for fracture orientation and fracture density on physical model data

Σχετικά έγγραφα
Dr. D. Dinev, Department of Structural Mechanics, UACEG

6.4 Superposition of Linear Plane Progressive Waves

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Spherical Coordinates

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

CYLINDRICAL & SPHERICAL COORDINATES

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Lecture 21: Scattering and FGR

Lifting Entry (continued)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

4.4 Superposition of Linear Plane Progressive Waves

Chapter 7 Transformations of Stress and Strain

Numerical Analysis FMN011

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Rectangular Polar Parametric

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 9.2 Polar Equations and Graphs

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan


Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Consolidated Drained

IV. ANHANG 179. Anhang 178

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Areas and Lengths in Polar Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

DETERMINATION OF FRICTION COEFFICIENT

1 String with massive end-points

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Chapter 6 BLM Answers

[1] P Q. Fig. 3.1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Reminders: linear functions

Durbin-Levinson recursive method

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님


DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Parametrized Surfaces

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Ρεύµατα παρουσία τριβής ανεµογενής κυκλοφορία

6.3 Forecasting ARMA processes

Second Order Partial Differential Equations

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Section 8.3 Trigonometric Equations

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Derivation of Optical-Bloch Equations

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Strain gauge and rosettes

Other Test Constructions: Likelihood Ratio & Bayes Tests

Assalamu `alaikum wr. wb.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Trigonometric Formula Sheet

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

the total number of electrons passing through the lamp.

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solution Series 9. i=1 x i and i=1 x i.

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Module 5. February 14, h 0min

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Calculating the propagation delay of coaxial cable

LUMINAIRE PHOTOMETRIC TEST REPORT

Supporting Information

Note: Please use the actual date you accessed this material in your citation.

4.6 Autoregressive Moving Average Model ARMA(1,1)

ADVANCED STRUCTURAL MECHANICS

What happens when two or more waves overlap in a certain region of space at the same time?

Graded Refractive-Index

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

MECHANICAL PROPERTIES OF MATERIALS

Section 7.6 Double and Half Angle Formulas

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Oscillatory Gap Damping

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

3.5 - Boundary Conditions for Potential Flow

D Alembert s Solution to the Wave Equation

Solution to Review Problems for Midterm III

Solutions to Exercise Sheet 5

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Transcript:

AVAZ inversion for fracture orientation and fracture density on physical model data Faranak Mahmoudian Gary Margrave CREWES Tech talk, February 0 th, 0

Objective Inversion of prestack PP amplitudes (different incident angles and azimuths) for fracture orientation and fracture density. Fracture orientation: direction of fracture planes Fracture density: number of fractures in unit area

Anisotropic models Previous work Outline Jenner s method for fracture orientation Implementation on physical model data Conclusions Acknowledgements

VTI (vertical transverse isotropy) Horizontal isotropic planes Vertical symmetry axis 5 parameters to describe the medium (α, β, ε, δ, γ) X 3 α = β = P-vetical velocity S-vertical velocity ε γ = = VP( fast) VP( slow) V ( slow) P V ( fast) V ( slow) S V S S ( slow) Dominates the small angle δ = wave propagation 3 + 55 33 55 ( A A ) ( A A ) A ( A A ) 33 33 55

HTI (horizontal transverse isotropy) Simple model to describe vertical fractures Vertical isotropic plane Horizontal symmetry yaxis (α, β, ε, δ, γ) to describe X the medium α = β = P-vetical velocity S-vertical velocity ε = V Px V (Shear-wave V P z splitting parameter) VSx VSz γ = directly related to V Sz fracture density δ = Pz :Sv-wave in (x, ( A + A ) ( A A ) 3 55 33 55 A ( A A ) 33 33 55 x 3 ) plane

Determining elastic constants of phenolic layer (00 work) Phenolic layer HTI Transmission shot gathers on single layer Traveltime inversioni True (ε, δ, γ)

AVAZ inversion for (ε, δ, γ) (0 work) Azimuth 90⁰ Acquisition coordinate system Acquisition coordinate system along fracture system Large offset data phenolic top

Amplitude corrections 0.5 04 0.4 Water-plexiglas interface Spherical Zoeppritz picked amp Geometrical Speading Total-motion + Spreading Directivity + Total-motion + Spreading Rpp 0.3 0. 0. 0 0 0 30 40 Incident angle (Degree) Geometrical spreading Free-surface Transmission loss emergence angle Source-receiver directivity

Phenolic top reflector corrected amplitudes Azimuth 90⁰ 0.8 0.7 0.6 0.5 Azimuth 90 (fracture plane) Azimuth 45 Azimuth 0 (symmetry plane) phenolic top Rpp 0.4 0.3 0. 0. 0 0 0 30 40 50 60 Incident angle (Degree)

