα βήματα που ακολούθησαν για την επίλυση ενός προβλήματος. ΘΕΜΑ 3 Το τρίτο θέμα ελέγχει την ικανότητα των μαθητών να επιλύουν απλά προβλήματα για τα οποία δεν υπάρχει άμεσος γνωστός αλγόριθμος επίλυσης τους και για τα οποία απαιτείται ανάλυση της κατάστασης και στρατηγική σκέψη (δημιουργική εφαρμογή). Ενδεικτικά, τα θέματα αυτού του τύπου στοχεύουν στο να ελέγξουν αν οι μαθητές είναι ικανοί: 1. Να αναλύουν τα δεδομένα του προβλήματος και να θέτουν περιορισμούς. 2. Να αναπτύσσουν λογικά επιχειρήματα λαμβάνοντας υπόψη τα δεδομένα και τους περιορισμούς του προβλήματος. 3. Να χρησιμοποιούν αντιπαραδείγματα για την απόρριψη λανθασμένων ισχυρισμών. 4. Να επιχειρηματολογούν με ακρίβεια για τις επιλογές τους χρησιμοποιώντας σωστά τη μαθηματική γλώσσα και τη μαθηματική λογική. 5. Να διακρίνουν περιπτώσεις κατά τη διαδικασία επίλυσης μη οικείων προβλημάτων. 6. Να βρίσκουν παραδείγματα και μη παραδείγματα μιας έννοιας. 7. Να αναλύουν ομοιότητες και διαφορές σε έννοιες ή στρατηγικές επίλυσης. 8. Να συνοψίζουν/συνθέτουν τα αποτελέσματα της διερεύνησης τους και να καταλήγουν σε τεκμηριωμένα συμπεράσματα. 9. Να επιλύουν προβλήματα γραφικά και συμβολικά και να διατυπώνουν συσχετίσεις. 10. Να επιλέγουν τις κατάλληλες αναπαραστάσεις σε σχέση με την ιδιαιτερότητα του προβλήματος, για να το επιλύσουν. 11. Να ερμηνεύουν τα μαθηματικά αντικείμενα (πχ αριθμούς, σύμβολα) σε σχέση με τα δεδομένα του προβλήματος (πχ τι αντιπροσωπεύει ο αριθμός που εκφράζει την κλίση μιας ευθείας στο πλαίσιο του πραγματικού προβλήματος που καλούνται να επιλύσουν) -4-

ΘΕΜΑ 4 Το τέταρτο θέμα ελέγχει την ικανότητα των μαθητών να επιλύουν προβλήματα περισσότερο σύνθετα από αυτά του τρίτου θέματος αναπτύσσοντας κατάλληλες στρατηγικές και δημιουργώντας συνδέσεις και συσχετισμούς μέσα στην ίδια μαθηματική περιοχή καθώς και μεταξύ διαφορετικών περιοχών. Ελέγχει επίσης την ικανότητα τους να ανασύρουν τις απαιτούμενες πληροφορίες από την εκφώνηση του προβλήματος και να επιλέγουν το κατάλληλο μαθηματικό μοντέλο για την επίλυσή του. Ενδεικτικά, τα θέματα αυτού του τύπου στοχεύουν στο να ελέγξουν αν οι μαθητές είναι ικανοί: 1. Να προσαρμόζουν τα διαθέσιμα μαθηματικά εργαλεία στις ιδιαιτερότητες της κατάστασης που διερευνούν. 2. Να συνθέτουν τις γνώσεις που διαθέτουν για την επίλυση ενός μη οικείου προβλήματος. 3. Να διερευνούν ενδεχόμενα για τα οποία η εκφώνηση δεν δίνει πληροφορίες. 4. Να διαμορφώνουν ένα μαθηματικό μοντέλο για μια σύνθετη (πραγματική ή μαθηματική) κατάσταση. 5. Να διερευνούν και να διατυπώνουν εικασίες τις οποίες να αποδεικνύουν επιλέγοντας την κατάλληλη στρατηγική. 