New bounds for spherical two-distance sets and equiangular lines

Σχετικά έγγραφα
Fractional Colorings and Zykov Products of graphs

2 Composition. Invertible Mappings

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Reminders: linear functions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

EE512: Error Control Coding

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Matrices and Determinants

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Every set of first-order formulas is equivalent to an independent set

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Quadratic Expressions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

A Note on Intuitionistic Fuzzy. Equivalence Relation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 3: Solutions

Areas and Lengths in Polar Coordinates

ST5224: Advanced Statistical Theory II

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

TMA4115 Matematikk 3

Homework 8 Model Solution Section

Inverse trigonometric functions & General Solution of Trigonometric Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

derivation of the Laplacian from rectangular to spherical coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Numerical Analysis FMN011

Solutions to Exercise Sheet 5

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lecture 13 - Root Space Decomposition II

w o = R 1 p. (1) R = p =. = 1

If we restrict the domain of y = sin x to [ π 2, π 2

Lecture 15 - Root System Axiomatics

Solution Series 9. i=1 x i and i=1 x i.

Congruence Classes of Invertible Matrices of Order 3 over F 2

( ) 2 and compare to M.

Second Order RLC Filters

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Trigonometric Formula Sheet

Homomorphism in Intuitionistic Fuzzy Automata

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The ε-pseudospectrum of a Matrix

6.3 Forecasting ARMA processes

Lecture 2. Soundness and completeness of propositional logic

Section 9.2 Polar Equations and Graphs

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Answer sheet: Third Midterm for Math 2339

Srednicki Chapter 55

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

The Simply Typed Lambda Calculus

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Section 7.6 Double and Half Angle Formulas

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

PARTIAL NOTES for 6.1 Trigonometric Identities

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order Partial Differential Equations

Generating Set of the Complete Semigroups of Binary Relations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Math221: HW# 1 solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Bounding Nonsplitting Enumeration Degrees

Parametrized Surfaces

5. Choice under Uncertainty

On a four-dimensional hyperbolic manifold with finite volume

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Differentiation exercise show differential equation

CRASH COURSE IN PRECALCULUS

D Alembert s Solution to the Wave Equation

A Hierarchy of Theta Bodies for Polynomial Systems

Trigonometry 1.TRIGONOMETRIC RATIOS

Μηχανική Μάθηση Hypothesis Testing

Strain gauge and rosettes

Abstract Storage Devices

Concrete Mathematics Exercises from 30 September 2016

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

C.S. 430 Assignment 6, Sample Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

SOME PROPERTIES OF FUZZY REAL NUMBERS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Commutative Monoids in Intuitionistic Fuzzy Sets

Transcript:

New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University

Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a or b for all i j, then we call X is a spherical two-distance set. Q : What is the maximum cardinality of a spherical two-distance set?

Figure: The maximum spherical two-distance set in R : Pentagon. Figure: The maximum spherical two-distance set in R 3 : Octahedron.

Known results Let g(n) denote the maximum size of spherical two-distance set in R n 1 Let e 1,..., e n+1 be the standard basis in R n+1. The points e i + e j, i j form a spherical two-distance set in the plane x 1 + + x n+1 =, g(n) n(n + 1), n. (1)

Known results Let g(n) denote the maximum size of spherical two-distance set in R n 1 Let e 1,..., e n+1 be the standard basis in R n+1. The points e i + e j, i j form a spherical two-distance set in the plane x 1 + + x n+1 =, g(n) n(n + 1), n. (1) Delsarte, Goethals, and Seidel in 1977 proved so-called harmonic bound : n(n + 3) g(n). () They also showed that this bound is tight for n =, 6,.

Known results Let g(n) denote the maximum size of spherical two-distance set in R n 1 Let e 1,..., e n+1 be the standard basis in R n+1. The points e i + e j, i j form a spherical two-distance set in the plane x 1 + + x n+1 =, g(n) n(n + 1), n. (1) Delsarte, Goethals, and Seidel in 1977 proved so-called harmonic bound : n(n + 3) g(n). () They also showed that this bound is tight for n =, 6,. 3 Therefore, n(n+1) g(n) n(n+3).

Musin s result Musin used Delsarte s linear programming method to prove that g(n) = and g(3) = 76 or 77. n(n + 1) if 7 n 39, n, 3

Barg and Yu 014 We use the semidefinite programming (SDP) method showing that g(n) = In particular, g(3) = 76. n(n + 1), 7 n 93, n, 46, 78.

Maximum spherical two-distance sets Theorem (Yu 016+) n(n + 1) g(n) =, 7 n 417, n, 46, 78, 118, 166,, 86, 358 which are (k + 1) 3 for k =,, 9. For a + b 0, Oleg Musin proved the upper bounds are n(n+1). For a + b < 0, the upper bounds can be obtained from the bounds of equiangular lines in one higher dimension. Lemma If there are at most n(n 1) equiangular lines in R n, then maximum size of a spherical two-distance set in R n 1 is n(n 1). Musin Conjecture: g(n) = n(n + 1) n N, except n + 3 = (k + 1), k N.

