τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)



Σχετικά έγγραφα
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Το άτομο του Υδρογόνου

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις


Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Περιοδικό Σύστημα Ιστορική Εξέλιξη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

Ζαχαριάδου Φωτεινή Σελίδα 1 από 21. Γ Λυκείου Κατεύθυνσης Κεφάλαιο 1: Ηλεκτρονιακή δοµή του ατόµου

Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας

5. Ηλεκτρονικές Δομές και Περιοδικότητα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες

Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

1o Kριτήριο Αξιολόγησης

Μάθημα 10 ο. Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας. Μέγεθος ατόμων Ενέργεια Ιοντισμού Ηλεκτρονιακή συγγένεια Ηλεκτραρνητικότητα

Μεταβολή ορισμένων περιοδικών ιδιοτήτων

Κατανομή μετάλλων και αμετάλλων στον Π.Π.

Μάθημα 11ο. Ηλεκτρονιακή διαμόρφωση Πολυηλεκτρονιακών ατόμων-b

ΘΕΜΑΤΑ ΑΠΟ ΠΜΔΧ ΣΧΕΤΙΚΑ ΜΕ ΤΟ 1 ΚΕΦΑΛΑΙΟ ΤΗΣ Γ ΛΥΚΕΙΟΥ

1.2 Αρχές δόμησης πολυηλεκτρονικών ατόμων

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Κομβικές επιφάνειες. Από τη γνωστή σχέση: Ψ(r, θ, φ) = R(r).Θ(θ).Φ(φ) για Ψ = 0 θα πρέπει είτε R(r) = 0 ή Θ(θ).Φ(φ) = 0

Κεφάλαιο 8.6. Περιοδικό Σύστημα και Περιοδικές Ιδιότητες των Στοιχείων

3. Περιοδικότητα στις ατομικές, φυσικές και χημικές ιδιότητες των στοιχείων

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 1 ου ΚΕΦΑΛΑΙΟΥ

1. Η Ανόργανη Χημεία και η εξέλιξή της

3. Περιοδικότητα στις ατομικές, φυσικές και χημικές ιδιότητες των στοιχείων

ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Ασκήσεις στην ηλεκτρονιακή δόμηση των ατόμων

ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν. 2. Ο µέγιστος αριθµός των ηλεκτρονίων που είναι δυνατόν να υπάρχουν

Η δοµή του ατόµου. Ηλεκτρονική δόµηση. Από τον Δ ηµόκριτο µέχρι το σύγχρονο κβαντικό άτοµο. W. Heisenberg. E. Schrödinger W. Pauli. N. Bohr. M.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 08 / 09 /2013 ΑΠΑΝΤΗΣΕΙΣ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 3: Ηλεκτρονική διαμόρφωση των ατόμων

Γενική & Ανόργανη Χημεία

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ V. ΑΡΧΕΣ ΔΟΜΗΣΗΣ ΤΩΝ ΠΟΛΥΗΛΕΚΤΡΟΝΙΑΚΩΝ ΑΤΟΜΩΝ

ΑΤΟΜΙΚΑ ΤΟΜΙΚΑ ΠΡΟΤΥΠΑ

ΧΗΜΕΙΑ θετικής κατεύθυνσης

Ανόργανη Χημεία. Τμήμα Τεχνολογίας Τροφίμων. Ενότητα 4 η : Ιοντικοί Δεσμοί Χημεία Κύριων Ομάδων. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής

ΑΣΚΗΣΕΙΣ ΣΤΟ 1ο ΚΕΦΑΛΑΙΟ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 1 ο ΚΕΦΑΛΑΙΟΥ ( ) Χημεία Γ Λυκείου. Υπεύθυνη καθηγήτρια: Ε. Ατσαλάκη

H περιοδικότητα των ιδιοτήτων των ατόμων των στοιχείων-iοντικός Δεσμός. Εισαγωγική Χημεία

Κβαντική θεωρία και ηλεκτρονιακή δομή των ατόμων

I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη

Αρχές δόμησης πολυηλεκτρονικών ατόμων.

ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν. 2. Ο µέγιστος αριθµός των ηλεκτρονίων που είναι δυνατόν να υπάρχουν

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΟΔΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΑΤΟΜΙΚΗ ΑΚΤΙΝΑ ΕΝΕΡΓΕΙΑ ΙΟΝΤΙΣΜΟΥ

1.3 Δομή περιοδικού πίνακα (τομείς s, p, d, f) - στοιχεία μετάπτωσης

Δρ. Ιωάννης Καλαμαράς, Διδάκτωρ Χημικός. 100 Ερωτήσεις τύπου Σωστού Λάθους Στο τέλος οι απαντήσεις

Μεταβολή ορισμένων περιοδικών ιδιοτήτων. Ατομική ακτίνα

κυματικής συνάρτησης (Ψ) κυματική συνάρτηση

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

Γενική & Ανόργανη Χημεία

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ. Δίνονται τα στοιχειά 13 Αl και 19 Κ. Να βρεθεί σε ποια περίοδο και σε ποια ομάδα του Π.Π. είναι τοποθετημένα τα στοιχειά αυτά:

ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 1 ΣΤΗ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟ ΚΕΦΑΙΛΑΙΟ 1. Α) Μηχανική συνθήκη ( βελάκι σελ 3) Β) Οπτική συνθήκη (1 ο βελάκι σελ 4 )

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

1.3 Δομή περιοδικού πίνακα (τομείς s, p, d, f) στοιχεία μετάπτωσης

5. Οργανομεταλλικές Ενώσεις των ΜΜ

Μαγνητικές ιδιότητες Υλικών με βαση τις αντίστοιχες των στοιχείων

1. (α) Ποιες είναι οι τιμές των κβαντικών αριθμών για το ηλεκτρόνιο. (β) Ποια ουδέτερα άτομα ή ιόντα μπορεί να έχουν αυτή την ηλεκτρονική διάταξη;

Ατομική Ακτίνα ατομική ακτίνα δραστικού μείωση δραστικό πυρηνικό φορτίο και ο κύριος κβαντικός αριθμός των εξωτ. ηλεκτρονίων

Κεφάλαιο 1 Χημικός δεσμός

Μάθημα 14ο. Περιοδικότητα των ιδιοτήτων των ατόμων των στοιχείων

Ο σύγχρονος Περιοδικός Πίνακας

3 o. Περιοδικός πίνακας Μεταβολή ορισµένων περιοδικών ιδιοτήτων ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 59.

Βασικά σωματίδια της ύλης

Κριτήριο Αξιολόγησης: Μεταβολή περιοδικών ιδιοτήτων. Θέματα... 2 Απαντήσεις... 4

Περιοδικές τάσεις ιδιοτήτων των μεταβατικών μετάλλων

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

Γενική & Ανόργανη Χημεία

ΑΝOΡΓΑΝΗ ΧΗΜΕIΑ. Γεράσιµος Αρµατάς. Επίκουρος Καθηγητής Τµήµα Επιστήµης και Τεχνολογίας Υλικών

Μεταβολή ορισμένων περιοδικών ιδιοτήτων. Ατομική ακτίνα

ΠΟΛΥΗΛΕΚΤΡΟΝΙΑΚΑ ΑΤΟΜΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ. a. Ο μέγιστος αριθμός ηλεκτρονίων σε ένα άτομο τα οποία χαρακτηρίζονται με n=2 και m l =0

ΕΙΣΑΓΩΓΗ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ Η ΔΟΜΗ ΠΙΝΑΚΑ I. ΠΕΡΙΟΧΕΣ ΟΜΑΔΕΣ - ΠΕΡΙΟΔΟΙ

ΕΝΟΤΗΤΑ 2η:Ταξινόμηση των στοιχείων-στοιχεία με ιδιαίτερο ενδιαφέρον

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 ΚΕΦ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ

Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί

Πανεπιστήμιο Κύπρου Τμήμα Χημείας. ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΕΙΑ ΓΙΑ ΒΙΟΛΟΓΟΥΣ ΚΑΙ ΦΥΣΙΚΟΥΣ ΧΗΜ 021 Χειμερινό Εξάμηνο 2008

Δομή περιοδικού πίνακα.

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ

Αφορά τη συμπλήρωση των τροχιακών με ηλεκτρόνια, στα πολυηλεκτρονικά άτομα. Γίνεται λαμβάνοντας υπόψη μας τρεις αρχές (aufbeau)

Μετά το τέλος της μελέτης του 2ου κεφαλαίου, ο μαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει τα βασικά σημεία του ατομικού προτύπου του Bohr.

Transcript:

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) Το τροχιακό καθορίζεται από τους τρεις πρώτους κβαντικούς αριθµούς (n, l, m l ) Το ηλεκτρόνιο καθορίζεται από τέσσερις κβαντικούς αριθµούς (n,l, m l,m s )

Συµβολισµός τροχιακών υποστιβάδων 3d n=3 l = 2

ΟΜΗ ΠΟΛΥΗΛΕΚΤΡΟΝΙΚΩΝ ΑΤΟΜΩΝ Η ενέργεια των ατοµικών τροχιακών του υδρογόνου και των υδρογονοειδών εξαρτάται µόνον από τον κύριο κβαντικό αριθµό (n) Ισοενεργειακά τροχιακά = εκφυλισµένα τροχιακά

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Τα σχήµατα των ατοµικών τροχιακών s- τροχιακά

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Τα σχήµατα των ατοµικών τροχιακών p- τροχιακά p z p y p X

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Τα σχήµατα των ατοµικών τροχιακών d- τροχιακά d d dχψ d ΨΖ ΧΖ d Χ 2 -ψ 2 d Ζ 2

ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Τα σχήµατα των ατοµικών τροχιακών f- τροχιακά 4f zx2-y2 4f z3 4f yz2 4f y3x2-y 4f xz2 4f xyz 4f xx2-3y

