Differentiation exercise show differential equation

Σχετικά έγγραφα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

Section 8.3 Trigonometric Equations

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SPECIAL FUNCTIONS and POLYNOMIALS

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

2 Composition. Invertible Mappings

Quadratic Expressions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order Partial Differential Equations

Finite Field Problems: Solutions

EE512: Error Control Coding

Trigonometry 1.TRIGONOMETRIC RATIOS

Homework 8 Model Solution Section

Math221: HW# 1 solutions

Solution to Review Problems for Midterm III

Differential equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CRASH COURSE IN PRECALCULUS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Review Exercises for Chapter 7

Spherical Coordinates

Trigonometric Formula Sheet

Lecture 26: Circular domains

Srednicki Chapter 55

PARTIAL NOTES for 6.1 Trigonometric Identities

The Simply Typed Lambda Calculus

Answer sheet: Third Midterm for Math 2339

MathCity.org Merging man and maths

ST5224: Advanced Statistical Theory II

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

( y) Partial Differential Equations

TRIGONOMETRIC FUNCTIONS

C.S. 430 Assignment 6, Sample Solutions

6.3 Forecasting ARMA processes

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Second Order RLC Filters

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

( ) 2 and compare to M.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Partial Differential Equations in Biology The boundary element method. March 26, 2013

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

w o = R 1 p. (1) R = p =. = 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

On Numerical Radius of Some Matrices

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Concrete Mathematics Exercises from 30 September 2016

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Geodesic Equations for the Wormhole Metric

Chapter 6 BLM Answers

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Numerical Analysis FMN011

Durbin-Levinson recursive method

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 9.2 Polar Equations and Graphs

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solution Series 9. i=1 x i and i=1 x i.

SOLVING CUBICS AND QUARTICS BY RADICALS

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

If we restrict the domain of y = sin x to [ π 2, π 2

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

(As on April 16, 2002 no changes since Dec 24.)

Congruence Classes of Invertible Matrices of Order 3 over F 2

EQUATIONS OF DEGREE 3 AND 4.

F19MC2 Solutions 9 Complex Analysis

Solve the difference equation

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Transcript:

Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos 2x + 2x cos 2x 4x 2 sin 2x) (2sin 2x + 4x cos 2x) + 2x sin 2x x + 4x 2 sin 2x 0 2. Given that y e x e x, show that ( )2 y 2 4 0 y e x e x ex + e x ( )2 y 2 4 (e x + e x ) 2 (e x e x ) 2 4 (e 2x + 2 + e 2x ) (e 2x 2 + e 2x ) 4 0 3. Given that v sin u, show that 4v 3 d2 v du 2 + v4 + 1 0 dv du d 2 v du 2 1 2 cos u 2 sin u sin u( sin u) cos u cos u 2 sin u 1 2sin 2 u cos 2 u sin2 u+1 v4 +1 sin u 4 sin u sin u 4 sin u sin u 4v 3 4v 3 d2 v du 2 + v4 + 1 0 4. Given y e x cos x, show that + 2 + 2y 0. 2 y e x cos x e x sin x e x cos x 2 (e x sin x e x cos x ) + (e x sin x + e x cos x ) 2e x sin x d2 y 2 + 2 + 2y (2e x sin x ) 2(e x sin x + e x cos x ) + 2e x cos x 0 1

Method 2 y e x cos x ln y x + ln(cos x) 1 y 1 sin x cos x y y tan x + 2y y(1 tan x) we get: + 2 (1 tan x) y 2 sec2 x ( y y tan x)(1 tan x) y (1 + tan 2 x) 2y d2 y 2 + 2 + 2y 0 Method 3 y e x cos x y e x cos x (1) ex + ye x sin x ( d2 y 2 ex + ex ) + ( ex + ye x ) cos x 2 ex + 2 ex + ye x ye x, by (1) d2 y 2 + 2 + 2y 0 5. Given that y, where k is a positive integer, show that d2 y 1+cos kx 2 k2 y 2. (1+cos kx)(k cos kx) ( k ) (1+cos kx) 2 k ky 1+cos kx d2 y 2 + kcos kx k d2 y k 2 k[ky]y k 2 y 2 k cos kx+k cos2 kx+k sin 2 kx (1+cos kx) 2 (1 cos kx)(1+cos kx) (1 cos kx) k (1+cos kx) k (1+cos kx) k cos kx+k k(1+cos kx) (1+cos kx) 2 1+cos kx sin 2 kx k [ ] 1+cos kx k 1+cos kx 2