Maximum spherical two-distance sets Theorem (Glazyrin and Yu 016+) g(n) = n(n + 1) n N, except n = (k + 1) 3, k N.

Definition A set of lines in R n is called equiangular if the angle between each pair of lines is the same. An equiangular line set can be defined as an unit vectors set S = {x i } M i=1 such that x i, x j = c, 1 i < j M for some c > 0. A equiangular line set can be defined as a spherical two-distance set with inner product value c and c. Question : What is the maximum cardinality of an equiangular line set in R n?

Figure: Maximum equiangular lines in R : 3 lines through opposite vertices of a regular hexagon. Figure: Maximum equiangular lines in R 3 : 6 lines through opposite vertices of the icosahedron.

Known results Let M(n) denote the maximum size of an equiangular line set in R n Hanntjes found M(n) for n = 3 and 4 in 1948. Van Lint and Seidel found the largest number of equiangular lines for 5 n 7 in 1966. Lemmens and Seidel used linear-algebraic methods to determine M(n) for most values of n in the region 8 n 3 in 1973. n M(n) 1/α n M(n) 1/α 3 17 48-50 5 3 6 5 18 48-61 5 4 6 3; 5 19 7-76 5 5 10 3 0 90-96 5 6 16 3 1 16 5 7 n 13 8 3 176 5 14 8-9 3; 5 3 76 5 15 36 5 4 n 4 76 5 16 40-41 5 43 344 7 Table: Known bounds on M(n) in small dimensions

Our results Theorem (Barg and Yu 014) We use the semidefinite programming (SDP) method to show that M(n) = 76 for 4 n 41 and M(43) = 344. n M(n) SDP bound n M(n) SDP bound 3 6 6 18 48-61 61 4 6 6 19 7-76 76 5 10 10 0 90-96 96 6 16 16 1 16 16 7 n 13 8 8 176 176 14 8-9 30 3 76 76 15 36 36 4 n 41 76 76 16 40-41 4 4 76 88 17 48-50 51 43 344 344 Table: Bounds on M(n) including new results Remark : Recently, we can show no 76 equiangular lines in R 19.

Gegenbauer polynomials Let G (n) k (t), k = 0, 1,... denote the Gegenbauer polynomials of degree k. They are defined recursively as follows: G (n) 0 1, G (n) 1 (t) = t, and G (n) k (k + n 4)tG(n) (t) = k 1 (t) (k 1)G(n) k + n 3 k (t), k.

Define a matrix Yk n (u, v, t), k 0 ( (Yk n (u, v, t)) ij = u i v j ((1 u )(1 v )) k/ G (n 1) t uv ) k (1 u )(1 v ) and a matrix Sk n (u, v, t) by setting S n k (u, v, t) = 1 6 σ S 3 Y n k (σ(u, v, t)), (3) I.J. Schoenberg (194) proved that if C is the finite set in S n 1, then (x,y) C G n k( x, y ) 0. (x,y,z) C 3 S n k (x y, x z, y z) 0.

Semidefinite programming min c T x m subject to F 0 + F i x i 0 where c, x R m and F i is an n by n symmetric matrix i. The sign means that the matrix is positive semidefinite. i=1 CVX (MATLAB toolkit) can solve an SDP in a second.

Theorem (Gerzon, absolute bounds) If there are M equiangular lines in R n, then M n(n+1). Gerzon bounds are known to be attained only for n =, 3, 7, and 3. Theorem (Neumann) If there are M equiangular lines in R n with angle arccos α and M > n, then 1/α is an odd integer. Theorem (Lemmens and Seidel) M 1/3 (n) = (n 1) for n 16, where M α (n) is the maximum size of an equiangular line set when the value of the angle is arccos α. Theorem (Relative bounds) M α (n) n(1 α ) 1 nα (4) valid for all α such that the denominator is positive.

SDP bound Theorem Let C be an equiangular line set with inner product values either a or a. Let p be a positive integer. The cardinality C is bounded above by the solution of the following semi-definite programming problem : subject to 1 + 1 3 max(x 1 + x ) (5) ( 1 0 ) + 1 ( 0 1 ) ( 0 0 ) (x 0 1 3 1 1 1 + x ) + (x 0 1 3 + x 4 + x 5 + x 6 ) 0 (6) S n k (1, 1, 1) + S n k (a, a, 1)x 1 + S n k ( a, a, 1)x + S n k (a, a, a)x 3 + S n k (a, a, a)x 4 + S n k (a, a, a)x 5 + S n k ( a, a, a)x 6 0 (7) 3 + G (n) k (a)x 1 + G (n) k ( a)x 0, (8) where k = 0, 1,, p and x j 0, j = 1,, 6.

