Nuclear Data Sheets for A = 102

Σχετικά έγγραφα
Nuclear Data Sheets for A = 110 *

Nuclear Data Sheets for A = 84 *

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Nuclear Physics 5. Name: Date: 8 (1)

Approximation of distance between locations on earth given by latitude and longitude

5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Homework 3 Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Hadronic Tau Decays at BaBar

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

CE 530 Molecular Simulation

DuPont Suva 95 Refrigerant

2 Composition. Invertible Mappings

Assalamu `alaikum wr. wb.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Finite Field Problems: Solutions

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Μηχανική Μάθηση Hypothesis Testing

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

the total number of electrons passing through the lamp.

Section 7.6 Double and Half Angle Formulas

NUCLEAR WALLET CARDS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Other Test Constructions: Likelihood Ratio & Bayes Tests

EE512: Error Control Coding

Σπανό Ιωάννη Α.Μ. 148

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

C.S. 430 Assignment 6, Sample Solutions

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Calculating the propagation delay of coaxial cable

Every set of first-order formulas is equivalent to an independent set

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Matrices and Determinants

Second Order RLC Filters

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Electronic Supplementary Information:

NUCLEAR WALLET CARDS

NUCLEAR WALLET CARDS

Math221: HW# 1 solutions

Instruction Execution Times

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria. Memo CP-D/599

Αναερόβια Φυσική Κατάσταση

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Inverse trigonometric functions & General Solution of Trigonometric Equations

[1] P Q. Fig. 3.1

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Biodiesel quality and EN 14214:2012

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

( ) 2 and compare to M.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

derivation of the Laplacian from rectangular to spherical coordinates

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Strain gauge and rosettes

Electronic structure and spectroscopy of HBr and HBr +

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Variational Wavefunction for the Helium Atom

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

ICTR 2017 Congress evaluation A. General assessment

Concrete Mathematics Exercises from 30 September 2016

The Simply Typed Lambda Calculus

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

5.4 The Poisson Distribution.

TMA4115 Matematikk 3

6.3 Forecasting ARMA processes

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

Correction Table for an Alcoholometer Calibrated at 20 o C

Solutions to Exercise Sheet 5

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Transcript:

Nuclear Data Sheets 110 (2009) 1745 1915 www.elsevier.com/locate/nds Nuclear Data Sheets for A = 102 D. DE FRENNE University Ghent Vakgroep Subatomaire en Stralingsfysica Proeftuinstraat 86, B 9000 Gent, Belgium Under Subcontract 121797 with National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973 (Received April 14, 2008; Revised February 23, 2009) Abstract: The 1998 evaluation on mass A=102 (1998De15) has been revised, taking into account all data available before december 2008. Detailed experimental information is presented from the neutron rich nucleus 102 Rb to the neutron deficient 102 Sn nucleus. No information on excited states of 102 Rb is available and very scarce for 102 Sr Especially new (HI,xnγ) data sets for several nuclides have been evaluated and new and more accurate data for γ intensities and multipolarities obtained. For 102 Ru very precise new data of the Budapest (n,γ) collaboration have been included.a new and very elaborated decay scheme for 102 In is obtained. Isomerism in 102 Y and 102 Nb needs further investigation due to conflicting results. General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/ndspolicies.pdf. General Comments: The authors would like to thank B. Singh and the McMaster NDP group for the use of all XUNDL files they prepared for A=102. Cutoff Date: December 31, 2008. 0090-3752/$ see front matter 2009 Published by Elsevier Inc. doi:10.1016/j.nds.2009.06.002

NUCLEAR DATA SHEETS Index for A = 102 Nuclide Data Type Page Nuclide Data Type Page Skeleton Scheme for A=102 1748 102 Rb Adopted Levels 1750 102 Sr Adopted Levels, Gammas 1751 102 Rb β Decay 1751 102 Y Adopted Levels, Gammas 1752 102 Sr β Decay 1753 102 Zr Adopted Levels, Gammas 1755 102 Y β Decay (0.36 s) 1760 102 Y β Decay (0.298 s) 1761 103 Y β n Decay 1761 248 Cm SF Decay 1762 252 Cf SF Decay 1762 235 U(n,F) 1764 102 Ag (HI,xnγ) 1860 102 Cd Adopted Levels, Gammas 1866 102 In ε Decay 1881 103 Sn εp Decay: 7.0 s 1894 (HI,xnγ) 1894 102 In Adopted Levels, Gammas 1899 102 Sn ε Decay 1903 50 Cr( 58 Ni,αpnγ) 1904 54 Fe( 58 Ni,2αnpγ) 1907 102 Sn Adopted Levels, Gammas 1908 106 Te α Decay 1908 (HI,xnγ) 1909 238 U(α,Fγ) 1765 102 Nb Adopted Levels, Gammas 1767 102 Zr β Decay: 2.9 s 1770 252 Cf SF Decay 1772 102 Mo Adopted Levels, Gammas 1774 102 Nb β Decay (4.3 s) 1778 102 Nb β Decay (1.3 s) 1780 248 Cm, 252 Cf SF Decay 1781 100 Mo(t,p) 1781 100 Mo(t,pγ) 1782 100 Mo( 18 O, 16 Oγ) 1782 168 Er( 30 Si,Xγ) 1783 235 U(n,F) 1783 238 U(α,Fγ) 1784 102 Tc Adopted Levels, Gammas 1785 102 Mo β Decay 1786 102 Tc IT Decay 1787 100 Mo( 3 He,p), 104 Ru(d,α) 1787 102 Ru Adopted Levels, Gammas 1789 102 Tc β Decay (4.35 min) 1797 102 Rh ε Decay (207.3 d) 1798 102 Rh ε Decay (3.742 y) 1800 96 Zr( 9 Be,3nγ) 1802 96 Zr( 10 B,p3nγ) 1802 96 Zr( 13 C,α3nγ) 1803 100 Mo( 3 He,n) 1806 100 Mo(α,2nγ) 1806 100 Mo( 7 Li,p4nγ),( 7 Li,d3nγ)... 1807 100 Mo( 12 C, 10 Be) 1808 101 Ru(n,γ) E=thermal 1808 101 Ru(n,γ) E=resonance 1809 101 Ru(d,p) 1810 102 Ru(d,d') 1811 Coulomb Excitation 1811 162 Dy( 36 S,F) 1812 102 Rh Adopted Levels, Gammas 1813 102 Rh IT Decay 1820 70 Zn( 36 S,p3nγ) 1820 98 Mo( 7 Li,3nγ) 1825 102 Ru(p,nγ) 1827 103 Rh(p,d) 1829 102 Pd Adopted Levels, Gammas 1830 102 Rh β Decay (207.3 d) 1837 102 Ag ε Decay (12.9 min) 1837 102 Ag ε Decay (7.7 min) 1841 76 Ge( 34 S,α4nγ) 1843 92 Zr( 13 C,3nγ) 1845 92 Zr( 13 C,3nγ), 94 Zr( 12 C,4nγ) 1847 99 Ru(α,nγ), 100 Ru(α,2nγ) 1849 102 Pd(p,p'γ) 1851 Coulomb Excitation 1852 103 Rh(p,2nγ) 1853 102 Ag Adopted Levels, Gammas 1855 102 Ag IT Decay 1858 102 Cd ε Decay 1858 1746

Ground State and Isomeric Level Properties 0.23 s 0.0 Nuclide Level Jπ T 1/2 Decay Modes 102 Rb 0.0 37 ms 3 %β =100; %β n=18 8 S(n) 2786 SY 0.0 S(p) 16800 200 37 ms 102 3 7 Rb 65 S(α) 10170 SY 100% Q =14770 SY S(n) 5740 170 S(p) 13770 150 10 3 3 9 Y 64 Q(β n)=3490 90?% 102 Sr 0.0 0+ 69 ms 6 %β =100; %β n=5.5 15 102 Y 0.0+x high J 0.36 s 4 %β =100; %β n=4.9 12 0.0+y low J 0.298 s 9 %β =100; %β n=4.9 12 102 Zr 0.0 0+ 2.9 s 2 %β =100 102 Nb 0.0 (4+) 4.3 s 4 %β =100 0.0+x 1+ 1.3 s 2 %β =100 102 Mo 0.0 0+ 11.3 min 2 %β =100 102 Tc 0.0 1+ 5.28 s 15 %β =100 0.0+x (4,5) 4.35 min 7 %β =98 2; %IT=2 2 102 Ru 0.0 0+ stable 102 Rh 0.0 (1,2 ) 207.3 d 17 %β =22 5; %ε+%β + =78 5 1748 0+ 0.0 S(α) 10010 100 69 ms 102 3 8 Sr 64 S(n) 5050 130 100% Q =8810 70 LOWJ 0.0+y HIGHJ 0.0+x S(p) 14120 110 0.36 s S(α) 7520 60 102 3 9 Y 63 S(n) 6356 59 100% Q =9850 70 0+ 0.0 S(p) 10180 50 S(α) 6300 50 S(n) 5480 40 S(p) 11904 27 2.9 s 102 4 0 Zr 62 100% 1+ 0.0+x S(n) 8116 20 Q =4610 30 (4+) 0.0 4.3 s 102 4 1 Nb 61 S(α) 4695 29 100% Q =7210 40 140.73 6(+) 3.742 y 10 %ε+%β + =99.767 24; %IT=0.233 24 102 Pd 0.0 0+ stable 102 Ag 0.0 5(+) 12.9 min 3 %ε+%β + =100 9.40 2+ 7.7 min 5 %IT=49 5; %ε+%β + =51 5 102 Cd 0.0 0+ 5.5 min 5 %ε+%β + =100 102 In 0.0 (6+) 23.3 s 1 %ε+%β + =100; %β + p=9.3 10 3 13 102 Sn 0.0 0+ 3.8 s 2 %ε+%β + =100 103 Y 0.0 0.23 s 2 %β n=?;... 103 Sn 0.0 (5/2+) 7.0 s 2 %εp=1.2 1;... 106 Te 0.0 0+ 60 μs 30 %α=100 S(p) 8343 10 S(n) 6301 26 S(α) 3462 11 S(p) 10051 24 S(n) 9219.74 5 Skeleton Scheme for A=102 NUCLEAR DATA SHEETS 0+ 0.0 11.3 min 102 4 2 Mo 60 (4,5) 0.0+x 1+ 0.0 5.28 s 100% 102 4 3 Tc 59 S(α) 3411.2 16 Q =1008 22 100% Q =4532 9 0+ 0.0 10 4 2 4 Ru 58