Method 2 Given that y Note that : y, where k is a positive integer, show that d2 y 1+cos kx 2 k2 y 2. 1+cos kx 1 cos kx (k ) (1 cos kx)(k cos kx) sin 2 kx ky d2 y 2 + kcos kx k d2 y k(1 cos kx) 2 ksin2 kx+k cos 2 kx k cos kx sin 2 kx k k cos kx sin 2 kx kx k (1 cos ) ( ) k(y)(ky) k2 y 2 k 1 cos kx ky 6. Given y(2 x) 3, show that 3 d2 y 2 2y 0. (2 x) y 0 y 2 x Differentiate again, (2 x) y( 1) (2 x) y 2 x +y 2y 2 (2 x) 2 (2 x) 2 (2 x) 2 3 d2 y 2y 3 2 Method 2 2y 2y y (2 x) 2 2 x 6y (2 x) 2 2y2 2 x 6y 2y[y(2 x)] 6y 2y[3] 0 (2 x) 2 (2 x) 2 (2 x) 2 (2 x) 2 Differentiate again, (2 x) y 0 [(2 x) d2 y 2 ] 0 or (2 x) d2 y 2 2 0 Multiply by y, y(2 x) d2 y 2 2 0 3 d2 y 2y 0 2 7. Given y (1 + 4x)e 2x, prove that + 4 + 4y 0 2 2e 2x 8xe 2x 2 16xe 2x 12e 2x 3

+ 4 + 4y 2 (16xe 2x 12e 2x ) + 4(2e 2x 8xe 2x ) + 4(1 + 4x) Method 2 e 2x y (1 + 4x) 2x e + 2ye2x 4 (16xe 2x 12e 2x ) + (8e 2x 32xe 2x ) + 4e 2x + 16xe 2x 0 (e 2x d2 y + 2e2x 2 ) + (2e2x + 4e2x y) 0 e 2x ( d2 y 2 + 4 + 4y) 0 + 4 + 4y 0 2 8. Let y cos x, show that 4y 3 d2 y 2 + y4 + 1 0. y cos x y 2 cos x 2y sin x (1) Differentiate again, 2y d2 y + 2 2 cos x y2 2y d2 y 2 + 2 ( )2 y 2 Multiply by 2y 2, 4y 3 d2 y + (2y 2 )2 2y 4 By (1), 4y 3 d2 y 2 + ( sin x)2 2y 4, 4y 3 d2 y 2 + 1 cos2 x 2y 4 4y 3 d2 y 2 + 1 y4 2y 4 4y 3 d2 y 2 + y4 + 1 0 9. Given (1 + x 2 )y 2 1 x 2, show that ( )2 1 y4 1 x 4. (1 + x 2 )y 2 1 x 2 (1) y 2 1 x2 1+x 2, 1 y2 1 1 x2 1+x 2 2x2 1+x 2, 1 + y2 1 + 1 x2 1+x 2 2 1+x 2 1 y 4 (1 y 2 )(1 + y 2 ) 4x2 (1+x 2 ) 2 Differentiate (1), 2xy 2 + (1 + x 2 ) [2y ] 2x 4

2x(1+y2 ), 2y(1+x 2 ) ( )2 4x2 (1+y 2 2 ) (1+x 2 ) 2 4y 2 (1 y 4 ) ( 2 1+x 2)2 4( 1 x2 1+x 2) 1 y 4 (1+x 2 )(1 x 2 ) 1 y4 1 x 4 Method 2 Let x tan θ 1 x2, cos θ 2 1+x 2, 1 (1 + dθ 2 x2 ) y 2 1 x2 1+x2 cos θ, y cos θ sin θ, dθ 2 cos θ ( dθ )2 sin2 θ 1 cos2 θ 4 cos θ ( )2 ( dθ )2 ( dθ )2 1 y 4 4( 1 x2 1+x 2) [ 1 2 (1+x2 )] 2 1 y4 4 cos θ 4( 1 x2 1+x 2) 1 y 4 (1+x 2 )(1 x 2 ) 1 y4 1 x 4 10. Form a differential equation from y Ax 3 + B x 2 6x, x > 0. yx 2 Ax 5 + B 6x 3 Divide by x, x 2 + 2xy 5Ax4 18x 2 x + 2y 5Ax3 18x (1) Differentiate (1), (x d2 y + 2 x d2 y 2 + 3 15Ax2 18 ) + (2 ) 15Ax2 18 Multipy by x, 2 + 3x 15Ax3 18x 2 + 3x 3(5Ax3 18x) + 36x 3 (x + 2y) + 36x, by (1) 6xy 36x 2 x d2 y 2 6y 36 11. Form a differential equation from y Ax 3 + B x 2 6, x > 0. yx 2 Ax 5 + B 6x 2 x 2 + 2xy 5Ax4 12x 5

