2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Σχετικά έγγραφα
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CRASH COURSE IN PRECALCULUS

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

PARTIAL NOTES for 6.1 Trigonometric Identities

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

If we restrict the domain of y = sin x to [ π 2, π 2

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Trigonometric Formula Sheet

TRIGONOMETRIC FUNCTIONS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Areas and Lengths in Polar Coordinates

F-TF Sum and Difference angle

Trigonometry 1.TRIGONOMETRIC RATIOS

Areas and Lengths in Polar Coordinates

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

is like multiplying by the conversion factor of. Dividing by 2π gives you the

1999 by CRC Press LLC

Inverse trigonometric functions & General Solution of Trigonometric Equations

MathCity.org Merging man and maths

Math221: HW# 1 solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Derivations of Useful Trigonometric Identities

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

Section 8.2 Graphs of Polar Equations

Homework 3 Solutions

2 Composition. Invertible Mappings

derivation of the Laplacian from rectangular to spherical coordinates

Section 9.2 Polar Equations and Graphs

10.4 Trigonometric Identities

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Approximation of distance between locations on earth given by latitude and longitude

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

EE512: Error Control Coding

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Solutions to Exercise Sheet 5

Uniform Convergence of Fourier Series Michael Taylor

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Simply Typed Lambda Calculus

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Matrices and Determinants

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

MATH 150 Pre-Calculus

4.6 Autoregressive Moving Average Model ARMA(1,1)

Chapter 6 BLM Answers

Finite Field Problems: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Problem Set 3: Solutions

Second Order RLC Filters

C.S. 430 Assignment 6, Sample Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Notes on the Open Economy

CE 530 Molecular Simulation

w o = R 1 p. (1) R = p =. = 1

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Parametrized Surfaces

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

D Alembert s Solution to the Wave Equation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Fractional Colorings and Zykov Products of graphs

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Reminders: linear functions

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Numerical Analysis FMN011

Μηχανική Μάθηση Hypothesis Testing

Concrete Mathematics Exercises from 30 September 2016

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Differentiation exercise show differential equation

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Chapter 7 Analytic Trigonometry

6.3 Forecasting ARMA processes

Second Order Partial Differential Equations

Principles of Mathematics 12 Answer Key, Contents 185

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Class 03 Systems modelling

Tutorial problem set 6,

Transcript:

5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric identities invlving sums r differences f tw variables Since 75 30 + 5, yu might ask whether cs 75 can be fund by calculating cs (30 + cs (5 The answer is n; cs 75 < 1, whereas 3 3 + cs (30 + cs (5 + > 1 The crrect frmula fr the csine f the sum f tw angles is given by the fllwing therem Therem 51: Csine f a Sum cs ( α + β csα cs β sin α sin β T see why the frmula in Therem 51 is crrect, cnsider the unit circles in Figure 51 (a and (b In Figure 51(a, AOB is α + β In Figure 51 (b, COD is btained by rtating AOB thrugh the angle ( α In Figure 51 (a, we have A ( cs ( α + β, sin ( α + β and B ( 1, 0, s by the distance frmula, AB [ cs( α + β 1] + [ sin( α + β 0] cs ( α + β cs( α + β + 1+ sin ( α + β [cs ( α + β + sin ( α + β ] cs( α + β + 1 cs( α + β + 1 cs( α + β 31

In Figure 51 ( b, C ( cs β, sin β and D ( cs ( α, sin ( α ( α, sin α s, by the distance frmula again, cs, CD ( cs β csα + [sin β ( sinα ] ( cs β csα + ( sin β + sinα cs β cs β cs α + cs α + sin β + sin β sin α + sin α ( cs β + sin β + ( cs α + sin α cs β csα + sin β sinα 1 + 1 ( cs β cs α sin β sinα ( csα cs β sin α sin β Because AOB is cngruent t COD, it fllws that AB CD Hence, cs ( α + β ( csα cs β sin α sin β cs ( α + β ( csα cs β sin α sin β cs ( α + β csα cs β sin α sin β, which is the frmula given in Therem 51 Example 51 ---------------------------- ------------------------------------------------------------ Find the exact value f cs 75 By Therem 51, cs 75 cs( 30 + 5 cs 30 cs 5 sin 30 sin 5 3 1 ( 3-1 6 - -, r Therem 5: Csine f a Difference In Therem 51, replace β by β t btain cs ( α β cs [ α + ( β ] cs α cs (-β sin α sin (-β cs α cs β sin α ( - sin β cs α cs β + sinα sin β Example 5 ---------------------------- ------------------------------------------------------------ Find the exact value f cs 15 30 cs By Therem 51, cs 15 cs( 5 3 1 + cs ( α β csα cs β + sin α sin β ( 3 + 1 5 cs 30 + sin 5 sin 30, r 6 + 3