(5/2+) 0.0 7.0 s 103 5 0 Sn 53 1.2% 1 Q(εp)=5420 SY 0+ 0.0 60 μs 106 5 2 Te 54 100% Q α =4290 9 S(n) 13440 SY 1749 S(n) 7438 18 S(p) 6114 5 S(α) 2772 6 6(+) 140.73 (1,2 ) 0.0 207.3 d S(n) 10568 18 S(p) 7806 17 S(α) 2126 7 S(n) 9110 110 S(p) 4130 30 S(α) 1515 30 2+ 9.40 5(+) 0.0 12.9 min 102 4 7 Ag 55 100% Q + =5660 30 S(n) 10167 SY S(n) 12000 150 S(p) 2250 190 S(α) 74 13 (6+) 0.0 23.3 s S(p) 5740 110 102 4 9 In 53 100% Q + =8970 110 S(α) 802 36 0+ 0.0 5.5 min 102 4 8 Cd 54 100% Q + =2587 8 S(p) 3605 SY 0+ 0.0 3.8 s 102 5 0 Sn 52 100% Q + =5780 700 Skeleton Scheme for A=102 (continued) NUCLEAR DATA SHEETS 78% 5 10 4 2 5 Rh 57 Q =1150 5 Q + =2323 5 22% 5 0+ 0.0 10 4 2 6 Pd 56

102 37 Rb 10 65 NUCLEAR DATA SHEETS 2 37 Rb 65 Adopted Levels Q(β )=14770 SY; S(n)=2786 SY 2003Au03. ΔQ(β )=520;ΔN=530. 1987PfZX: 600 MeV p induced fission of 238 U. 1995Lh03: mass separated source from 1 GeV p on uranium target. Although one could expect isomerism in this Rb nucleus up to new only one half life is mentioned in the literature. 102 Rb Levels E(level) T 1/2 Comments 0.0 37 ms 3 %β =100; %β n=18 8. %β n,t 1/2 : From 1987PfZX. 1750

102 38 Sr 10 64 NUCLEAR DATA SHEETS 2 38 Sr 64 Adopted Levels, Gammas Q(β )=8810 70; S(n)=5740 170; S(p)=16800 200; Q(α)= 10170 SY 2003Au03. 1987PfZX: 600 MeV p induced fission of 238 U. 1987PfZX,1986Hi02: mass separated source from 235 U(n,F). 102 Sr Levels Cross Reference (XREF) Flags A 102 Rb β Decay E(level) Jπ XREF T 1/2 Comments 0.0 0+ A 69 ms 6 %β =100; %β n=5.5 15. %β n: Weighted average of 4.8% 23 (1986ReZS) and 6.0% 20 (1987PfZX. T 1/2 : weighted average of 72 ms 10 (1987PfZX), 69 ms 15 (1986ReZS) and 68 ms 8 (1986Hi02). T 1/2 from γ decay of 93γ and 243γ in 102 Sr decay (1986Hi02), β delayed neutron decay (1987PfZX) or growth and decay of β counting rate (1986ReZS). 126.0 2 (2+) A 3.0 ns 12 E(level): from 1995Lh03. T 1/2 : by βγ(t) and centroid shift method (1995Lh03). Jπ: from energy systematics of first 2+ state in other even strontium isotopes. γ( 102 Sr) E(level) Eγ Iγ Comments 126.0 126.0 2 100 Eγ: from 1995Lh03. 102 Rb β Decay 1995Lh03 Parent 102 Rb: E=0.0; Jπ=?; T 1/2 =37 ms 3; Q(g.s.)=15100 syst; %β decay=100. Source: from mass separated fragments of fission of uranium carbide with 1 GeV p. Measured: Eγ, βγ(t), T 1/2. Deduced: 102 Sr levels. 102 Sr Levels E(level) Jπ T 1/2 Comments 0.0 0+ 126.0 2 (2+) 3.0 ns 12 T 1/2 : by βγ(t) and centroid shift method. Jπ: from energy systematics of first 2+ state in other even strontium isotopes. γ( 102 Sr) Eγ E(level) 126.0 2 126.0 Decay Scheme 0.0 10 3 2 7 Rb 65 37 ms Intensity: relative Iγ %β =100 Q =15100 SY (2+) 126.0 126.0 3.0 ns 0+ 0.0 10 3 2 8 Sr 64 1751

102 39 Y 63 1 NUCLEAR DATA SHEETS 102 39 Y 63 1 Adopted Levels, Gammas Q(β )=9850 70; S(n)=5050 130; S(p)=13770 150; Q(α)= 1.001 10 4 10 2003Au03. 102 Y Levels From 2007Ch07: μ=+2.34 5 for Jπ=(2) and μ=+2.68 1 for Jπ=(3). The spectroscopic electric quadrupole moment Q(s)=+1.17 13 for Jπ=(2) and Q(s)=+1.36 16 for Jπ=(3). Cross Reference (XREF) Flags A 102 Sr β Decay E(level) Jπ XREF T 1/2 Comments 0.0+x HIGHJ A 0.36 s 4 %β =100; %β n=4.9 12. %β n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09). Should be considered as a combined value for both isomers. E(level): from systematics in lighter Y isotopes, two 102 Y isomers are expected. Experimental evidence for the existence of two isomers is based on a different I(152γ)/I(326γ) ratio obtained in the studies of 1983Sh13 and 1988HiZQ. Jπ probably high because production method via 235 U(n,F) favors high spin isomer. Th high spin isomer is directly produced in the fission reaction. See also general comment. T 1/2 : from 1983Sh13, γ(t). Contamination of T 1/2 by low spin isomer cannot be excluded. Others: 0.27 s 7 (1981HiZX), 0.5 s 1, β delayed neutron decay (1980KrZY). 0.44 s 6 (1986ReZS). 0.9 s 3 (1974GrZN) is probably incorrect. 0.0+y LOWJ A 0.298 s 9 %β =100; %β n=4.9 12. %β n: weighted average of 6.0 17 (1986ReZS) and 4.0 15 (1996Me09) should be considered as a combined value for both isomers. E(level): the assignment based on mass separated samples of A=102 produced in U(n,F) with 102 Sr as major activity. As a consequence primarily the decay of the low spin isomer of 102 Y is fed in the β decay of 102 Sr and as such indirectly produced. T 1/2 : Weighted average of 0.30 s 6 (1991Hi02) and 0.29 s 2 (1996Me09). Slight contamination of T 1/2 by high spin isomer cannot be excluded. Other: 0.44 s 6 (1986ReZS). 93.80+y 6 A 208.23+y 9 A 243.85+y 6 1+ A 311.70+y 9 A 497.81+y 10 A 645.4+y? 4 A 898.63+y 22 A 1347. 92+y 14 1+ A 1689. 58+y 15 1+ A From 102 Sr β decay. As Jπ=0+ for 102 Sr g.s., very likely the lowest level observed in the β decay of 102 Sr is the low spin isomer of 102 Y. The energies of the observed levels are referred to the excitation energy of the low spin 102 Y isomer However in a recent paper of (2007Ch07) 2 states with J=(2) and (3) are mentioned. No high spin state mentioned. So new experiments needed to solve that problem of isomerism. That means that the results given here should be treated with great caution. Based on log ft in 102 Sr β decay which indicates allowed β transition. Jπ=1+ from log ft<4.5. γ( 102 Y) E(level) Eγ Iγ E(level) Eγ Iγ E(level) Eγ Iγ 93.80+y 93.89 8 100 208.23+y 114.46 15 32 3 208.16 13 100 7 243.85+y 35.58 18 1.0 4 150.15 10 34.0 18 243.80 8 100 5 311.70+y 67.89 14 100 6 103.40 20 12.1 20 311.70+y 217.92 15 47 4 311.60 20 18 3 497.81+y 186.15 15 29.4 29 253.95 15 100 6 404.20 20 4.6 21 498.4 6 7 4 645.4+y? 437.2 3 100 898.63+y 655.1 3 95 21 898.63+y 804.5 3 100 24 1347.92+y 850.40 20 35 6 1036.00 20 74 9 1104.00 20 100 11 1689. 58+y 1191. 80 20 100 12 1378.1 3 38 10 1445.5 3 36 8 1689.4 4 18 6 From 102 Sr β decay. 1752