ΟΜΗ ΠΟΛΥΗΛΕΚΤΡΟΝΙΚΩΝ ΑΤΟΜΩΝ Στα πολυηλεκτρονικά άτοµα δεν υπάρχουν µόνον αλληλεπιδράσεις µεταξύ ηλεκτρονίου πυρήνα αλλά και των ηλεκτρονίων µεταξύ τους. Η ενέργεια των ατοµικών τροχιακών των πολυηλεκτρονικών ατόµων εξαρτάται από τους δύο πρώτους κβαντικούς αριθµούς µ (n, l) Άρση του εκφυλισµού

ΑΡΧΕΣ ΟΜΗΣΗΣ ΑΤΟΜΩΝ (Aufbauprinzip) Αρχή της ελάχιστης ενέργειας Τα ηλεκτρόνια καταλαµβάνουν πρώτα τα διαθέσιµα ατοµικά τροχιακά χαµηλότερης ενέργειας και µετά, εφόσον υπάρχει περίσσεια ηλεκτρονίων, καταλαµβάνουν τροχιακά υψηλότερης ενέργειας δηµιουργώντας µια δοµή µε τη µικρότερη ρ ρη δυνατή ενέργεια ΣΥΜΠΕΡΑΣΜΑ- Κανόνας Klechkowsky Μεταξύ δύο τροχιακών ή υποστιβάδων, µικρότερη ενέργεια έχει εκείνο µε το µικρότερο n+l. Στη περίπτωση που το n+l είναι ίδιο µικρότερη ενέργεια έχει εκείνο το τροχιακό που έχει το µικρότερο ό n ΠΑΡΑ ΕΙΓΜΑ Συγκρίνουµε ως προς την ενέργεια τα τροχιακά 4s, 4p, 3d. 4s: n+l=4, 4p: n+l=5, 3d: n+l=5 4s<3d<4p

ΑΡΧΕΣ ΟΜΗΣΗΣ ΑΤΟΜΩΝ Απαγορευτική αρχή του Pauli εν είναι δυνατό στο ίδιο άτοµο να υπάρχουν δυο ηλεκτρόνια που να έχουν ίδιους και τους τέσσερις κβαντικούς αριθµούς τους (n, l, m l, m s ) ΣΥΜΠΕΡΑΣΜΑΤΑ 1. Κάθε τροχιακό µπορεί να περιέχει µέχρι δύο ηλεκτρόνια 2. Η υποστιβάδα s αποτελείται από 1 τροχιακό Χ 2= 2 e Η υποστιβάδα p αποτελείται από 3 τροχιακά Χ 2= 6 e Η υποστιβάδα d αποτελείται από 5 τροχιακά Χ 2= 10 e Η υποστιβάδα f αποτελείται από 7 τροχιακά Χ 2= 14 e

ΑΡΧΕΣ ΟΜΗΣΗΣ ΑΤΟΜΩΝ Κανόνας του Hund Όταν ηλεκτρόνια καταλαµβάνουν εκφυλισµένα τροχιακά, η διάταξη που προτιµάται είναι αυτή που δίνει το µέγιστο συνολικό spin. ΠΑΡΑ ΕΙΓΜΑ Έστω ότι θέλουµε να τοποθετήσουµε 3 e στα 2p τροχιακά Λάθος p x p ψ p z Σωστό

ΟΜΗ ΠΟΛΥΗΛΕΚΤΡΟΝΙΚΩΝ ΑΤΟΜΩΝ 7N Μνηµονικός κανόνας 1s 2 2s 2 2p 3 συµπλήρωσης των υποστιβάδων Η ηλεκτρονική δοµή σε η ρ ή µή στοιβάδες είναι: Κ 2 L 5

ΟΜΗ ΠΟΛΥΗΛΕΚΤΡΟΝΙΚΩΝ ΑΤΟΜΩΝ ΕΞΑΙΡΕΣΕΙΣ 1. Όταν τοποθετηθούν e στις υποστιβάδες 4s και 3d, τότε η 4s αποκτά µεγαλύτερη ενέργεια. Το ίδιο ισχύει και για τις υποστιβάδες 4d -5s, 5d-6s. Επιπλέον η 6s συµπληρώνεται πριν από τη 5d και µετά ά η 4f 26Fe : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 γίνεται 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 2. Προτιµώνται µ δοµές µ στις οποίες η υποστιβάδα d είναι ηµισυµπληρωµένη µ ηρ µ η ή πλήρως συµπληρωµένη. 24Cr: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 γίνεται 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 29Cu: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 γίνεται 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s