HTI: PP reflection coefficient (Rüger, 997) HTI R PP Δα 4β Δβ 4β Δρ ( θϕ, ) sin θ + sin θ cos θ α α β + α ρ ( 4 ) 4β cos ϕsin θ tan θ Δε + cos ϕsin θ Δγ + α cos sin cos sin sin tan θ : incident angle φ: angle between source-receiver azimuth and fracture symmetry axis ( ϕ θ + ϕ ϕ θ θ) φ Δδ Independent determination of (α, β, ρ) Inversion for (ε, δ, γ)

AVAZ inversion Successful inversion results for (ε, δ, γ) Azimuth φ Azimuth φ n Aϕ B ϕ C ϕ R Anϕ B nϕ C nϕ R n Δδ ε Δ = Δγ A (3 ) ϕ B m ϕ C m ϕ R m m A R n B nm m n C m n m ϕ ϕ ϕ ( nm ) ( nm 3) Gm = d T T m = ( G G + μ ) G d est

Fracture symmetry axis not known X φ φ 0 X : fracture system : acquisition coordinate φ : source-receiver azimuth φ 0 : fracture symmetry direction HTI R PP X 3 Δα 4β Δβ 4β Δρ ( θϕ, ) sin θ + sin θ cos θ α α β + α ρ ( 4 ) 4β cos ( ϕ ϕ0)sin θ tan θ Δ ε + cos ( ϕ ϕ 0)sin θ Δ γ + α ( cos ( ϕ )sin cos ( )sin ( ) 0 θ ϕ 0 ϕ 0 ϕ + ϕ ϕ sin θ tan θ) Δδ

HTI: PP reflection coefficient Small llincident id angle (θ<35⁰) HTI Δα 4β Δβ 4β Δρ R PP ( θϕ, ) sin θ + sin θ cos θ α α β α + ρ 4β + Δ γ + Δ δ cos ( ϕ ϕ 0)sin θ α HTI RPP ( θϕ, ) I + G G cos ( ϕ ϕ0) + sin θ Isotropic gradient Anisotropic gradient 4β G = Δγ + α Δδ

Estimate fracture orientation Jenner (00) HTI RPP ( θϕ, ) I + G Gcos ( ϕ ϕ0) + sin θ HTI RPP ( θϕ, ) I + Gsin ( ϕ ϕ0) ( G G)cos ( ϕ ϕ0) + + sin θ sin( ϕ ϕ0) = sin ϕcosϕ0 cosϕsin ϕ0 cos( ϕ ϕ0) = cosϕcosϕ0 + sinϕsinϕ0 HTI RPP ( θ, ϕ) I + W sin ϕ W sinϕcosϕ W cos ϕ + + sin θ = + + G 0.5( W W ( W W ) 4 W ) = ( ) + 4 G W W W ϕ 0 = tan W W + ( W W) + 4W W W, W, W33: function of φ 0

Test on physical model data, AVAZ inversion φ 0 =30⁰ φ 0 : fracture symmetry axis azimuth φ 0 X True φ 0 30⁰ Estimate φ 0 8.7⁰⁰

Testing different fracture orientations φ 0 : fracture symmetry axis azimuth True φ 0 0⁰ 5⁰ 0⁰ 0⁰ 30⁰ 40⁰ 50⁰ 60⁰ 70⁰ 80⁰ 90⁰ Estimate φ 0.5⁰ 3.7⁰ 8.7⁰ 8.7⁰ 8.7⁰ 38.7⁰ 48.7⁰ 58.7⁰ 68.7⁰ 78.7⁰ 88.7⁰

Estimate fracture density γ : directly related to fracture density Knowing the fracture orientation, do the AVAZ inversion of large offset data for (ε,δ,γ). HTI R PP Δα 4β Δβ 4β Δρ ( θϕ, ) sin θ + sin θ cos θ α α β + α ρ ( 4 ) 4β cos ϕsin θ tan θ Δε + cos ϕsin θ Δγ + α ( cos ϕ sin θ + cos ϕ sin ϕ sin θ tan θ) Δδ

AVAZ inversion of large offset data for (ε, δ, γ) 0 5 0 % error -5-0 -5 Directly related to fracture density -0 δ ε γ Favourable results compared to those obtained previously by traveltime inversion

Conclusions Rüger equation for HTI, PP reflection coefficient, can be used in an inversion but fracture orientation must be known. Jenner s method reformulates to allow a linear inversion to determine fracture orientation. Implementation ti on physical model data gives results consistent with these theories. Fracture density can be estimated from AVAZ inversion of large-offset data after determining fracture orientation.

Acknowledgments CREWES sponsors Xinxiang Li Dr. Joe Wong David Henley David Cho Mahdi Almotlaq