102 39 Y 63 2 NUCLEAR DATA SHEETS 102 39 Y 63 2 102 Sr β Decay 1986Hi02 Parent 102 Sr: E=0.0; Jπ=0+; T 1/2 =69 ms 6; Q(g.s.)=8810 70; %β decay=100. 102 Sr %β decay: From absolute intensity I(243γ)=50 15 per 100 102 Tc g.s. decays and delayed neutron emission probabilities of 4.8% 23 for 102 Sr and 6.0% 12 for 102 Y. Unobserved 3% of 102 Sr decay not taken into account. An absolute intensity for the 475γ of 6.7 per 100 decays of the 102 Tc 1+ isomer was used (1986Hi02). Mass assignment from mass separated A=102 source from 235 U(n,F). Z assignment from yield, systematics, T 1/2 and level scheme. Measured: Eγ, Iγ, γγ, T 1/2. Deduced: 102 Y levels, log ft, Jπ. Structure information in relation with this work can be found in 1986Pe04. 102 Y Levels log ft due to the incompleteness of the decay scheme due to the large Q value all log ft values should be considered as lower limits. E(level) Jπ T 1/2 E(level) Jπ 0.0 0.36 s 4 93.80 6 208.23 9 243.85 6 1+ 311.70 9 497.81 10 645.4? 4 898.63 22 1347. 92 14 1+ 1689. 58 15 1+ log ft<4.5 suggests Jπ 1+. β radiations From γ ray transition intensity balance. M1 multipolarity assumed for all low energy γ rays, except the 93γ for which E2 was assumed because otherwise negative level feeding. As a consequence of that assumption the logft values are only approximate values and should be treated as such 3% of 102 Sr decay unobserved. Eβ E(level) Iβ Log ft Comments (7120 70) 1689. 58 17 6 4.4 3 av Eβ=3240 386. (7460 70) 1347. 92 21 7 4.4 3 av Eβ=3404 386. (7910 70) 898.63 3.9 14 5.3 3 av Eβ=3620 386. (8160 70) 645.4? 1.0 5 5.9 3 av Eβ=3742 385. (8310 70) 497.81 5.2 23 5.3 3 av Eβ=3813 385. (8500 70) 311.70 3.9 20 5.4 3 av Eβ=3903 385. (8570 70) 243.85 35 12 4.49 25 av Eβ=3935 385. (8600 70) 208.23 6 4 5.3 4 av Eβ=3952 385. (8720 70) 93.80 3.3 24 5.6 4 av Eβ=4007 385. (8810 70) 0.0 <3 >5.6 av Eβ=4052 385. Absolute intensity per 100 decays. γ( 102 Y) Eγ E(level) Iγ Mult. α Eγ E(level) Iγ 35.58 18 243.85 1.0 14 [M1] 3.53 67.89 14 311.70 14.9 9 [M1] 0.542 93.89 8 93.80 25.3 14 [E2] 1.348 103.4 2 311.70 1.8 3 [M1] 0. 1660 114.46 15 208.23 4.7 5 [M1] 0. 1256 150.15 10 243.85 34.0 18 [M1] 0. 0608 186.15 15 497.81 7.0 7 [M1] 0. 0344 208.16 13 208.23 14.9 11 [M1] 0. 0257 217.92 15 311.70 7.0 6 [M1] 0. 02285 243.80 8 243.85 100 5 [M1] 0. 01713 253.95 15 497.81 23.8 15 [M1] 0. 01543 311.6 2 311.70 2.7 5 404.2 2 497.81 1.1 5 437.2 3 645.4? 1.9 7 498.4 6 497.81 1.6 9 655.1 3 898.63 3.6 8 804.5 3 898.63 3.8 9 x 814.4 3 5.3 10 850.4 2 1347.92 6.7 11 1036. 0 2 1347.92 14.0 18 1104. 0 2 1347.92 19 2 1191. 8 2 1689.58 17 2 1378. 1 3 1689.58 6.5 17 1445. 5 3 1689.58 6.1 14 1689. 4 4 1689.58 3.0 11 For absolute intensity per 100 decays, multiply by 0.53 16. x γ ray not placed in level scheme. 1753

102 39 Y 63 3 NUCLEAR DATA SHEETS 102 39 Y 63 3 102 Sr β Decay 1986Hi02 (continued) Decay Scheme 0+ 0.0 10 3 2 8 Sr 64 69 ms Intensities: relative Iγ %β =100 Q =8810 70 Iβ Log ft 17 4.4 21 4.4 3.9 5.3 1.0 5.9 5.2 5.3 3.9 5.4 35 4.49 6 5.3 3.3 5.6 <3 >5.6 1689.4 3.0 1445.5 6.1 1378.1 6.5 1191.8 17 1+ 1689.58 1+ 1347.92 1104.0 19 1036.0 14.0 850.4 6.7 437.2 1.9 498.4 1.6 404.2 1.1 253.95 [M1] 23.8 186.15 [M1] 7.0 804.5 3.8 655.1 3.6 898.63 645.4 497.81 311.70 1+ 243.85 10 3 2 9 Y 63 150.15 [M1] 34.0 35.58 [M1] 1.0 208.16 [M1] 14.9 114.46 [M1] 4.7 93.89 [E2] 25.3 311.6 2.7 217.92 [M1] 7.0 103.4 [M1] 1.8 67.89 [M1] 14.9 243.80 [M1] 100 208.23 93.80 0.0 0.36 s 1754

102 40 Zr 62 1 NUCLEAR DATA SHEETS 102 40 Zr 62 1 Adopted Levels, Gammas Q(β )=4610 30; S(n)=6356 59; S(p)=14120 110; Q(α)= 7520 60 2003Au03. Q (g.s.)=4719 kev 15 en Q (isomer)=4626 kev 23 (2007Ri01) 2007Ri01 supersedes 2006Ha23. Other experimental data: Fission yields: 1987GuZX. 102 Zr Levels Band from 2008Li45. Cross Reference (XREF) Flags A 103 Y β n Decay B 102 Y β Decay (0.36 s) C 102 Y β Decay (0.298 s) D 235 U(n,F) E 238 U(α,Fγ) F 248 Cm SF Decay G 252 Cf SF Decay E(level) Jπ XREF T 1/2 Comments 0.0 # 0+ ABCDEFG 2.9 s 2 %β =100. <r 2 > 1/2 =4.5690 fm 218 (2004An14, evaluation). T 1/2 : from 1976Ah06; half life was measured by following the growth and decay of the niobium daughter in zirconium samples. 151.78 # 11 2+ BCDEFG 1.8 ns 4 Jπ: 151.9γ is (E2) as seen in 235 U(n,F). 478.28 # 16 4+ BCDEFG T 1/2 : From (2001Ra27). Others: 1.91 NS 25 from 252 Cf, 254 Cf SF decay by recoil distance Doppler shift method. 3.0 NS from γγγ(t) in 252 Cf(SF)(2005Fo17)and 2.76 NS 36 from the technique of time integral perturbed angular correlations using 252Cf SF and 248 Cu SF sources (2004Sm04). β 2 =0.427 44(2001Ra27). μ=+0.44 10. μ: From G=+0.22 5 2004Sm04, 2005Sm08 with the technique of time integral perturbed angular correlations using 252Cf SF and 248 C SF decays. 894.79 21 (0+) C Jπ: γ decay to 2+ but not to 4+ suggests (0+) for this level. (1+) cannot be 964.78 # 24 6+ B DEFG 1036. 3 e 4 (2+) FG 1159. 50 22 C excluded but 0+ favored from systematics. 1211. 05 13 (2+) BC Jπ: based on systematics: from γ decay to 0+ and 2+. 1242. 3 e 3 (3+) B EFG 1386. 7 c 6 (4+) 1538. 1 e 5 (4+) FG 1594. 9 # 6 8+ EFG 1.39 ps 21 1652. 8 d 5 (6+) G 1661. 8 & 4 (5 ) E G 1793. 3 7 (3,4) FG 1821. 1 @ 4 (4 ) EFG 1822. 5? 8 B 1829. 4 c 6 (6+) G 1920. 7 6 1932. 6 a (8+) E 1980. 8 & 6 (5 ) B EFG 2092. 8 & 6 (7 ) E G 2175. 0 @ 9 (6 ) EFG 2184. 0 5 (8+) G 2351. 5 # 8 10+ EFG 0.53 ps 10 2373. 3 c 4 (8+) FG 2403. 0 @ 8 (7 ) EFG 2465. 8 a 5 (10+) G 2663. 9 & 5 (9 ) E G 2665. 8 @ 8 (8 ) EFG 2825. 8 d 5 (10+) G 2924. 7 b 6 (7) FG 2961. 4 @ 9 (9 ) EFG 3033. 3 c 5 (10+) G 3134. 2 a (12+) G 3183. 6 b 6 (8) G 3212. 3 # 9 12+ E G 0.28 ps 4 3293. 0 & (10 ) E Continued on next page (footnotes at end of table) 1755

102 40 Zr 62 2 NUCLEAR DATA SHEETS 102 40 Zr 62 2 Adopted Levels, Gammas (continued) 102 Zr Levels (continued) E(level) Jπ XREF E(level) Jπ XREF E(level) Jπ XREF 3371. 0 & (11 ) E G 3475. 8 b 6 (9) G 3567. 5 d 6 (12+) G 3802. 0 b 6 (10) G 3925. 7 a (14+) G 4153. 4 # 14+ E G 4162. 2 b 6 (11) G 4205. 2 & (13 ) E G 4828. 5 a (16+) E 5160. 7 @ (15 ) E 5169. 0 # 16+ E G 6267. 1 # 18+ E 7451. 7 # 20+ E Assignment is based on assumption of observed band structure in 252 Cf, 248 Cm SF decay and 238 U(α,Fγ), systematics and γ decay pattern. Least squares procedure was used to calculate level energies based on adopted gammas. T 1/2 from short lived isomers from Doppler profile method (1996Sm04), unless specified otherwise. # (A): g.s. band. @ (B): ν5/2[532] ν3/2[411]. & (C): ν5/2[532] 5/2[413]. a (D): Band based on (8+). b (E): ΔJ=1 band based on 7. Possible configurations=ν9/2[404] ν5/2[532] or ν9/2[514] ν5/2[413] for 7 ; ν9/2[404] ν5/2[413] or ν9/2[514] ν5/2[532] for 7+. c (F): ν3/2[411] ν5/2[413]. d (G): ν9/2[404] ν3/2[411]. Alternate configuration=ν9/2[514] ν3/2[541]. e (H): Band based on (2+). γ( 102 Zr) E(level) Eγ Iγ Mult. α Comments 151.78 151.75 8 100 (E2) 0.243 4 B(E2)(W.u.)=105 14. 478.28 326.48 21 100 894.79 743.01 18 100 964.78 486.54 19 100 1036.3 884.5 5 1036.4 5 1159. 50 1159. 49 22 100 1211. 05 1059. 21 18 73 8 1211.08 16 100 10 1242.3 764.0 5 1090.8 4 1386.7 908.4 5 100 16 A 2 = 0.073 27, A 4 =+0.149 40 for 908.0 326.5 γγ cascade consistent with 4 >4 >2 cascade with mult=q for 4 > 4 transition. 1234.5 43 14 1538.1 1059.7 5 100 1594.9 630.1 5 100 1652.8 687.8 33 11 1174.4 5 100 15 1661.8 275 10 697.2 5 100 1183.3 5 23 1793.3 551.1 5.4 19 757.0 5 100 16 1821.1 27.2 10 282.8 5 100 579.0 4 84 1342.5 5 3.6 1822.5? 579.4 5 100 1829.4 864.6 5 100 1920.7 1442.4 5 100 1932.6 968.7 100 1980.8 159.7 4 100 2092.8 431.0 5 100 498.1 10 1126.8 Eγ: Only observed in 238 U(α,Fγ). 2175.0 193.7 5 2184.0 531.8 10 100 5 1219.6 5 55 16 Continued on next page (footnotes at end of table) 1756