H He Li Be 1s 1 1s 2 1s 2 2s 1 1s 2 2s 2 B 1s 2 2s 2 2p 1 C 1s 2 2s 2 2p 2 N 1s 2 2s 2 2p 3 O 1s 2 2s 2 2p 4 F 1s 2 2s 2 2p 5 Ne 1s 2 2s 2 2p 6 Na 1s 2 2s 2 2p 6 3s 1 Mg 1s 2 2s 2 2p 6 3s 2 Al 1s 2 2s 2 2p 6 3s 2 3p 1 Si 1s 2 2s 2 2p 6 3s 2 3p 2 P 1s 2 2s 2 2p 6 3s 2 3p 3 S 1s 2 2s 2 2p 6 3s 2 3p 4 Cl 1s 2 2s 2 2p 6 3s 2 3p 5 Ar 1s 2 2s 2 2p 6 3s 2 3p 6 K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Ca 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 Sc 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 Ti 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 V 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 Mn 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 Co 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 7 Ni 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 8 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 10 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ΗΛΕΚΤΡΟΝΙΑΚΗ ΟΜΗ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕ Ζ= 1-30

ΙΑΜΑΓΝΗΤΙΚΑ ΠΑΡΑΜΑΓΝΗΤΙΚΑ ΑΤΟΜΑ Άτοµα που έχουν µόνον ό συζευγµένα ηλεκτρόνια, απωθούνται ελαφρά από ένα µαγνητικό πεδίο και ονοµάζονται διαµαγνητικά 4Be : 1s 2 2s 2 συζευγµένα Άτοµα που έχουν ένα ή περισσότερα ασύζευκτα ηλεκτρόνια, έλκονται ισχυρά από ένα µαγνητικό γ η πεδίο και ονοµάζονται µ παραµαγνητικά 7N7 1s 2 2s 2 2p 3 ασύζευκτα

ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΟΜΑ Α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Σ Τοµέας s Τοµέας p ΠΕΡΙΟ Ο Σ 1 1 H 2 He 2 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 3 11 Na 12 Mg Τοµέας d 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 6 55 Cs 56 Ba 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 7 87 Fr 88 Ra 103 Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg Τοµέας f ΛΑΝΘΑΝΙ ΕΣ 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb ΑΚΤΙΝΙ ΕΣ 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No

ΑΣΚΗΣΗ Ποιες οι δυνατές τετράδες των κβαντικών αριθµών των ηλεκτρονίων σθένους των ατόµων: 7 Ν, 29 Cu; Η ηλεκτρονική δοµή του 7 Ν είναι: 1s 2 2s 2 2p 3 Η εξωτερική στιβάδα είναι η 2 η. 2s 2 : (200+1/2) (2,0,0,+1/2), (200 (2,0,0, -1/2) 2p 3 : (2,1,+1,+1/2), 1/2), (2,1,-1,+1/2), 1/2), (2,1,0,+1/2) 1/2)

ΑΣΚΗΣΗ Η ηλεκτρονική δοµή του 29 Cu είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2 γίνεται 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s Η εξωτερική στιβάδα είναι η 4 η. 4s : (4,0,0,+1/2)

ΑΣΚΗΣΗ Σε ποια περίοδο και σε ποια οµάδα του περιοδικού πίνακα ανήκουν τα στοιχεία: 3 Li, 16 S, 22 Ti; Η ηλεκτρονική δοµή του 3 Li είναι: 1s 2 2s 1 n max =2 άρα ανήκει στη 2η περίοδο. Τα τελευταία ηλεκτρόνια που τοποθετήθηκαν ήταν στη 2s υποστιβάδα άρα ανήκει στον s τοµέα. Επειδή τοποθετήθηκε 1 ηλεκτρόνιο στη 2s υποστιβάδα ανήκει στη 1η οµάδα.

ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΟΜΑ Α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Σ Τοµέας s Τοµέας p ΠΕΡΙΟ Ο Σ 1 1 H 2 He 2 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 3 11 Na 12 Mg Τοµέας d 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 6 55 Cs 56 Ba 71 Lu 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn 7 87 Fr 88 Ra 103 Lr 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg Τοµέας f ΛΑΝΘΑΝΙ ΕΣ 57 La 58 Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 68 Er 69 Tm 70 Yb ΑΚΤΙΝΙ ΕΣ 89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101 Md 102 No Li: [He]2s 1 B: [He]2s 2 2p 1 Co: [Ar]3d 7 4s 2 Sb:[Kr]3d 10 5s 2 5p 3

ΑΣΚΗΣΗ Η ηλεκτρονική δοµή του 16 S είναι: 1s 2 2s 2 2p 6 3s 2 3p 4 n max =3 άρα ανήκει στη 3η περίοδο. Τα τελευταία ηλεκτρόνια που τοποθετήθηκαν ήταν στη 3p υποστιβάδα άρα ανήκει στον p τοµέα. Οµάδα: 2 (από τον s τοµέα) + 10 (από τον d τοµέα) + 4 (τα ηλεκτρόνια της 3p υποστιβάδας) = 16η οµάδα.