6. Να αξιολογούν την αξιοπιστία μιας πληροφορίας, την αποτελεσματικότητα μιας στρατηγικής ή την ορθότητα μιας απόδειξης. 7. Να γενικεύουν συμπεράσματα και να επεκτείνουν το πεδίο εφαρμογής τους. 8. Να προσαρμόζουν τη λύση ενός προβλήματος όταν τα δεδομένα της εκφώνησης μεταβάλλονται. 9. Να συγκρίνουν, να σχολιάζουν και να αντιπαραθέτουν τρόπους σκέψης και στρατηγικές επίλυσης. 10. Να εκφράζουν το νόημα μιας μαθηματικής έννοιας, διαδικασίας, αναπαράστασης με περισσότερους από έναν τρόπους. 11. Να επιχειρηματολογούν για τις επιλογές τους χρησιμοποιώντας σωστά τη μαθηματική γλώσσα και τη μαθηματική λογική, σε περισσότερα από ένα πλαίσια (π.χ. αλγεβρικό, γεωμετρικό). Σημείωση: Ένα θέμα που ανήκει στην κατηγορία 2, 3 ή 4 μπορεί να ελέγχει και κάποιες ικανότητες/δεξιότητες προηγουμένων κατηγοριών -5-

Κάθε Θέμα που προτείνεται πρέπει να συνοδεύεται από την παρακάτω περιγραφή: ΜΑΘΗΜΑ ΤΥΠΟΣ ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ του Π.Σ. των οποίων η υλοποίηση ελέγχεται μέσω Εκφώνηση Δραστηριότητας Μαθηματικά: Άλγεβρα Μαθηματικά: Γεωμετρία Αναφέρατε τον τύπο ή τους τύπους Λυκείου που απευθύνεται το θέμα. Π.χ. ΓΕΛ, ΕΠΑΛ, ΓΕΛ και ΕΠΑΛ Αναφέρατε τον κωδικό και την περιγραφή του στόχου ή των στόχων που επιδιώκετε μέσω, με βάση τους μαθησιακούς στόχους κάθε κεφαλαίου όπως αυτοί αναφέρονται στο Πρόγραμμα Σπουδών (ΠΣ) Μαθηματικών (ΦΕΚ Τεύχος 2, Αρ. Φύλλου 1168, 8 Ιουνίου 2011) π.χ. Σ1. Αποφασίζουν αν ένα στοιχείο ανήκει ή όχι σε ένα σύνολο και εκφράζουν αυτή τη σχέση συμβολικά. Ενδεικτική Απάντηση ΘΕΜΑ 1 2 3 4 ΓΝΩΣΤΙΚΗ ΑΠΑΙΤΗΣΗ π.χ. (2, 5) (4, 1) και (4,2) (Ο πρώτος αριθμός δηλώνει το Θέμα, και ο δεύτερος την ιδιαίτερη ικανότητα που ελέγχεται μέσω του Θέματος με βάση την παραπάνω περιγραφή των θεμάτων. Σε περίπτωση που η γνωστική απαίτηση του θέματος δεν καλύπτεται από την παραπάνω περιγραφή, περιγράψτε την) 5. Να συλλέγουν και να ερμηνεύουν δεδομένα 1. Να προσαρμόζουν τα διαθέσιμα μαθηματικά εργαλεία στις ιδιαιτερότητες της κατάστασης που διερευνούν 2. Να συνθέτουν τις γνώσεις που διαθέτουν για την επίλυση ενός μη οικείου προβλήματος -6-

ΕΝΔΕΙΚΤΙΚΟ ΠΑΡΑΔΕΙΓΜΑ 1 ΜΑΘΗΜΑ ΤΥΠΟΣ ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ του Π.Σ. των οποίων η υλοποίηση ελέγχεται μέσω Εκφώνηση Δραστηριότητας Ενδεικτική Απάντηση Μαθηματικά: Άλγεβρα ΓΕΛ Πθ2: Προσδιορίζουν το δειγματικό χώρο ενός πειράματος τύχης και ενδεχόμενα αυτού με διάφορους τρόπους. Πθ3: Μεταφράζουν διάφορες σχέσεις ενδεχομένων που είναι διατυπωμένες σε φυσική γλώσσα, στη γλώσσα των συνόλων και αντίστροφα Πθ4: Επιλύουν προβλήματα χρησιμοποιώντας τον κλασσικό