102 40 Zr 62 3 NUCLEAR DATA SHEETS 102 40 Zr 62 3 Adopted Levels, Gammas (continued) γ( 102 Zr) (continued) E(level) Eγ Iγ E(level) Eγ Iγ E(level) Eγ Iγ 2351.5 756.6 5 100 2373.3 544.0 100 66 777.9 47 75 1408.4 52 85 2403.0 228.0 5 100 15 422.2 5 45 15 2465.8 533.5 100 13 870.4 41 13 2663.9 569.4 100 2665.8 262.6 5 100 28 490.8 5 72 22 2825.8 641.3 100 15 1230.4 30 10 2924.7 1959.9 5 100 2961.4 296.4 5 90 30 559.0 5 100 30 3033.3 660.0 100 3134.2 669.3 100 3183.6 257.2 100 3212.3 860.8 5 100 3293.0 331.5 628.4 3371.0 706.9 100 3475.8 292.2 100 33 549.4 67 22 3567.5 741.7 100 3802.0 326.2 100 25 618.4 25 8 3925.7 791.5 100 4153.4 941.4 100 4162.2 360.4 100 35 686.2 50 15 4205.2 833.8 100 4828.5 902.8 100 5160.7 955.5 100 5169.0 1015.6 100 6267.1 1098.1 100 7451.7 1184.6 100 Weighted averages of gammas from 252 Cf, 242 Pu SF decay, and 102 Y decays if possible. Otherwise from 252 Cf, 242 Pu SF decay. Only observed in 238 U(α,Fγ). Placement of transition in the level scheme is uncertain. 1757

102 102 40 Zr 62 40 Zr 62-4 NUCLEAR DATA SHEETS -4 (A) g.s. band (B) ν5/2[532] ν3/2[411] (C) ν5/2[532] 5/2[413] (D) Band based on (8+) (E) ΔJ=1 band based on 7 (F) ν3/2[411] ν5/2[413] 20+ 7451.7 1185 18+ 6267.1 1098 16+ 5169.0 (15-) 5160.7 (16+) 4828.5 1016 14+ 4153.4 (13-) 4205.2 903 (11) 4162.2 834 (14+) 3925.7 (10) 360 3802.0 941 12+ 10+ 861 757 3212.3 2351.5 (9-) (8-) (7-) (6-) (4-) 296 263 228 2961.4 2665.8 2403.0 2175.0 1821.1 (11-) (10-) 707 628 (9-) 569 (7-) (5-) 3371.0 3293.0 2663.9 2092.8 1980.8 792 (12+) 669 (10+) 534 (8+) 3134.2 2465.8 1932.6 (9) (8) (7) 292 257 1960 3475.8 3183.6 2924.7 (10+) 660 (8+) (6+) 778 544 3033.3 2373.3 1829.4 8+ 1594.9 (5-) 1661.8 A A F 969 (4+) 1386.7 630 865 6+ 964.78 A A A 487 908 4+ 478.28 A 326 2+ 151.78 0+ 0 102 40 Zr 62 1758

102 102 40 Zr 62 40 Zr 62-5 NUCLEAR DATA SHEETS -5 (G) ν9/2[404] ν3/2[411] (H) Band based on (2+) (12+) 3567.5 742 (10+) 2825.8 (6+) 1652.8 (4+) 1538.1 (3+) 1242.3 (2+) 102 40 Zr 62 1036.3 1759

102 40 Zr 62 6 NUCLEAR DATA SHEETS 102 40 Zr 62 6 102 Y β Decay (0.36 s) 1991Hi02 Parent 102 Y: E=0.0+x; Jπ=?; T 1/2 =0.36 s 4; Q(g.s.)=9850 70; %β decay=100. 102 Y %β decay: No normalization possible due to incomplete data. Assignment: mass and charge separation of fission fragments from 235 U(n,F); (K x ray)γ coincidences. Measured: Eγ, Iγ, γγ, (K x ray)γ coin, T 1/2 deduced: 102 Zr levels. Others: 1991Hi02 supersedes 1974GrZN. From systematics, the existence of two Y isomers is expected. The production method ( 235 U(n,F)) favors the high spin isomer, so probably mainly the decay of the high spin 102 Y isomer has been observed by 1983Sh13. Existence of two 102 Y isomers has been confirmed by the different I(152γ)/I(326γ) ratios given by 1983Sh13 and 1991Hi02. However in a recent paper of 2007Ch07 a high spin isomer is not mentioned. 1992Ba28 performed β γ coincidences. 102 Zr Levels E(level) Jπ 0.0 0+ 151.77 13 2+ 478.41 20 4+ 965.2 6 6+ E(level) Jπ 1211. 04 13 (2+) 1243. 1? 6 1822. 5? 8 1982. 3 9 From a least squares procedure using measured gammas. From Adopted levels. γ( 102 Zr) Eγ E(level) Iγ Comments 151.73 14 151.77 79 10 159.8 1 1982.3 8.0 8 326.64 15 478.41 42 3 I(152γ)/I(326γ)=2.3 2. 486.8 2 965.2 6.7 11 579.4 2 1822.5? 28 3 1059. 21 18 1211.04 8 3 1091. 3 3 1243.1? 33 3 ΔEγ from 1983Sh13. 1211. 08 16 1211. 04 11 4 From 1991Hi02. Decay Scheme 0.0+x 10 3 2 9 Y 63 0.36 s Intensities: relative Iγ %β =100 Q (g.s.)=9850 70 1982.3 1822.5 1243.1 (2+) 1211.04 6+ 965.2 1091.3 33 1211.08 11 1059.21 8 486.8 6.7 159.8 8.0 579.4 28 4+ 478.41 2+ 151.77 0+ 0.0 326.64 42 151.73 79 10 4 2 0 Zr 62 1760

102 40 Zr 62 7 NUCLEAR DATA SHEETS 102 40 Zr 62 7 102 Y β Decay (0.298 s) 1991Hi02 Parent 102 Y: E=0.0+y; Jπ=?; T 1/2 =0.298 s 9; Q(g.s.)=9850 70; %β decay=100. 102 Y %β decay: No normalization possible due to incomplete data. Assignment: mass separated samples of A=102 from 235 U(n,F). 102 Sr was selected using a high temperature ionization source. The existence of a second 102 Y isomer is based mainly on a different I(152γ)/I(326γ) ratio for each isomer. Measured: Eγ, Iγ, γγ, T 1/2. Deduced: 102 Zr levels. Others: 1991Hi02 supersedes 1988HiZQ, 1989HiZY, 1974GrZN, 1992Ba28. performed β γ coincidences. 102 Zr Levels E(level) Jπ Comments 0.0 0+ 151.77 13 2+ 478.41 20 4+ 894.78 22 (0+) Jπ: γ decay to 2+ but not to 4+ suggests (0+) for this level. (1+) cannot be excluded. 1159. 50 22 1211. 04 13 (2+) Jπ: based on systematics: from γ decay to 0+ and 2+. From a least squares procedure using measured gammas. From Adopted levels. γ( 102 Zr) Eγ E(level) Iγ Eγ E(level) Iγ From 1991Hi02. 151.73 14 151.77 100 4 326.64 15 478.41 8.6 9 743.01 18 894.78 17 4 1059. 21 18 1211.04 29 3 1159. 49 22 1159.50 16.0 19 1211. 08 16 1211.04 40 4 Decay Scheme 0.0+y 10 3 2 9 Y 63 0.298 s Intensities: relative Iγ %β =100 Q (g.s.)=9850 70 (2+) 1211.04 1159.50 (0+) 894.78 1211.08 40 1059.21 29 1159.49 16.0 743.01 17 4+ 478.41 2+ 151.77 0+ 0.0 326.64 8.6 151.73 100 10 4 2 0 Zr 62 103 Y β n Decay 1996Me09 Parent 103 Y: E=0.0; Jπ=?; T 1/2 =0.23 s 2; Q(g.s.)=3490 90; %β n decay=? Production: Fission 235 U with H 2 beam. Measured:β decay half lives and production yields. 102 Zr Levels E(level) 0.0 1761