ΑΣΚΗΣΗ Η ηλεκτρονική δοµή του 22 Ti είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 n max =4 άρα ανήκει στη 4η περίοδο. Τα τελευταία ηλεκτρόνια που τοποθετήθηκαν ήταν στη 3d υποστιβάδα άρα ανήκει στο d τοµέα. Οµάδα: 2 (από τον s τοµέα) + 2 (τα ηλεκτρόνια της 3d υποστιβάδας) = 4η οµάδα.

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. 2. Σε ποια περίοδο και σε ποια οµάδα του περιοδικού πίνακα ανήκουν τα στοιχεία: 20 Ca, 28 Ni, 14 Si.

ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατοµική ακτίνα (r) : ½ της απόστασης µεταξύ δύο οµοιοπυρηνικών ατόµων, ενωµένων µε απλό οµοιοπολικό δεσµό. r = d/2

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ ραστικό πυρηνικό φορτίο (Ζ ) Σε ένα πολυηλεκτρονικό άτοµο, κάθε ηλεκτρόνιο έλκεται από τον πυρήνα και ταυτόχρονα απωθείται από τα υπόλοιπα ηλεκτρόνια του ατόµου. Έστω ηλεκτρόνιο Α. Κάθε ηλεκτρόνιο που παρεµβάλλεται ανάµεσα στο Α και στον πυρήνα του ατόµου µειώνει την ελκτική δράση που ασκεί ο πυρήνας πάνω στο Α. Το φαινόµενο αυτό της <<προστασίας>> ενός ηλεκτρονίου από την ελκτική δράση του συνολικού φορτίου του πυρήνα µέσω της παρουσίας εσώτερων ηλεκτρονίων είναι γνωστό ως φαινόµενο θωράκισης ή προάσπισης. Π ά θ ά ό λ ί δ ί λά Πρακτικά η θωράκιση ενός ηλεκτρονίου ισοδυναµεί µε ελάττωση του πυρηνικού φορτίου Ζ του ατόµου. Το καθαρό πυρηνικό φορτίο που έλκει τελικά ένα ηλεκτρόνιο ονοµάζεται δραστικό πυρηνικό φορτίο (Ζ )

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ ραστικό πυρηνικό φορτίο (Ζ ) Η αποτελεσµατικότητα της θωράκισης ενός ηλεκτρονίου από εσώτερα ηλεκτρόνια εξαρτάται από τον τύπο του τροχιακού που βρίσκεται το εν λόγω ηλεκτρόνιο. Για το τροχιακό 2s η ηλεκτρονιακή πυκνότητα πλησίον του πυρήνα είναι µεγαλύτερη από ότι για ένα τροχιακό 2p. Άρα ένα ηλεκτρόνιο 2s έλκεται ισχυρότερα από ένα ηλεκτρόνιο 2p, δηλαδή δή δρα επάνω του ισχυρότερο Ζ. Για τον ίδιο λόγο το Ζ είναι ισχυρότερο σε ένα ηλεκτρόνιο 3s µετά σε 3p και τέλος σε 3d.

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Από ποιους παράγοντες εξαρτάται η ατοµική ακτίνα; 1. Από τον κύριο κβαντικό αριθµό: Όσο αυξάνει ο κύριος κβαντικός αριθµός αυξάνει και η ατοµική ακτίνα. 2. Από το δραστικό πυρηνικό φορτίο. Αυξανοµένου του δραστικού πυρηνικού φορτίου µειώνεται η ατοµική ακτίνα.

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα; Γενικά σε κάθε περίοδο η ατοµική ακτίνα ελαττώνεται καθώς προχωράµε από αριστερά προς τα δεξιά. Εξήγηση Καθώς προχωράµε από αριστερά προς τα δεξιά, δξάστην ίδια περίοδο, ο κύριος κβαντικός αριθµός και ο αριθµός των εσωτερικών ηλεκτρονίων παραµένει ο ίδιος ενώ ο ατοµικός αριθµός και άρα το πυρηνικό φορτίο αυξάνει. Έτσι αυξάνει το Ζ και εποµένως αυξάνει η έλξη από τον πυρήνα και άρα µειώνεται το µέγεθος.

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα; Γενικά σε κάθε οµάδα η ατοµική ακτίνα αυξάνεται καθώς προχωράµε από πάνω προς τα κάτω. Εξήγηση Καθώς προχωράµε από πάνω προς τα κάτω, στην ίδια οµάδα, η αύξηση του αριθµού των εσωτερικών ηλεκτρονίων αντισταθµίζεται από την αύξηση του πυρηνικού φορτίου. Έτσι ενώ ο κύριος κβαντικός αριθµός αυξάνει, το Ζ παραµένει σταθερό. Εποµένως η ατοµική ακτίνα αυξάνει.