SDP bound table n 1/5 1/7 1/9 1/11 1/13 1/15 max Gerzon angle 176 39 9 6 5 4 176 53 1/5 3 76 4 31 8 6 5 76 76 1/5 4 76 46 33 9 7 6 76 300 1/5 5 76 50 35 31 9 8 76 35 1/5 6 76 54 37 3 30 9 76 351 1/5 7 76 58 40 34 31 30 76 378 1/5 8 76 64 4 36 33 31 76 406 1/5 9 76 69 44 37 34 33 76 435 1/5 30 76 75 47 39 36 34 76 465 1/5 31 76 8 49 41 37 35 76 496 1/5 3 76 90 5 43 39 37 76 58 1/5 33 76 99 55 45 40 38 76 561 1/5 34 76 108 57 46 4 39 76 595 1/5 35 76 10 60 48 43 41 76 630 1/5 36 76 13 64 50 45 4 76 666 1/5 37 76 148 67 5 47 44 76 703 1/5 38 76 165 70 54 48 45 76 741 1/5 39 76 187 74 57 50 46 76 780 1/5 40 76 13 78 59 5 48 76 80 1/5 41 76 46 8 61 53 49 76 861 1/5 4 76 88 86 63 55 51 88 903 1/7 43 76 344 90 66 57 5 344 946 1/7 44 76 4 95 68 59 54 4 990 1/7 45 76 540 100 71 60 56 540 1035 1/7 46 76 736 105 73 6 57 736 1081 1/7 47 76 118 110 76 64 59 118 118 1/7 48 76 118 116 78 66 60 118 1176 1/7 49 76 118 1 81 68 6 118 15 1/7 50 76 118 19 84 70 64 118 175 1/7 51 76 118 136 87 7 65 118 136 1/7 5 76 118 143 90 74 67 118 1378 1/7 53 76 118 151 93 76 69 118 1431 1/7 54 76 118 160 96 78 70 118 1485 1/7 55 76 118 169 100 81 7 118 1540 1/7 56 76 118 179 103 83 74 118 1596 1/7 57 76 118 190 106 85 76 118 1653 1/7 58 76 118 01 110 87 77 118 1711 1/7 59 76 118 14 114 90 79 118 1770 1/7 60 76 118 8 118 9 81 118 1830 1/7 61 79 118 44 1 94 83 118 1891 1/7 6 90 118 61 16 97 85 118 1953 1/7 63 301 118 80 130 99 87 118 016 1/7 64 313 118 301 134 10 89 118 080 1/7

SDP bound table (Cont.) n 1/5 1/7 1/9 1/11 1/13 1/15 max Gerzon angle 65 36 118 35 139 105 91 118 145 1/7 66 339 118 35 144 107 9 118 11 1/7 67 353 118 38 148 110 94 118 78 1/7 68 367 118 418 153 113 97 118 346 1/7 69 38 118 460 159 115 99 118 415 1/7 70 398 118 509 164 118 101 118 485 1/7 71 416 118 568 170 11 103 118 556 1/7 7 434 118 640 176 14 105 118 68 1/7 73 453 118 730 18 17 107 118 701 1/7 74 473 118 845 188 130 109 118 775 1/7 75 494 118 1000 195 134 11 118 850 1/7 76 517 118 116 0 137 114 116 96 1/9 77 54 118 1540 10 140 116 1540 3003 1/9 78 568 118 080 17 144 118 080 3081 1/9 79 596 118 3160 5 147 11 3160 3160 1/9 80 66 118 3160 34 151 13 3160 340 1/9 81 658 118 3160 43 154 16 3160 331 1/9 8 693 118 3160 5 158 18 3160 3403 1/9 83 731 118 3160 6 16 130 3160 3486 1/9 84 77 118 3160 7 166 133 3160 3570 1/9 85 816 118 3160 83 170 136 3160 3655 1/9 86 866 118 3160 94 174 138 3160 3741 1/9 87 90 118 3160 307 178 141 3160 388 1/9 88 979 118 3160 30 18 143 3160 3916 1/9 89 1046 118 3160 333 186 146 3160 4005 1/9 90 110 118 3160 348 191 149 3160 4095 1/9 91 103 118 3160 364 196 15 3160 4186 1/9 9 198 118 3160 380 00 154 3160 478 1/9 93 1406 118 3160 398 05 157 3160 4371 1/9 94 1515 118 3160 417 10 160 3160 4465 1/9 95 1556 118 3160 438 15 163 3160 4560 1/9 96 1599 118 3160 460 0 166 3160 4656 1/9 97 1644 118 3160 485 6 169 3160 4753 1/9 98 1691 118 3160 511 31 17 3160 4851 1/9 99 1739 118 3160 540 37 176 3160 4950 1/9 100 1790 118 3160 571 43 179 3160 5050 1/9 101 184 118 3160 606 49 18 3160 5151 1/9 10 1897 118 3160 644 55 185 3160 553 1/9 103 1954 118 3160 686 6 189 3160 5356 1/9 104 014 118 3160 734 68 19 3160 5460 1/9 105 077 118 3160 787 75 196 3160 5565 1/9 106 14 118 3160 848 8 199 3160 5671 1/9 107 11 118 3160 917 89 03 3160 5778 1/9