102 40 Zr 62 8 NUCLEAR DATA SHEETS 102 40 Zr 62 8 248 Cm SF Decay 1995Du10 Parent 248 Cm: E=0.0; Jπ=0+; T 1/2 =3.48 10 5 y 6; %SF decay=? 248 Cm T 1/2 : From 1989Ho24. Experiment performed at EUROGAM Daresbury. Measured Eγ, Iγ, γγγ,. 102 Zr Levels E(level) Jπ E(level) Jπ E(level) Jπ From adopted levels. 0.0 0+ 151.9 2+ 478.6 4+ 965.2 6+ 1036.4 (2+) 1242.4 (3+) 1538.1 (4+) 1596.0 8+ 1793.4 (3,4) 1821.3 (4 ) 1980.6 (5 ) 2174.7 (6 ) 2353 10+ 2402.8 (7 ) 2665.5 (8 ) 2962.8 (9 ) 3205 12+ γ( 102 Zr) E(level) Eγ E(level) Eγ Iγ E(level) Eγ Iγ 151.9 152 478.6 327 965.2 487 1036.4 885 1036 1242.4 764 1090 1538. 1 1060 1596.0 630.5 17 1 1793.4 757 1821.3 283 579 1343 1980.6 160 2174.7 194 354 2353 757 2402.8 228 422.5 1.5 5 2665.5 262.6 1.8 5 490.9 1.3 4 2962.8 297 560 3205 852 No uncertainties given. No values given. 252 Cf SF Decay Parent 252 Cf: E=0.0; Jπ=0+; T 1/2 =2.645 y 8; %SF decay=? 252 Cf T 1/2 : From 2003Au03. 2008Li45: Experiment performed at LBNL. Measured Eγ, Iγ, γγ, γγ(θ) using GAMMASPHERE array of 102 HPGe detectors with Compton suppression. 1997Ha64,1995HaZZ: 252 Cf, 242 Pu(SF): measured: SF decay data, Eγ, Iγ. Deduced: 102 Zr levels, Jπ, band structure. 1991Ho16,1990Ho12: 248 Cm SF. Measured: Eγ, Iγ, γγ. Deduced: 102 Zr levels, Jπ. 1995Du10: 248 Cm SF. Measured: Eγ, γγγ using eurogam. Deduced: 102 Zr levels Jπ, neutron pairing strength. 1971Ch44: measured: fragment kinetic energies, Eγ, Iγ; (fission)γ, (fission)x ray, γγ and (K x ray)γ coin. 1971Ch44 gives also intensities per fission and K x ray per fission. The results of 1980ChZM are based on 254 Cf SF decay. Others: 1970Ch11, 1970Wa05, 1971Ho29, 1972Ho08, 1972Wi15, 1974ClZX. 102 Zr Levels Band from 2008Li45. E(level) Jπ T 1/2 Comments 0.0 # 0+ 151.8 # 3 2+ 1.91 ns 25 T 1/2 : weighted average of 1.71 ns 14 (1980ChZM) and 2.21 ns 17 (1974JaZN), both determined by recoil distance Doppler shift method. Others: 0.86 ns 18, recoil distance Doppler (1970Ch11); 1.7 ns 4, Ice(t) (1970Wa05). The value 3.17 ns 25 from 1974JaYY is assumed to be τ, rather than T 1/2, and is then identical to T 1/2 =2.21 ns 17 of 1974JaZN. 478.3 # 3 4+ 964.9 # 4 6+ 1036. 11 e 24 (2+) 1242. 2 e 3 (3+) 1386. 3 c 4 (4+) 1538. 0 e 4 (4+) 1595. 4 # 4 8+ 1.39 ps 21 1652. 7 d 4 (6+) Continued on next page (footnotes at end of table) 1762

102 40 Zr 62 9 NUCLEAR DATA SHEETS 102 40 Zr 62 9 252 Cf SF Decay (continued) 102 Zr Levels (continued) E(level) Jπ T 1/2 E(level) Jπ T 1/2 E(level) Jπ 1661. 9 & 4 (5 ) 1793. 3 4 (3,4) 1820. 8 @ 4 (4 ) 1829. 3 c 4 (6+) 1932. 3 a 5 (8+) 1980. 7 @ 5 (5 ) 2093. 2 & 4 (7 ) 2174. 9 @ 5 (6 ) 2184. 5 d 4 (8+) 2351. 9 # 5 10+ 0.53 ps 10 2373. 3 c 4 (8+) 2403. 2 @ 5 (7 ) 2465. 8 a 5 (10+) 2663. 9 & 5 (9 ) 2665. 8 @ 5 (8 ) 2825. 8 d 5 (10+) 2926. 4 b 5 (7) 2962. 2 @ 5 (9 ) 3033. 3 c 5 (10+) 3133. 8 a 6 (12+) 3183. 6 b 6 (8) 3212. 5 # 6 12+ 0.28 ps 4 3371. 2 & 6 (11 ) 3475. 8 b 6 (9) 3567. 5 d 6 (12+) 3802. 0 b 6 (10) 3925. 3 a 6 (14+) 4153. 9 # 7 14+ 4162. 2 b 6 (11) 4205. 2 & 7 (13 ) 4828. 1 a 7 (16+) 5168. 5 # 7 16+ From least squares fit to Eγ's (by evaluator) using uncertainty of 0.3 kev for each γ ray. From γγ, γγ(θ), observed band structure and systematics, values the same as the adopted ones. From Doppler profile method (1996Sm04), unless otherwise specified of 0.3 kev for each γ ray. # (A): g.s. band. @ (B): ν5/2[532] ν3/2[411]. & (C): ν5/2[532] 5/2[413]. a (D): Band based on (8+). b (E): ΔJ=1 band based on 7. Possible configurations=ν9/2[404] ν5/2[532] or ν9/2[514] ν5/2[413] for 7 ; ν9/2[404] ν5/2[413] or ν9/2[514] ν5/2[532] for 7+. c (F): ν3/2[411] ν5/2[413]. d (G): ν9/2[404] ν3/2[411]. Alternate configuration=ν9/2[514] ν3/2[541]. e (H): Band based on (2+). γ( 102 Zr) E(level) Eγ Iγ Comments 151.8 151.8 100 5 478.3 326.5 69 3 964.9 486.6 44 2 1036.11 884.3 3.6 5 1036.1 2.8 4 1242.2 763.9 2.2 3 1090.4 15 1 A 2 = 0.139 30, A 4 = 0.065 44 for 1090.4 151.8 γγ cascade consistent with 3 >2 >0 cascade with mult=q for 3 > 2 transition. Coefficients have been corrected by the authors for perturbed angular correlations. 1386.3 908.0 3.7 6 A 2 = 0.073 27, A 4 =+0.149 40 for 908.0 326.5 γγ cascade consistent with 4 >4 >2 cascade with mult=q for 4 > 4 transition. 1234.5 1.6 5 1538.0 1059.7 2.0 3 1595.4 630.5 17 1 1652.7 687.8 0.9 3 1174.4 2.7 4 1661.9 697.0 4.2 6 A 2 = 0.118 27, A 4 = 0.007 39 for 697.0 486.6 γγ cascade consistent with 5 >6>4 cascade with mult=d for 5 > 6 transition. 1183.6 0.7 2 1793.3 551.1 0.20 7 757.2 3.7 6 1820.8 282.8 8.0 4 578.6 10.5 5 A 2 = 0.016 11, A 4 = 0.034 16 for 578.6 1090.4 γγ cascade consistent with 4 >3 >2 cascade with mult=q for 3 > 2 transition and mult=d for 4 > 3 transition. 1342.5 0.6 2 1829.3 443.0 3.2 5 864.4 2.7 4 1351.0 1.4 2 1932.3 967.4 3.3 5 A 2 =+0.125 38, A 4 =+0.03 6 for 967.4 486.6 γγ cascade consistent with 8 >6 >4 cascade with mult=q for both transition. 1980.7 159.9 7.7 4 2093.2 431.3 3.3 5 497.8 2.8 4 Continued on next page (footnotes at end of table) 1763

102 40 Zr 62 10 NUCLEAR DATA SHEETS 102 40 Zr 62 10 252 Cf SF Decay (continued) γ( 102 Zr) (continued) E(level) Eγ Iγ Comments 2174.9 194.2 4.2 6 354.1 1.6 5 2184.5 531.8 3.1 5 1219.6 1.7 5 2351.9 756.5 5.2 3 2373.3 544.0 2.1 3 777.9 1.0 3 1408.4 1.1 3 2403.2 228.3 3.3 5 422.5 1.5 5 2465.8 533.5 2.2 3 870.4 0.9 3 2663.9 570.7 2.1 3 2665.8 262.6 1.8 5 490.9 1.3 4 2825.8 641.3 2.0 3 1230.4 0.6 2 2926.4 1961.5 1.3 4 A 2 = 0.07 6, A 4 = 0.10 9 for 1961.5 326.5 γγ cascade consistent with 7 >6 >4 cascade with mult=d for 7 > 6 transition. 2962.2 296.4 0.9 3 559.0 1.0 3 Initial level=2692.2 in Table 1 of 2008Li45 seems a misprint. 3033.3 660.0 1.0 3 3133.8 668.0 1.8 5 3183.6 257.2 0.9 3 3212.5 860.6 0.9 3 3371.2 707.3 1.5 5 3475.8 292.2 0.9 3 549.4 0.6 2 3567.5 741.7 0.9 3 3802.0 326.2 0.4 1 618.4 0.10 3 3925.3 791.5 1.0 3 4153.9 941.4 0.5 2 4162.2 360.4 0.20 7 686.2 0.10 3 4205.2 834.0 0.8 2 4828.1 902.8 0.8 2 5168.5 1014.6 0.3 1 From 2008Li45 they state that the uncertainty ranges from 5% for strong transitions to 30% for weak transitions. The evaluator assign as follows: 5% for Iγ>5, 15% for Iγ=2 5 and 30% for Iγ<2. Placement of transition in the level scheme is uncertain. 235 U(n,F) 1973Kh05 E(n)=thermal. Measured: fragment kinetic energies, Eγ, Iγ, E(ce), (fission)γ and (fission)ce coin. Deduced: 102 Zr levels, Jπ. 102 Zr Levels E(level) Jπ Comments 0.0 0+ 151.78 11 2+ 478.28 16 4+ 964.78 24 6+ 1546? 8+ E(level): Adopted value for 8+ is 1594 kev. From adopted levels. 1764