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα;

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα; ΠΕΡΙΟ ΟΣ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΟ ΟΣ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ 18 17 16 15 14 13 12 11 3 10 Ne 9 F 8 O 7 N 6 C 5 B 4 Be 3 Li 2 2 He 1 18 17 16 15 14 13 12 11 3 10 Ne 9 F 8 O 7 N 6 C 5 B 4 Be 3 Li 2 2 He 1 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 Ar Cl S P Si Al Mg Na 3 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 Ar Cl S P Si Al Mg Na 3 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 102 101 100 99 98 97 96 95 94 93 92 91 90 89 70 Yb 69 Tm 68 Er 67 Ho 66 Dy 65 Tb 64 Gd 63 Eu 62 Sm 61 Pm 60 Nd 59 Pr 58 Ce 57 La ΛΑΝΘΑΝΙ ΕΣ 102 101 100 99 98 97 96 95 94 93 92 91 90 89 70 Yb 69 Tm 68 Er 67 Ho 66 Dy 65 Tb 64 Gd 63 Eu 62 Sm 61 Pm 60 Nd 59 Pr 58 Ce 57 La ΛΑΝΘΑΝΙ ΕΣ 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα; ΑΠΟΚΛΙΣΕΙΣ Τα στοιχεία µετάπτωσης: Σε µια περίοδο, επειδή συµπληρώνονται τα εσωτερικά d τροχιακά, αυξάνει η προάσπιση και εποµένως µειώνεται το Ζ. Άρα αυξάνει το µέγεθος. έ θ Η µείωση ί των ακτίνων συνεχίζει κανονικά µετά ά από κάθε σειρά µετάπτωσης. Ελάττωση των ατοµικών ακτίνων παρατηρείται και στις λανθανίδες και στις ακτινίδες (λανθανιδική ακτινιδική συστολή)

ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Πως µεταβάλλεται το µέγεθος των ατόµων σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα;

ΙΟΝΤΙΚΕΣ ΑΚΤΙΝΕΣ Πως ορίζονται; Θεωρούµε τα ιόντα ενός κρυστάλλου σαν σκληρές σφαίρες, οπότε οι ακτίνες των ιόντων θα είναι οι ακτίνες των σφαιρών. Ποιοι παράγοντες επηρεάζουν τις ιοντικές ακτίνες; Ο ατοµικός αοµ αριθµός και το φορτίο ο των ιόντων Η κρυσταλλική δοµή

ΙΟΝΤΙΚΕΣ ΑΚΤΙΝΕΣ Παράγοντες που επηρεάζουν τις ιοντικές ακτίνες Ο ατοµικός αριθµός και το φορτίο των ιόντων Η ιοντική ακτίνα αυξάνει ανάλογα µε την ατοµική ακτίνα (2η οµάδα) : Be 2+ < Mg 2+ < Ca 2+ < Sr 2+ < Ba 2+ Στα ισοηλεκτρονικά ιόντα η ιοντική ακτίνα ελαττώνεται καθώς ο Ζ µεγαλώνει, διότι αυξάνει το πυρηνικό φορτίο και ο ηλεκτρονικός φλοιός έλκεται ισχυρότερα 8O 2- > 9 F - > 11 Na + > 12 Mg 2+ > 13 Al 3+ ( έχουν όλα 10 ηλεκτρόνια)

ΙΟΝΤΙΚΕΣ ΑΚΤΙΝΕΣ Παράγοντες που επηρεάζουν τις ιοντικές ακτίνες Ο ατοµικός αριθµός και το φορτίο των ιόντων Για µέταλλα που σχηµατίζουν περισσότερα του ενός κατιόντα οι ιοντικές ακτίνες ελαττώνονται καθώς το φορτίο µεγαλώνει Fe 2+ :[Ar]3d 6, Fe 3+ :[Ar]3d 5 Μεγαλύτερη άπωση µεταξύ των 6 ηλεκτρονίων σθένους του Fe 2+ Fe 2+ > Fe 3+ Τα κατιόντα έχουν µικρότερη ακτίνα από τα άτοµα ενώ τα ανιόντα µεγαλύτερη A x+ < A, B x- > B

ΕΝΕΡΓΕΙΑ ΙΟΝΙΣΜΟΥ Τι είναι η ενέργεια ιονισµού µ (Ι); Μ (g) M + (g) + e, Η 1 =ΙΙ 1 (ενέργεια έ 1 ου ιονισµού) Μ + (g) M 2+ (g) + e, Η 2 =Ι 2 (ενέργεια 2 ου ιονισµού) M 2+ (g) M 3+ (g) +e, Η 3 =Ι 3 (ενέργεια 3 ου ιονισµού) Ι 1 <Ι 2 <Ι 3

ΕΝΕΡΓΕΙΑ ΙΟΝΙΣΜΟΥ Ποια ηλεκτρόνια αποµακρύνονται κατά τους ιονισµούς των στοιχείων; Αποµακρύνονται εκείνα τα ηλεκτρόνια που χρειάζονται τη λιγότερη ενέργεια για να αποσπασθούν, δηλαδή τα ηλεκτρόνια της εξωτερικής στιβάδας. Ca (1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ) Ca 2+ (1s 2 2s 2 2p 6 3s 2 3p 6 ) Fe (1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ) Fe 2+ (1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 )