Divide by x, x + 2y 5Ax3 12 (1) Differentiate (1), (x d2 y + 2 x d2 y 2 + 3 15Ax2 ) + (2 ) 15Ax2 Multipy by x, 2 + 3x 15Ax3 + 3x 2 3(5Ax3 12) + 36 3 (x + 2y) + 36, by (1) 2 6y 36 x 3 d2 y 2 6xy 36x 12. y sin 1 3x 1 9x 2, show that (1 9x 2 ) + 3y2 + 9xy 0 y sin 1 3x 1 9x 2 sin 1 3x + y 3 1 9x 2 ysin 1 3x + y2 3 1 9x 2 1 9x 2 + 3y2 1 9x 2 + 18x 2 1 9x 2 9xy 1 9x 2 9xy 1 9x 2 0 (1 9x 2 ) + 3y2 + 9xy 0 13. Given that y x n [A cos(ln x) + B sin(ln x)], where A and B are constants, show that 2 + (1 2n)x + (1 + n2 )y 0 y x n [A cos(ln x) + B sin(ln x)] (1) nxn 1 [A cos(ln x) + B sin(ln x)] + x n { A sin(ln x) + B cos(ln x)} x x Multiply by x, we have, x nxn [A cos(ln x) + B sin(ln x)] + x n { A sin(ln x) + B cos(ln x)} By (1), x ny + xn { A sin(ln x) + B cos(ln x)} (2) Differentiate again, 6

x d2 y + n + 2 nxn 1 { A sin(ln x) + B cos(ln x)} x n { A cos(ln x) + B sin(ln x)} x x Multipy by x, + x nx + 2 nxn { A sin(ln x) + B cos(ln x)} x n {A cos(ln x) + B sin(ln x)} + x nx + n [x ny] y, by (1) and (2). 2 2 + (1 2n)x + (1 + n2 )y 0 14. Given that y sin 1 x, show that (1 x 2 ) d2 y 2 x 0 y sin 1 x sin y x cos y 1 (1) Differentiate (1), Multiply by cos y, cos y d2 y 2 (sin y ) 0 cos 2 y d2 y (sin y ) (cos y ) 0 2 (1 x 2 ) d2 y x (1) 0, by (1) 2 (1 x 2 ) d2 y 2 x 0 15. Let y 5e ( 3 2)x + 3e ( 3+2)x, show that d2 y 2 + 4 + y 0. Let y u + v, where u 5e ( 3 2)x, v 3e ( 3+2)x. du 5( 3 2)e( 3 2)x, d 2 u 2 5( 3 2)2 e ( 3 2)x 5(7 4 3)e ( 3 2)x Hence, d 2 u + 4 du + u 5(7 2 4 3)e( 3 2)x + 20( 3 2)e ( 3 2)x + 5e ( 3 2)x 5e ( 3 2)x [(7 4 3) + 4( 3 2) + 1] 0 dv 5( 3 + 2)e ( 3+2)x, d 2 v 2 5( 3 + 2)2 e ( 3+2)x 5(7 + 4 3)e ( 3+2)x Hence, d 2 v + 4 dv + v 5(7 + 2 4 3)e ( 3+2)x 20( 3 2)e ( 3+2)x + 5e ( 3+2)x 5e ( 3+2)x [(7 + 4 3) 4( 3 + 2) + 1] 0 + 4 + y d2 (u+v) + 4 d(u+v) + (u + v) ( d2 u + 4 du + u) + v 2 2 2 (d2 + 4 dv + v) 0 2 7

Method 2 y 5e ( 3 2)x + 3e ( 3+2)x e 2x y 5e 3x + 3e 3x (1) 2x e + 2e2x y 5 3e 3x 3 3e 3x (e 2x d2 y + 2e2x 2 ) + (2e2x + 4e2x y) 15e 3x + 9 3e 3x e 2x d2 y 2 + 4e2x + 4e2x y 3e 2x y, by (1) e 2x d2 y 2 + 4e2x + e2x y 0 Method 3 Let α 3 2, β ( 3 + 2). α + β 4, α β ( 2) 2 3 1 α, β are roots of u 2 + 4u + 1 0 (1) Hence { α2 + 4α + 1 0 β 2 + 4β + 1 0 (2) y 5e ( 3 2)x + 3e ( 3+2)x 5e αx + 3e βx 5αeαx + 3βe βx, 2 5α2 e αx + 3β 2 e βx + 4 + y 2 5eαx (α 2 + 4α + 1) + 3e βx (β 2 + 4β + 1) 0, by (2). Comment (a) The general solution of the differential equation: d2 y 2 + 4 + y 0 is y c 1 e ( 3 2)x + c 2 e ( 3+2)x, c 1, c 2 are integrating constants. So y 5e ( 3 2)x + 3e ( 3+2)x is a special solution of the differential equation. (b) It is interesting that solving d2 y + 4 + y 0 is just to find the roots of the auxiliary 2 equation u 2 + 4u + 1 0, that is α 3 2, β ( 3 + 2) and then form the general solution y c 1 e ( 3 2)x + c 2 e ( 3+2)x. Solving this kind of second order differential equation becomes solving a quadratic equation. The story is longer since quadratic equation may have equal roots or complex roots and is not discussed here. (c) Showing differential equation is just learning how to dive in the sea of calculus and solving differential equation is to get some pearls in the sea. 19/1/2018 Yue Kwok Choy 8