102 40 Zr 62 11 NUCLEAR DATA SHEETS 102 40 Zr 62 11 235 U(n,F) 1973Kh05 (continued) γ( 102 Zr) E(level) Eγ Iγ Mult. Comments 151.78 151.75 12 ( E2 ) K/L=6. Mult.: from K/L ratio. Eγ: from adopted levels. Measured conversion electrons. 478.28 325 3 16 8 964.78 486.54 19 Not observed by 1973Kh05, from adopted gammas. 1546? 581 4 15 8 Relative intensity per fission. 238 U(α,Fγ) 2004Hu02 E=30MeV. Measured Eγ, Iγ, γγ with Rochester 4π, highly segmented heavy ion detector array CHICO, in coincidence with the GAMMASPHERE detector array. 102 Zr Levels E(level) Jπ Comments 0.0 0+ 151.8 2+ 478.3 4+ 963.9 6+ 1242.4 (3+) 1594. 7 8+ 1660. 1 # (5 ) 1821. 9 & (4 ) 1932. 6 @ (6 ) Jπ: Adopted value is (8+) with different band interpretation. 1981. 1 & (5 ) 2090. 7 # (7 ) 2175. 0 & (6 ) 2351. 9 10+ 2402. 4 & (7 ) 2464. 9 @ (8 ) Jπ: Adopted value is (10+) with different band interpretation. 2660. 1 # (9 ) 2664. 6 & (8 ) 2961. 5 & (9 ) 3134. 2 @ (10 ) Jπ: Adopted value is (12+) with different band interpretation. 3212. 0 12+ 3293. 0 & (10 ) 3367. 0 # (11 ) 3925. 7 @ (12 ) Jπ: Adopted value is (14+) with different band interpretation. 4153. 4 14+ 4200. 8 # (13 ) 4828. 5 @ (14 ) Jπ: Adopted value is (16+) with different band interpretation. 5156. 3 # (15 ) 5169. 0 16+ 6267. 1 18+ 7451. 7 20+ From 2004Hu02, no uncertainties given by the authors. From adopted levels, unless noted otherwise. (A): g.s. band. # (B): Kπ=5, α=1. Possible configuration=ν5/2[532] ν5/2[413]. @ (C): Kπ=5, α=0. Possible configuration=ν5/2[532] ν5/2[413]. & (D): (4 ) band. Possible configuration=ν5/2[532] ν3/2[411]. 1765

102 40 Zr 62 12 NUCLEAR DATA SHEETS 102 40 Zr 62 12 238 U(α,Fγ) 2004Hu02 (continued) γ( 102 Zr) E(level) Eγ E(level) Eγ E(level) Eγ 151.8 151.8 478.3 326.5 963.9 485.6 1242.4 1090.6 1594.7 630.8 1660.1 696.2 1181.8 1821.9 579.5 1932.6 968.7 1981.1 159.2 2090.7 430.6 496.0 1126.8 2175.0 193.9 353.1 2351.9 757.2 2402.4 227.4 421.3 2464.9 532.3 870.2 2660.1 569.4 2664.6 262.2 489.6 2961.5 296.9 559.1 3134.2 669.3 3212.0 860.1 3293.0 331.5 628.4 3367.0 706.9 3925.7 791.5 4153.4 941.4 4200.8 833.8 4828.5 902.8 5156.3 955.5 5169.0 1015.6 6267.1 1098.1 7451.7 1184.6 From level energy difference; not quoted by 2004Hu02. No uncertainties given by the authors. 1766

102 41 Nb 61 1 NUCLEAR DATA SHEETS 102 41 Nb 61 1 Adopted Levels, Gammas Q(β )=7210 40; S(n)=5480 40; S(p)=10180 50; Q(α)= 6.30 10 3 5 2003Au03. Following (2007Ri01), from mass measurements, the energy difference between 102 Nb gs and 102 Nb isomer is 93 kev 23 with the high spin isomer being the ground state. 102 Nb Levels The level scheme of 102 Nb is extremely complicated and it is not even clear what the Jπ of the ground state and the long lived isomer is. Therefore the experimental results are given in 3 subsets of data as no unique level scheme could be obtained. Further experiments are absolutely necessary to solve that problem. All band assignments are from 2001Hw01,1998Hw08 in 252 Cf SF decay. Due to the controversy about the position of the ground state an the isomer, BAND (B) on the Jπ=1+ state mentioned in 252 Cf SF decay has been omitted. Cross Reference (XREF) Flags A 102 Zr β Decay: 2.9 s B 252 Cf SF Decay E(level) Jπ XREF T 1/2 Comments 0.0 (4+) AB 4.3 s 4 %β =100. %β =100. Jπ: 1976Ah06 proposed a high spin for this level because it decays to levels with spin 3+,4+ and 6+ in 102 Mo. From mass measurements of 2007Ri01 it is clear that the high spin level is the ground state and not the low spin state. 2007Ha32 claims the opposite but the data of 2007Ri01 are more convincing. J suggested from absence of IT from 1+ isomeric state. 0.0+x 1+ A 1.3 s 2 %β =100. %β =100; no it decay reported. E(level): x=93 23 following 2007Ri01 from mass measurements. Jπ: from allowed β transition with log ft=4.71 from 0+, 102 Zr g.s. decay. 20.37+x 9 A 64.39+x 9 (2+) A 93.95+x 17 A 156.36+x 11 A 160.72+x 21 A 246.31+x 18 A 258.43+x 15 A 430.7+x 6 A 599.49+x 8 1+ A Jπ: from allowed β transition with log ft=4.8 from 0+, 102 Zr g.s. decay. 705.08+x 24 (1) A Jπ: From log ft=5.65. 940.5+x 4 (1) A Jπ: From log ft=5.82. 0+y (1+) B 64.5+y (2+) B 161.9+y (3+) B 287.4+y (4+) B 453.1+y (5+) B 632.5+y # (6+) B 871.1+y # (7+) B 1099. 6+y # (8+) B 1406. 9+y # (9+) B 1677. 5+y # (10+) B 0.0+z @ (3 ) B Eγ=z could be γ to (4+) g.s. and not to a level at 120 kev as suggested by 2001Hw01. 162.8+z & (4 ) B 356.2+z @ (5 ) B 440.8+z a (2 ) B 545.0+z b (3 ) B 580.6+z & (6 ) B 677.2+z a (4 ) B 833.0+z @ (7 ) B 852.0+z b (5 ) B 1045. 1+z a (6 ) B 1116. 9+z & (8 ) B 1284. 2+z b (7 ) B 1421. 7+z @ (9 ) B 1584. 0+z a (8 ) B 1758. 2+z & (10 ) B 1854. 2+z b (9 ) B 2286. 4+z a (10 ) B Footnotes continued on next page 1767

102 41 Nb 61 2 NUCLEAR DATA SHEETS 102 41 Nb 61 2 Adopted Levels, Gammas (continued) 102 Nb Levels (continued) The consequence of the fact that the high spin level would be the ground state and not the low spin is that the spin assignments proposed by 2001Hw01,1998Hw08 in (HI,xnγ) become very uncertain as they still consider the low spin isomer as the ground state.all other proposed spins for excited states are based on that assumption. Maybe what they consider as a 120 kev level could be the ground state. Calculated by the evaluator using a least squares procedure based on adopted gammas. From β delayed gammas in 102Nb β decay (1976Ah06). # (A): ΔJ=1 Band based on (6+). @ (B): Kπ=3, α=1. π1/2[431]ν5/2[532] band, Semi decoupled band. & (C): Kπ=3, α=0. π1/2[431]ν5/2[532] band. a (D): Kπ=2, α=0. π1/2[431]ν5/2[532] band, Semi decoupled band. b (E): Kπ=2, α=1. π1/2[431]ν5/2[532] band. γ( 102 Nb) Two sets of γ's 64.5 and 64.46 kev and 97.4 and 96.4 kev appear in both data sets and are very probably the same. However their exact position in the level scheme is not clear for the moment and more experiments are needed because the level scheme of 102 Nb remains very speculative. E(level) Eγ Iγ Mult. E(level) Eγ Iγ 20.37+x 20.38 9 100 (E1) 64.39+x 64.46 13 100 M1 93.95+x 73.58 14 100 156.36+x 136.35 22 41 18 156.14 14 100 24 160.72+x 96.4 5 100 246.31+x 85.59 12 70 30 152.4 60 100 40 225.35 32 87 30 246.55 26 56 8 258.43+x 102.02 17 100 11 258.52 22 50 7 430.7+x 270.0 5 100 599.49+x 442.3 5 3.5 15 535.13 9 77 7 599.48 9 100 9 705.08+x 458.69 21 69 25 549.0 5 100 31 641.2 8 34 13 940.5+x 875.8 8 55 18 940.6 4 100 18 0+y y 64.5+y 64.5 100 161.9+y 97.4 100 287.4+y 125.5 100 222.9 17 453.1+y 165.7 100 291.2 1.6 632.5+y 179.4 100 345.1 6 871.1+y 238.6 100 418.0 19 1099.6+y 228.5 100 467.1 26 1406.9+y 307.3 100 535.8 28 1677.5+y 270.6 100 1677.5+y 577.9 31 0.0+z z 162.8+z 162.8 100 356.2+z 193.4 100 356.2 27 440.8+z 278.0 75 440.8 100 545.0+z 104.2 100 188.8 36 382.2 50 580.6+z 224.4 100 417.8 50 677.2+z 96.6 132.2 100 236.4 9 833.0+z 252.4 100 476.8 42 852.0+z 174.8 100 307.0 13 1045.1+z 193.1 100 212.1 367.9 58 1116.9+z 283.9 100 536.3 72 1284.2+z 239.1 100 432.2 30 1421.7+z 304.8 86 588.7 100 1584.0+z 301.8 100 540.9 50 1758.2+z 336.5 641.3 100 1854.2+z 268.2 100 570.0 46 2286.4+z 432.2 100 700.4 47 Adopted gammas either from 102 Zr β decay (mostly low spin states) or from 252 Cf SF decay (mostly high spin states). Based on measured conversion coefficients. Placement of transition in the level scheme is uncertain. 1768

102 102 41 Nb 61 41 Nb 61-3 NUCLEAR DATA SHEETS -3 (A) ΔJ=1 band based on (6+) (B) Kπ=3-, α=1 (C) Kπ=3-, α=0 (D) Kπ=2-, α=0 (E) Kπ=2-, α=1 (10-) 2286.4+z 700 (9-) 1854.2+z (10-) 1758.2+z (10+) 1677.5+y 271 (8-) 1584.0+z 570 (9+) 1406.9+y (9-) 1421.7+z 641 578 541 (7-) 1284.2+z 307 (8+) 1099.6+y 589 (8-) 1116.9+z (6-) 1045.1+z 432 228 536 212 (7+) 871.1+y (7-) 833.0+z 536 B (5-) 852.0+z 239 368 (6+) 467 632.5+y (4-) 677.2+z 307 477 (6-) 580.6+z 236 (3-) 545.0+z (2-) 440.8+z 189 (5-) 356.2+z 418 B 382 356 (4-) 162.8+z 441 C (3-) 0.0+z B 102 41 Nb 61 1769