ΕΝΕΡΓΕΙΑ ΙΟΝΙΣΜΟΥ Πως µεταβάλλεται η ενέργεια ιονισµού σε µια οµάδα ή περίοδο του Περιοδικού Πίνακα; Όσο µεγαλύτερο είναι το µέγεθος του ατόµου τόσο ευκολότερα αποσπώνται ηλεκτρόνια από την εξωτερική στιβάδα. Εποµένως η ενέργεια ιονισµού µεταβάλλεται Εποµένως η ενέργεια ιονισµού µεταβάλλεται αντίστροφα από το µέγεθος (ατοµική ακτίνα)

ΕΝΕΡΓΕΙΑ ΙΟΝΙΣΜΟΥ Πως µεταβάλλεται η ενέργεια ιονισµού; Αντίθετα από την ατοµική ακτίνα 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ 10 9 8 7 6 5 4 3 2 He 1 ΠΕΡΙΟ ΟΣ 10 9 8 7 6 5 4 3 2 He Η 1 ΠΕΡΙΟ ΟΣ 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 18 Ar 17 Cl 16 S 15 P 14 Si 13 Al 12 Mg 11 Na 3 Ne F O N C B Be Li 2 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 18 Ar 17 Cl 16 S 15 P 14 Si 13 Al 12 Mg 11 Na 3 Ne F O N C B Be Li 2 111 110 109 108 107 106 105 104 103 88 87 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 111 110 109 108 107 106 105 104 103 88 87 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 70 69 68 67 66 65 64 63 62 61 60 59 58 57 ΛΑΝΘΑΝΙ ΕΣ 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 70 69 68 67 66 65 64 63 62 61 60 59 58 57 ΛΑΝΘΑΝΙ ΕΣ 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ Yb Tm Er Ho Dy Tb Gd Eu Sm Pm Nd Pr Ce La ΛΑΝΘΑΝΙ ΕΣ 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ Yb Tm Er Ho Dy Tb Gd Eu Sm Pm Nd Pr Ce La ΛΑΝΘΑΝΙ ΕΣ

ΕΝΕΡΓΕΙΑ ΙΟΝΙΣΜΟΥ ΑΠΟΚΛΙΣΕΙΣ Τα µικρά µέγιστα που εµφανίζονται σε µια περίοδο µπορούν να αποδοθούν στην αυξηµένη σταθερότητα των ηµισυµπληρωµένων υποστιβάδων. Τα στοιχεία των οµάδων ΙΙ Α (2) και ΙΙ Β (12) (Be, Mg, Cd και Hg) τα οποία έχουν συµπληρωµένη την εξώτατη υποστιβάδα s, έχουν επίσης µεγαλύτερες ς ενέργειες ιονισµού από τα αµέσως επόµενα στοιχεία (Β, Al, Ga, In και Tl)

ΗΛΕΚΤΡΟΝΙΚΗ ΣΥΓΓΕΝΕΙΑ Τι είναι ηλεκτρονική συγγένεια; Είναι η ενέργεια που απαλευθερώνεται όταν στο άτοµο προστεθεί ένα ηλεκτρόνιο X (g) + e X - (g) Η<0 X - (g) X (g) + e Η>0 Θεωρητικά η ηλεκτρονική συγγένεια είναι ίση και αντίθετη µε την ενέργεια ιονισµού Μεταβάλλεται όπως και η ενέργεια ιονισµού Στα στοιχεία που η προσθήκη ενός e είναι εξώθερµη έχουν θετική ηλεκτρονική συγγένεια. ΑΠΟΚΛΙΣΕΙΣ Το F έχει µικρότερη ηλεκτρονική συγγένεια από το Cl, αφού λόγω µικρού µεγέθους η άπωση του πυρήνα είναι πολύ µεγαλύτερη.

ΗΛΕΚΤΡΑΡΝΗΤΙΚΟΤΗΤΑ Τι είναι ηλεκτραρνητικότητα; Είναι η τάση των στοιχείων να αποκτούν αρνητικό φορτίο. εν είναι ένα σταθερό µέγεθος, διότι η τιµή της δεν εξαρτάται µόνον από τη δοµή του ατόµου αλλά και από τον αριθµό και τη φύση των ατόµων που είναι ενωµένα µε το στοιχείο. ΠΑΡΑ ΕΙΓΜΑ Η λ ό Ρ ί δ ή ώ PF Η ηλεκτραρνητικότητα του Ρ είναι διαφορετική στις ενώσεις PF 5 και PCl 3

ΗΛΕΚΤΡΑΡΝΗΤΙΚΟΤΗΤΑ Πως υπολογίζεται; Με τις µεθόδους Pauling, Allred-Roshow και Mulliken. Υπολογισµός κατά Mulliken Χ=1/2(Ι+Α) Χ= ηλεκτραρνητικότητα Ι= ενέργεια ιονισµού Α= ηλεκτρονική συγγένεια Μας ενδιαφέρουν οι διαφορές της ηλεκτραρνητικότητας.