ορισμό Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και 2 γυναίκες: η Ειρήνη (Ε) και η Ζωή (Ζ). Επιλέγονται στην τύχη ένας άντρας και μια γυναίκα για να διαγωνιστούν και καταγράφονται τα ονόματά τους. α) Να βρεθεί ο δειγματικός χώρος του πειράματος. β) Να υπολογίσετε τις πιθανότητες των παρακάτω ενδεχομένων Α : Να διαγωνίστηκαν ο Κώστας ή ο Μιχάλης. Β : Να διαγωνίστηκε η Ζωή. Γ : Να μη διαγωνίστηκε ούτε ο Κώστας ούτε ο Δημήτρης α) Ω = {ΔΕ, ΔΖ, ΚΕ, ΚΖ, ΜΕ, ΜΖ} ΘΕΜΑ 2 ΓΝΩΣΤΙΚΗ ΑΠΑΙΤΗΣΗ (2, 1), (2, 8), (2, 11) β) Α = {ΚΕ, ΚΖ, ΜΕ, ΜΖ}, A) 4 οπότε P(A)= = = Ω) 6 Β = {ΔΖ, ΚΖ, ΜΖ}, B) 3 οπότε P(B)= = = Ω) 6 Γ= {ΜΕ, ΜΖ}, Γ) 2 οπότε P(Γ)= = = Ω) 6 1. Να εφαρμόζουν κατάλληλα ορισμούς, θεωρίες, αλγόριθμους σε προβλήματα παρόμοια με αυτά που έχουν διδαχθεί στην τάξη. 8. Να μεταφράζουν μια μορφή αναπαράστασης σε μια άλλη χρήσιμη για την επίλυση του προβλήματος. 11. Να εκφράζονται χρησιμοποιώντας σωστά τη μαθηματική γλώσσα και το συμβολισμό. 2 3 1 2 1 3-7-

ΕΝΔΕΙΚΤΙΚΟ ΠΑΡΑΔΕΙΓΜΑ 2 ΜΑΘΗΜΑ ΤΥΠΟΣ ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ του Π.Σ. των οποίων η υλοποίηση ελέγχεται μέσω Εκφώνηση Δραστηριότητας Μαθηματικά: Άλγεβρα ΓΕΛ Πρ8: Ορίζουν αλγεβρικά την απόλυτη τιμή συνδέοντάς την με τη γεωμετρική ερμηνεία της. Ε4: Επιλύουν εξισώσεις 1 ου βαθμού (π.χ. ρητές, με απόλυτες τιμές) εφαρμόζοντας ιδιότητες των πράξεων και της ισότητας των πραγματικών αριθμών. Σε έναν άξονα τα σημεία Α, Β και Μ αντιστοιχούν στους αριθμούς 5, 9 και x αντίστοιχα. A) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων και. B) Αν ισχύει : i. Ποια γεωμετρική ιδιότητα του σημείου Μ αναγνωρίζετε; Να αιτιολογήσετε την απάντησή σας. ii. Με χρήση του άξονα, να προσδιορίσετε τον πραγματικό αριθμό x που παριστάνει το σημείο Μ. Να επιβεβαιώσετε με αλγεβρικό τρόπο την απάντησή σας. Ενδεικτική Απάντηση A) Η παράσταση παριστάνει την απόσταση των αριθμών x και 5 πάνω στον άξονα, δηλαδή το μήκος του τμήματος ΑΜ. Όμοια, η παράσταση παριστάνει την απόσταση των αριθμών x και 9 πάνω στον άξονα, δηλαδή το μήκος του τμήματος ΒΜ. B) i) το σημείο Μ είναι το μέσο του τμήματος ΑΒ. ii) Με βάση τον άξονα, το σημείο Μ αντιστοιχεί στον αριθμό x = 7. ΘΕΜΑ 4 ΓΝΩΣΤΙΚΗ ΑΠΑΙΤΗΣΗ (4, 1), (4, 10), (4, 11) 1. Να προσαρμόζουν τα διαθέσιμα μαθηματικά εργαλεία στις ιδιαιτερότητες της κατάστασης που διερευνούν. 8. Να εκφράζουν το νόημα μιας μαθηματικής έννοιας, διαδικασίας, αναπαράστασης με περισσότερους από έναν τρόπους. 11. Να επιχειρηματολογούν για τις επιλογές τους χρησιμοποιώντας σωστά τη μαθηματική γλώσσα και τη μαθηματική λογική, σε περισσότερα από ένα πλαίσια (π.χ. αλγεβρικό, γεωμετρικό) -8-