102 41 Nb 61 4 NUCLEAR DATA SHEETS 102 41 Nb 61 4 102 Zr β Decay: 2.9 s 2007Ri01 Parent 102 Zr: E=0.0; Jπ=0+; T 1/2 =2.9 s 2; Q(g.s.)=4626 23; %β decay=100. 102 Zr Q(β ): From mass measurements of Nb isotopes by 2007Ri01 and those of Zr isotopes by 2006Ha03. 2007Ri01:Measured Eγ, Iγ, γγ, βγ coin, xγ coin, Q(β ) values using plastic scintillator for β rays and Ge detectors for γ rays and xrays. Most of the data given here are from 2007Ri01 and data received through e mail reply on January 30, 2007 from S. Rinta Antila.(2008SiZZ) They are more recent and precise than the data of 1989SiZR. 102 Nb Levels E(level) Jπ Comments 0. 0+x 1+ E(level): x=93 23 (2007Ri01). 20.37+x 9 64.39+x 9 (2+) 93.95+x 17 156.36+x 11 160.72+x 21 246.31+x 18 258.43+x 15 430.7+x 6 599.49+x 8 1+ 705.08+x 24 (1) 940.5+x 4 (1) >941+x From least squares fit to measured Eγ's by the evaluator. From Adopted levels, gammas. β radiations Eβ E(level) Iβ Log ft Comments (3685 x 23) >941+x (3686 x 23) 940.5+x 1.7 3 5.82 9 (3921 x 23) 705.08+x 3.3 7 5.65 10 (4027 x 23) 599.49+x 25 2 4.82 5 (4195 x 23) 430.7+x 0.26 9 6.88 16 (4368 x 23) 258.43+x 2.4 2 5.99 5 (4380 x 23) 246.31+x 2.2 8 6.04 17 (4465 x # 23) 160.72+x <0.7 >6.6 Iβ : 0.2 5. (4470 x 23) 156.36+x 1.3 7 6.30 24 (4532 x 23) 93.95+x 0.8 5 6.5 3 (4562 x # 23) 64.39+x 2.1 21 >5.7 (4606 x 23) 20.37+x 2.1 14 6.2 3 (4626 x 23) 0.0+x 59 3 4.71 4 Values are deduced by the evaluator using "LOGFT" code available at www.nndc.bnl.gov; value of x is assumed as 0 for this calculation. From βγ counting the ground state feeding upper limit was deduced to be 59% 3. All values should be treated as lower limits since possible feedings to higher levels are unknown. For the calculation of conversion coefficients all low energy transitions for which the multipolarity could not be determined experimentally are considered [M1] because from systematics and structure point of view M1 is a good guess as multipolarity. All values should be treated as upper limits since possible feedings to higher levels are unknown. Absolute intensity per 100 decays. # Existence of this branch is questionable. γ( 102 Nb) The γγ coin information is from e mail reply of Jan 30, 2007 from s. Rinta Antila (2008SiZZ). Iγ normalization: Intensities listed by 2007Ri01 are per 100 decays of 102 Zr. Eγ E(level) Iγ Mult. α I(γ+ce) Comments 20.38 9 20.37+x 0.56 11 (E1) 10.3 6.3 12 α(k)exp=7.9 25 (2007Ri01). 64.46 13 64.39+x 8.6 10 M1 0.781 15.3 18 α(k)exp=0.78 16 (2007Ri01). 73.58 14 93.95+x 1.17 14 [M1] 0.535 1.80 22 85.59 12 246.31+x 0.7 3 [M1] 0.349 0.9 4 Continued on next page (footnotes at end of table) 1770

102 41 Nb 61 5 NUCLEAR DATA SHEETS 102 41 Nb 61 5 102 Zr β Decay: 2.9 s 2007Ri01 (continued) γ( 102 Nb) (continued) Eγ E(level) Iγ Mult. α I(γ+ce) Comments 96.4 5 160.72+x 1.1 2 [M1] 0.250 1.38 25 102.02 17 258.43+x 1.37 15 [M1] 0.214 1.66 18 136.35 22 156.36+x 1.4 6 [M1] 0.096 1.5 6 152.4 60 246.31+x 0.99 40 0.99 40 156.14 14 156.36+x 3.4 8 [M1] 0.067 3.6 8 225.35 32 246.31+x 0.87 30 0.87 30 246.55 26 246.31+x 0.56 8 0.56 8 258.52 22 258.43+x 0.69 9 0.69 9 270.0 5 430.7+x 0.26 9 0.26 9 x 362.9 4 0.9 3 In γγ coin with x rays, 64γ, 136γ and 157γ. This 442.3 5 599.49+x 0.49 20 0.49 20 458.69 21 705.08+x 1.1 4 1.1 4 535.13 9 599.49+x 10.7 10 10.7 10 549.0 5 705.08+x 1.6 5 1.6 5 599.48 9 599.49+x 13.9 13 13.9 13 641.2 8 705.08+x 0.55 20 0.55 20 875.8 8 940.5+x 0.6 2 0.57 14 940.6 4 940.5+x 1.1 2 1.1 2 transition is not assigned in the level scheme figure of 2007Ri01. From data received through e mail reply on January 30, 2007 from s. Rinta Antila (2008SiZZ). Based on photon intensities and conversion coefficients deduced by the evaluator using BrIcc code available at www.nndc.bnl.gov For the calculation of conversion coefficients all low energy transitions for which the multipolarity could not be determined experimentally are considered [M1]. For the calculation of absolute intensities 2007Ri01 assumed also M1 for low energy γ's with the exception of the 20.38 G where EKC pointed to E1. Absolute intensity per 100 decays. x γ ray not placed in level scheme. Decay Scheme 0+ 0.0 10 4 2 0 Zr 62 2.9 s Intensities: I(γ+ce) per 100 parent decays %β =100 Q =4626 23 Iβ Log ft 1.7 5.82 3.3 5.65 25 4.82 0.26 6.88 2.4 5.99 2.2 6.04 <0.7 >6.6 1.3 6.30 0.8 6.5 2.1 >5.7 2.1 6.2 59 4.71 >941+x (1) 940.5+x 940.6 1.1 875.8 0.57 (1) 705.08+x 1+ 599.49+x 430.7+x 258.43+x 246.31+x 160.72+x 156.36+x 93.95+x (2+) 64.39+x 20.37+x 1+ 0.0+x 641.2 0.55 549.0 1.6 458.69 1.1 258.52 0.69 102.02 [M1] 1.66 246.55 0.56 225.35 0.87 152.4 0.99 85.59 [M1] 0.9 599.48 13.9 535.13 10.7 442.3 0.49 270.0 0.26 136.35 [M1] 1.5 73.58 [M1] 1.80 64.46 M1 15.3 20.38 (E1) 6.3 96.4 [M1] 1.38 156.14 [M1] 3.6 10 4 2 1 Nb 61 1771

102 41 Nb 61 6 NUCLEAR DATA SHEETS 102 41 Nb 61 6 252 Cf SF Decay 2001Hw01,1998Hw08 Parent 252 Cf: E=0; Jπ=0+; T 1/2 =2.645 y 8; %SF decay=3.092 8. 252 Cf %SF decay: %SF=3.092 8 (from 'adopted levels' for 252 Cf in ENSDF database). Measured γ, γγγ using GAMMASPHERE array of 72 Ge detectors. 102 Nb Levels E(level) Jπ Comments 0.0+y # ( 1+ ) E(level): This level is considered by 1998Hw08 as the ground state of 102Nb but is very probably the isomeric state following 2007Ri01. The energy of the isomer would be then 93 23 kev. 64.5+y # (2+) 161.9+y # (3+) 287.4+y # (4+) 453.1+y # (5+) 632.5+y (6+) 871.1+y (7+) 1099. 6+y (8+) 1406. 9+y (9+) 1677. 5+y (10+) x @ ( 3 ) E(level): This level with unknown excitation energy is considered as the lowest energy level to which two ΔJ=1 bands finally decay following 2001Hw01. 162.8+x & (4 ) 356.2+x @ (5 ) 440.8+x a (2 ) 545.0+x b (3 ) 580.6+x & (6 ) 677.2+x a (4 ) 833.0+x @ (7 ) 852.0+x b (5 ) 1045. 1+x a (6 ) 1116. 9+x & (8 ) 1284. 2+x b (7 ) 1421. 7+x @ (9 ) 1586. 0+x a (8 ) 1758. 2+x & (10 ) 1854. 2+x b (9 ) 2286. 4+x a (10 ) Levels of the different parts of the level scheme calculated with a least squares procedure using the observed gammas. From observed band structure and systematics (2001Hw01). Supersedes the Jπ's of (1998Hw08) for Kπ=3 and Kπ=2 band members which were much higher. But the suggested spins are very doubtful The consequence of the fact that the high spin level would be the ground state and not the low spin is that the spin assignments proposed here become very uncertain as they still consider the low spin isomer as the ground state.(see also Adopted Levels Gammas) All other proposed spins for excited states are based on that assumption. Probably what they consider as a 120 kev level could be the ground state.new experiments to clarify that situation are highly recommended by the evaluator.in the meantime the spins of the levels and the partial level schemes should be considered as very preliminary. (A): ΔJ=1 Band based on (6+). # (B): Kπ=1+, π5/2[422]ν3/2[411]. @ (C): Kπ=(3 ), π1/2[431]ν5/2[532] band, α=1. Semi decoupled band. & (D): Kπ=3, π1/2[431]ν5/2[532] band, α=0. a (E): Kπ=2, π1/2[431]ν5/2[532] band, α=0. Semi decoupled band. b (F): Kπ=2, π1/2[431]ν5/2[532] band, α=1. γ( 102 Nb) E(level) Eγ Iγ Mult. E(level) Eγ Iγ E(level) Eγ Iγ 64.5+y 64.5 (M1) 161.9+y 97.4 (M1) 287.4+y 125.5 60 222.9 10 453.1+y 165.7 32 291.2 0.5 632.5+y 179.4 17 345.1 1.0 871.1+y 238.6 7.7 871.1+y 418.0 1.5 1099.6+y 228.5 3.9 467.1 1.0 1406.9+y 307.3 1.8 535.8 0.5 1677.5+y 270.6 1.6 577.9 0.5 x x 162.8+x 162.8 100 356.2+x 193.4 33 356.2 9.2 440.8+x 278.0 15 440.8 20 545.0+x 104.2 30 188.8 11 382.2 15 580.6+x 224.4 20 417.8 10 Continued on next page (footnotes at end of table) 1772