ΗΛΕΚΤΡΑΡΝΗΤΙΚΟΤΗΤΑ Που χρησιµεύει η γνώση της ηλεκτραρνητικότητας; Στην πρόβλεψη: 1. Της δραστικότητας ενός στοιχείου 2. του τύπου του δεσµού 3. Της πολικότητας ενός οµοιοπολικού δεσµού

ΗΛΕΚΤΡΑΡΝΗΤΙΚΟΤΗΤΑ Πως µεταβάλλεται; 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ΟΜΑ Α ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ 10 9 8 7 6 5 4 3 2 He 1 ΠΕΡΙΟ ΟΣ 10 9 8 7 6 5 4 3 2 He 1 ΠΕΡΙΟ ΟΣ 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 18 Ar 17 Cl 16 S 15 P 14 Si 13 Al 12 Mg 11 Na 3 Ne F O N C B Be Li 2 36 Kr 35 Br 34 Se 33 As 32 Ge 31 Ga 30 Zn 29 Cu 28 Ni 27 Co 26 Fe 25 Mn 24 Cr 23 V 22 Ti 21 Sc 20 Ca 19 K 4 18 Ar 17 Cl 16 S 15 P 14 Si 13 Al 12 Mg 11 Na 3 Ne F O N C B Be Li 2 111 110 109 108 107 106 105 104 103 88 87 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 111 110 109 108 107 106 105 104 103 88 87 86 Rn 85 At 84 Po 83 Bi 82 Pb 81 Tl 80 Hg 79 Au 78 Pt 77 Ir 76 Os 75 Re 74 W 73 Ta 72 Hf 71 Lu 56 Ba 55 Cs 6 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Ag 46 Pd 45 Rh 44 Ru 43 Tc 42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 5 70 69 68 67 66 65 64 63 62 61 60 59 58 57 ΛΑΝΘΑΝΙ ΕΣ 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 70 69 68 67 66 65 64 63 62 61 60 59 58 57 ΛΑΝΘΑΝΙ ΕΣ 111 Rg 110 Ds 109 Mt 108 Hs 107 Bh 106 Sg 105 Db 104 Rf 103 Lr 88 Ra 87 Fr 7 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ Yb Tm Er Ho Dy Tb Gd Eu Sm Pm Nd Pr Ce La ΛΑΝΘΑΝΙ ΕΣ 102 No 101 Md 100 Fm 99 Es 98 Cf 97 Bk 96 Cm 95 Am 94 Pu 93 Np 92 U 91 Pa 90 Th 89 Ac ΑΚΤΙΝΙ ΕΣ Yb Tm Er Ho Dy Tb Gd Eu Sm Pm Nd Pr Ce La ΛΑΝΘΑΝΙ ΕΣ

ΑΣΚΗΣΗ Να καταταγούν τα παρακάτω άτοµα κατά σειρά αυξανόµενου µεγέθους και κατά σειρά αυξανόµενης ηλεκτραρνητικότητας: 7 Ν, 5 Β και 9 F Οι ηλεκτρονικές δοµές των ατόµων είναι 7Ν : 1s 2 2s 2 2p 3 Εποµένως ανήκει στη 2η περίοδο και 15η οµάδα 5Β: 1s 2 2s 2 2p 1 Εποµένως ανήκει στη 2η περίοδο και 13η οµάδα 9F: 1s 2 2s 2 2p 5 Εποµένως ανήκει στη 2η περίοδο και 17η οµάδα Άρα τα άτοµα ανήκουν στην ίδια περίοδο. Σε µια περίοδο το µέγεθος αυξάνει από τα δεξιά προς τα αριστερά ενώ η ηλεκτραρνητικότητα αντίθετα. Συνεπώς η ταξινόµηση είναι Μέγεθος: F, N, B Ηλεκτραρνητικότητα: B,N,F

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρεθεί ο ατοµικός αριθµός του στοιχείου το οποίο έχει παρόµοιες χηµικές ιδιότητες µε το 17 Cl αλλά έχει µεγαλύτερη ενέργεια 1 ου ιοντισµού από αυτό. 2. Να καταταγούν τα παρακάτω άτοµα και ιόντα κατά σειρά αυξανόµενου µεγέθους. 11 Νa +, 8 O 2-, 9 F -, 10 Ne και 12 Mg 2+. 3. Να καταταγούν τα παρακάτω άτοµα κατά σειρά αυξανόµενης ηλεκτραρνητικότητας. 20 Ca, 16 S, 34 Se. Ποια από τα άτοµα αυτά έλκονται ισχυρά από ένα µαγνητικό πεδίο και γιατί; 5. Ποιο από τα παρακάτω άτοµα έχει το µεγαλύτερο µέγεθος; Το άτοµο του 26 Fe ήτου 24 Cr;