Therem 53: Cfunctin Therem If θ is a real number r an angle measured in radians, then ( i cs θ sinθ ( ii sin θ csθ ( iii ct θ tanθ ( iv tan θ ctθ ( v csc θ secθ ( vi sec θ cscθ We prve ( i, ( ii, and ( iii here and leave the remaining prfs as exercises: ( i By Therem 5, cs θ cs csθ + sin sin θ 0 csθ + 1 sin θ sinθ ( ii In part ( i, we replace θ by π cs θ Thus, csθ and therefre ( ii hlds ( iii By parts ( i and ( ii, π cs( θ π ct ( θ π sin( θ θ sin θ sin θ, sinθ tanθ csθ t btain Naturally, if we measure an angle α in degrees instead f in radians, the relatinships expressed in Therem 53 are written as cs ( 90 α sin α, sin ( 90 α csα, and s frth Nw by cmbining Therem 5 and Therem 53, we can prve the fllwing imprtant therem Therem 5: Sine f a Sum sin ( α + β sin α cs β + cs α sin β By parts ( i and ( ii f Therem 53, 33

π sin( α + β cs ( α + β cs α β cs α β cs α cs β + sin α sin β sin α cs β + csα sin β Example 53 ---------------------------- ------------------------------------------------------------ 7π Find the exact value f sin 1 By Therem 5 and the fact that π π 7π +, we have 3 1 sin 7 π sin π π π π π π 1 + sin cs + cs sin 3 3 3 3 + 1 ( 3 + 1, r 6 + The fllwing therem fllws directly frm Therem 5 and the even-dd identities Therem 55: Sine f a Difference sin ( α β sin α cs β csα sin β Replacing β by β in Therem 5, we have sin ( α β sin [ α + ( β ] sin α cs( β + cs α sin( β sin α csβ csα sin β The fur identities cs ( α + β csα cs β sin α sin β sin ( α + β sin α cs β + cs α sin β cs ( α β csα cs β + sin α sin β sin ( α β sin α cs β csα sin β are used s ften that they shuld be memrized We recmmend tht yu memrize the first identity in the frm: The csine f a sum f tw angles is equal t the csine f the first times the csine f the secnd minus the sine f the first times the sine f the secnd The remaining three identities can be stated in a similar manner Example 5 ---------------------------- ------------------------------------------------------------ Simplify each expressin: (a sin( 90 + θ ( b cs + x ( a sin( 90 + θ sin 90 csθ +cs90 sinθ 1 cs θ + 0 sin θ csθ ( b cs π + x cs π cs x sin sin x 0 cs x 1 sin x sin x 3

Example 55 ---------------------------- ------------------------------------------------------------ Suppse that α and β are angles in standard psitin; α is in quadrant I, sinα 5 3, β is in quadrant II, and cs β 13 5 Find: (a csα (b sin β (c sin(α + β (d cs(α + β (e the quadrant cntaining angle α + β in standard psitin (a Since α is in quadrant I, csα is psitive, and csα sin α 3 5 16 5 5 (b Since β is in quadrant I, sin β is psitive, and sin β cs β 5 1 13 (c sin(α + β sinα cs β + csα sin β (d cs(α + β csα cs β sinα sin β 1 1 169 13 3 5 5 1 + 13 5 13 5 3 1 5 13 5 13 33 65 56 65 (e Since sin(α + β is psitive and cs(α + β is negative, it fllws that (α + β is a quadrant II angle Example 56 ---------------------------- ------------------------------------------------------------ Simplify each expressin withut the use f a calculatr r tables: (a cs 5 cs 0 sin 5 sin 0 (b sin π 3π π 3 cs + cs sin π 5 5 5 5 (a Reading the frmula fr the csine f a sum frm right t left, we have cs 5 cs 0 sin 5 sin 0 cs (5 + 0 cs( 5 (b Reading the frmula fr the sine f a sum frm right t left, we have sin π 3π π 3π π 3π cs + cs sin sin + sin π 0 5 5 5 5 5 5 The graphs f the sine and the csine functins suggest that sin( x + π sin x and cs( x + π cs x 35