102 41 Nb 61 7 NUCLEAR DATA SHEETS 102 41 Nb 61 7 252 Cf SF Decay 2001Hw01,1998Hw08 (continued) γ( 102 Nb) (continued) E(level) Eγ Iγ 677.2+x 96.6 132.2 39 236.4 3.6 833.0+x 252.4 12 476.8 5.0 852.0+x 174.8 26 307.0 3.3 1045.1+x 193.1 11 212.1 E(level) Eγ Iγ 1045.1+x 367.9 6.4 1116.9+x 283.9 7.1 536.3 5.1 1284.2+x 239.1 8.6 432.2 2.6 1421.7+x 304.8 3.0 588.7 3.5 1586.0+x 301.8 3.0 540.9 1.5 E(level) Eγ Iγ 1758.2+x 336.5 641.3 1.0 1854.2+x 268.2 2.8 570.0 1.3 2286.4+x 432.2 1.5 700.4 0.7 From 1998Hw08. From 1998Hw08. Placement of transition in the level scheme is uncertain. 1773

102 42 Mo 60 1 NUCLEAR DATA SHEETS 102 42 Mo 60 1 Adopted Levels, Gammas Q(β )=1008 22; S(n)=8116 20; S(p)=11904 27; Q(α)= 4695 29 2003Au03. Q =996 14 (2006Ha32) with Penning trap setup at IGISOL. 102 Mo Levels Cross Reference (XREF) Flags A 102 Nb β Decay (1.3 s) B 102 Nb β Decay (4.3 s) C 248 Cm, 252 Cf SF Decay D 100 Mo(t,pγ) E 100 Mo( 18 O, 16 Oγ) F 235 U(n,F) G 238 U(α,Fγ) H 100 Mo(t,p) I 168 Er( 30 Si,Xγ) E(level) # Jπ XREF T 1/2 Comments 0.0 @ 0+ ABCDEFGHI 11.3 min 2 %β =100. T 1/2 : weighted average of: 11.2 min 3 (1980De06), 11.8 min 4 (1976Ki11), 11.0 min 5 (1966Ga28), 11.0 min 3 (1954Wi32), 11.5 min 5 (1954Fl21). 296. 610 @ 4 2+ ABCDEFGHI 125 ps 4 T 1/2 : from βγ(t) on mass separated fission products (1991Li39). and time integral perturbed angular correlations with Gammasphere (2005Sm08). Other: 114 ps 3 from 100 Mo( 18 O, 16 Oγ), see also 2001Ra27. β 2 =0.311 5(2001Ra27). Other: 0.28 1 deduced from T 1/2 (1991Li39). Jπ: L(t,p)=2. μ=+0.84 14 (1985Me13,1987Bo17,2005St24,1989Ra17). μ: From PAC measurements of the (401γ 296γ) cascade in the β decay of Nb (high spin + low spin isomer); + from 2005Sm08. Other: +0.8 4 (2005Sm08). 698.26 c 12 0+ AB DEFGH 28 ps 11 Jπ: L(t,p)=0. 743.73 @ 5 4+ BCDE G I 12.5 ps 25 β 2 =0.27 3 (1991Li39). β 2 : Deduced from T 1/21/2 (1991Li39). Jπ: L(t,p)=(4) and J=4 from γγ(θ) in 102 Nb β decay (4.3 s). 847.89 b 6 2+ AB DEFGH Jπ: L(t,p)=2. 1144. 5 c 10 ( 2+ ) G No detailed arguments given for Jπ assignment (2004Hu02) but γ to 0+. 1245. 54 9 (3+) AB D Jπ=(3+) based on the γ decay pattern in 102 Nb β decay (4.3 s) (1988GiZX). 1249. 74 9 2+ H Jπ: L(t,p)=2. 1327. 91 @ 10 6+ BCDE G I 1334 5 0+ H Jπ: L(t,p)=0. 1398. 39 b 8 (4+) B D G Jπ: from (t,pγγ). Based on systematics and branching pattern. 1608 2 2+ H Jπ: L(t,p)=2. 1616. 89 12 B 1747. 76 12 B 1869. 76 13 B 1881 5 3 H Jπ: L(t,p)=3. 2010. 4 b 10 ( 6+ ) G No detailed arguments given for Jπ assignment by 2004Hu02 but γ to (4+). 2018. 82 @ 14 8+ CD G I 1.8 ps 3 2108 3 1 H Jπ: L(t,p)=1. 2122 5 0+ H Jπ: L(t,p)=0. 2147. 5 & 5 (5 ) I 2239 5 (4+) H Jπ: L(t,p)=(4). 2248 7 2+ H Jπ: L(t,p)=2. 2305 3 2+ H Jπ: L(t,p)=2. 2321 8 2+ H Jπ: L(t,p)=2. 2366 1 2+ H Jπ: L(t,p)=2. 2412 4 H 2418. 12 25 (10+) D Jπ: suggested from level at 2416 kev in (t,p) and (t,pγγ) results in which a 399.3γ from an observed γ ray triplet at 400 kev decays to (8+) level. 2460. 3 a 5 (6 ) I Jπ: Jπ=(5 ) suggested in 238 U(α,Fγ). 2480. 94 8 (3+) B D Jπ: from γγ(θ) in 102 Nb β decay (4.3 s). Absence in (t,p) suggests positive parity. 2485 4 2+ H Jπ: L(t,p)=2. 2502 1 4+ H Jπ: L(t,p)=4. 2522 2 3 H Jπ: L(t,p)=3. 2547. 8 & 5 (7 ) I Jπ: Jπ=(4+) suggested in 238 U(α,Fγ). 2608 1 H 2659 4 4+ H Jπ: L(t,p)=4. Continued on next page (footnotes at end of table) 1774

102 42 Mo 60 2 NUCLEAR DATA SHEETS 102 42 Mo 60 2 Adopted Levels, Gammas (continued) 102 Mo Levels (continued) E(level) # Jπ XREF T 1/2 Comments 2684 7 3 H Jπ: L(t,p)=3. 2704 4 0+ H Jπ: L(t,p)=0. 2742 2 H 2790. 3 @ 6 (10+) C G I 1.03 ps 18 Jπ: from γγ and band structure in 248 Cm SF. T 1/2 : from Doppler profile method in 248 Cm SF (1996Sm04). 2797 4 H 2828. 8 a 8 (8 ) G Jπ: Jπ=(7 ) suggested in 238 U(α,Fγ). 2851 1 H 2872 3 2+ H Jπ: L(t,p)=2. 2943 4 0+ H Jπ: L(t,p)=0. 2988 11 4+ H Jπ: L(t,p)=4. 3005. 9 & 11 (9 ) I Jπ: Jπ=(6+) suggested in 238 U(α,Fγ). 3010 7 2+ H Jπ: L(t,p)=2. 3063 2 4+ H Jπ: L(t,p)=4. 3091 3 3 H Jπ: L(t,p)=3. 3125 3 2+ H Jπ: L(t,p)=2. 3162 5 4+ H Jπ: L(t,p)=4. 3193 7 2+ H Jπ: L(t,p)=2. 3248 1 H 3369. 5 a 13 (10 ) G Jπ: Jπ=(9 ) suggested in 238 U(α,Fγ). 3614. 9 & 15 (11 ) I Jπ: Jπ=(8+) suggested in 238 U(α,Fγ). 3625. 2 @ 12 (12+) G I 3632. 3 8 (12+) C 0.66 ps 12 Jπ: from γγ and band structure in 248 Cm SF. Following 2007La03 3625 kev level is member of DJ=2 GS Yrast band and not 3622.3 kev level. 4053. 1 16 (11 ) G 4363. 7 18 (10+) G 4504. 4 @ 15 (14+) G 4856. 8 19 (13 ) G 5230. 8 21 (12+) G 5470. 9 @ 18 (16+) G 5764. 6 22 (15 ) G 6200. 5 23 (14+) G Unless noted otherwise, determined by the recoil distance Doppler shift method (1975Bo39) from 100 Mo( 18 O, 16 Oγ), except for g.s. and 296 level. Unless noted otherwise, from observed band structure and systematics in 238 U(α,Fγ) and 168 Er( 30 Si,xγ). After contact with S.Lalkowski,( November 14, 2007), one of authors of the 168Er(30Si,Xγ) experiment (2007La03), the evaluator got convincing evidence for the correctness of the level scheme and Jπ assignments for members of band(β) presented by (2007La03) over these of (2004Hu02) in 238 U(α,Fγ). The interpretation of the observed band structure given by (2007La03)is a.o. based on systematics of very reliable data on 98,100 Mo and 104 Ru. Nevertheless an experimental confirmation of the results of 2007La03 would be very welcome. # The level energies were calculated using a least squares procedure using the Adopted Gammas. @ (A): Probable member of a ΔJ=2 g.s. Yrast band. (2004Hu02,2007La03). & (B): γ sequence based on (5 ) (2007La03). a (C): γ sequence based on (6 ) (2007La03). b (D): γ band (2004Hu02). c (E): β band (2004Hu02). γ( 102 Mo) E(level) Eγ Iγ Mult. α Comments 296. 610 296. 611 4 100 [E2] 0. 0257 B(E2)(W.u.)=74 9. 698.26 401.89 13 100 [ E2 ] B(E2)(W.u.)=70 30. 696. 6 E0 I(696)/I(401)=4.2 10 3 (1989Es01). 743.73 447.13 6 100 [ E2 ] B(E2)(W.u.)=89 18. 847.89 551.63 8 100 5 847.37 9 58 6 1144.5 446.2 100 1245.54 397.69 20 19 4 948.85 11 100 11 1249.74 401.7 3 25 13 Continued on next page (footnotes at end of table) 1775