Example 57 ---------------------------- ------------------------------------------------------------ Prve the identities: (a sin( x + π sin x (b cs( x + π cs x (c cs( x + y cs ( x y cs x sin y (a sin( x + π sin x cs π + cs x sin π sin x ( 1 + cs x 0 sin x (b cs( x + π cs x cs π sin x sin π cs x ( 1 sin x ( 0 cs x (c Beginning with the left side and applying the frmulas fr the csine f a sum and fr the csine f a difference, we have cs( x + y cs ( x y ( cs x cs y sin x sin y( cs x cs y + sin x sin y ( cs x cs y ( sin x sin y cs x cs y sin cs x (1 sin cs x cs x sin cs x sin y x sin y y (1 cs y sin x sin y + cs y x sin Using the frmulas fr the sine and csine f a sum, we can derive a useful frmula fr the tangent f a sum Therem 56: Tangent f a Difference y If csα 0, cs β 0, and cs ( α + β 0 then + tan β tan ( α + β tan α tan β tan( α + β sin( α + β cs( α + β sin α cs β + csα sin β csα cs β sin α sin β Dividing the numeratr and denminatr f the fractin n the right side f the equatin abve by csα cs β, we get sin α csβ csα sinβ sin α sinβ + + csα csβ csα csβ csα csβ + tanβ tan( α + β csα csβ sin α sinβ sin α sin β tanβ 1 csα csβ csα csβ csα cs β 36

Therem 57: Tangent f a Difference If csα 0, cs β 0, and cs ( α β 0 then tan β tan ( α β 1+ tan α tan β In Therem 56, we replace β by β t btain + tan (-β tanβ tan ( α β tan[ α + ( β ] tan α tan (-β 1+ tan α tanβ Sectin 5 Prblems--------------- ------- ----------------------------------------------------------- In prblems 1 t 1, find the exact value f the indicated trignmetric functin D nt use a calculatr t slve 1 sin 105 Hint: 105 60 + 5 cs 105 3 sin 195 Hint: 195 150 + 5 tan 195 17π 5 cs 1 Hint: 17π 5π π 17π + 6 ct 1 6 1 7 sin 11π 1 Hint: 11π 7 π 1 6 11π π 8 sec 1 13π 13π 3π π 9 tan Hint: + 1 1 3 10 ct 13π 1 19π 11 tan Hint: 1 1 19π 11 π 6 19π π 1 csc 1 In prblems 13 t 3, simplify each expressin withut the use f a calculatr 13 sin ( 180 θ 1 cs ( + t 180 15 cs ( π α 16 sin ( x 70 17 sin ( 360 s 18 cs ( π γ 19 tan ( 180 t 0 sec ( π + u 37

3 1 csc + β tan ( 70 + θ 3 sin 17 cs 13 + sin 13 cs 17 cs 3 cs 17 sin 3 cs17 17π 5 sin cs 36 11π 36 11π 17π sin cs 36 36 5π π π 5π 6 cs sin + cs sin 7 7 7 7 7 cs x cs x + sin x sin x 8 sin ( α β cs β + cs ( α β sin β 9 cs ( α + β cs β + sin ( α + β sin β 30 cs ( x + y cs ( x y tan + tan18 31 tan tan18 0 tan 50 tan 0 3 1+ tan 50 tan 0 33 tan 8x tan 7x 1+ tan 8x tan 7x 3 tan +θ 35 Suppse that α and β are angles in standard psitin; α is in quadrant I, 3 1 sinα, β is in quadrant II, and sin β Find: 13 ( a cs α ( b cs β ( c sin (α + β ( d cs (α + β ( e sin ( α β ( f tan (α + β ( g The quadrant cntaining the angle (α + β in standard psitin 36 Suppse that π < s < π, π < t < π, sin s 5, and tan t 3 13 Find: ( a sin ( s t ( b cs ( s t ( c sin ( s + t ( d sec ( s + t ( e The quadrant cntaining the angle θ in standard psitin if the radian measure f θ is s + t 56 5 37 If α and β are psitive acute angles, sin(α + β, and sin β, 65 13 then find sinα Hint: sin α sin ( ( α + β β 38 Derive a frmula fr tan ( α + β fr the case in which cs α 0 and sin β 0 38

In prblems 39 t 8, shw that each equatin is an identity 39 sin( α + β sin α cs β 1 + ct α tan β 0 tan (θ + π 1 sin t + cs t sin t tan x + tan x 3 6 3 cs ( x+y cs ( x y 1 sin x sin y tan β sin( α β csα cs β 5 ct ( x + y ct x ct y 1 ct x + ct y 6 sin( s + t sin( s t tan s + tant tan s tant 7 π tan θ π 1+ tan θ sinθ cs θ 8 tan π t sec t sin t π csc t 1 9 Prve parts (iv, (v, and (vi f Therem 53 π tan y 50 If x + y, shw that tan y 1+ tan x 51 ( a Use Therem 51 t derive the duble angle frmula fr csine: cs θ cs θ sin θ ( b Use yur result frm (a and the Pythagrean identity invlving sine and csine t prve: (i cs (θ cs θ 1 and (ii cs (θ 1 sin θ 5 Use Therem 5 t prve the duble angle frmula fr sine: sin (θ sinθ csθ In prblems 53 and 5, find all values f θ [ 0, π ] that satisfy the given equatin 53 sin (θ + sinθ 0 5 3 sin θ + cs (θ 1 39