SDP bound table (Cont.) n 1/5 1/7 1/9 1/11 1/13 1/15 max Gerzon angle 108 8 118 3160 997 97 06 3160 5886 1/9 109 358 118 3160 1090 305 10 3160 5995 1/9 110 437 118 3160 100 313 14 3160 6105 1/9 111 51 118 3160 133 31 18 3160 616 1/9 11 609 118 3160 1493 330 3160 638 1/9 113 70 118 3160 1695 339 6 3160 6441 1/9 114 800 118 3160 1954 348 30 3160 6555 1/9 115 904 118 3160 300 357 34 3160 6670 1/9 116 3015 118 3160 784 367 38 3160 6786 1/9 117 313 118 3160 3510 378 4 3510 6903 1/11 118 357 118 3160 470 388 47 470 701 1/11 119 3390 118 3160 7140 399 51 7140 7140 1/11 10 353 118 3160 7140 411 56 7140 760 1/11 11 3684 118 3160 7140 43 60 7140 7381 1/11 1 3848 118 3160 7140 436 65 7140 7503 1/11 13 404 118 3160 7140 449 70 7140 766 1/11 14 414 118 3160 7140 46 75 7140 7750 1/11 15 4419 118 3160 7140 477 80 7140 7875 1/11 16 4643 118 3160 7140 49 85 7140 8001 1/11 17 4887 118 3160 7140 508 90 7140 818 1/11 18 5153 118 3160 7140 54 95 7140 856 1/11 19 5447 118 3160 7140 541 301 7140 8385 1/11 130 5770 118 3160 7140 560 306 7140 8515 1/11 131 6130 118 3160 7140 579 31 7140 8646 1/11 13 6531 1130 3160 7140 599 317 7140 8778 1/11 133 698 1158 3160 7140 60 33 7140 8911 1/11 134 7493 1187 3160 7140 643 39 7493 9045 1/5 135 8075 118 3160 7140 667 336 8075 9180 1/5 136 8747 149 3160 7140 69 34 8747 9316 1/5 *137 958 18 3160 7140 719 348 958 9453 1/5 *138 10450 1315 3160 7140 747 355 10450 9591 1/5 *139 11553 1350 3160 7140 778 36 11553 9730 1/5

Our results Theorem (Barg and Yu) We use the semidefinite programming method to show that M(n) = 76 for 4 n 41 and M(43) = 344 and we get tighter upper bounds for M(n) when n 136.

Observation angle dim bounds 1 3 4 3 59 76 = 5 1 47 48 47 131 118 = 7 1 79 80 79 7 3160 = 9 1 119 10 119 349 7140 = 11 Theorem (Yu 016+) We prove M a (n) 1 ( 1 a 1)( 1 a ) for all a N and for all 1 a n 3 a 16

Relaxation semidefinite programming problems Theorem Let C be an equiangular line set with inner product values either a or a. Let p be a positive integer. The cardinality C is bounded above by the solution of the following semi-definite programming problem : subject to 1 + 1 3 max(x 1 + x ) (9) ( 1 0 ) + 1 ( 0 1 ) ( 0 0 ) (x 0 1 3 1 1 1 + x ) + (x 0 1 3 + x 4 + x 5 + x 6 ) 0 (10) S n k (1, 1, 1) + S n k (a, a, 1)x 1 + S n k ( a, a, 1)x + S n k (a, a, a)x 3 + S n k (a, a, a)x 4 + S n k (a, a, a)x 5 + S n k ( a, a, a)x 6 0 (11) 3 + G (n) k (a)x 1 + G (n) k ( a)x 0, (1) where k = 0, 1,, p and x j 0, j = 1,, 6. We find that above constraints only S n 1 0, S n 3 0 and (9) are crucial.

Symbolic semidefinite programming problems Theorem The solution of following optimization problem is 1 ( 1 a )( 1 a 1). max(1 + A) subject to a 4 (3a + 1) A + (6a 1)(a + 1) 3 ) B + a 4 (3a 1) (6a 1)(a 1) 3 ) C 0 (13) A + a 1 + a B + a a 1 C 0 (14) A(A 1) B + C (15) proof: We choose suitable t, where t = 16a 6 (6a 1)(a+1) (a 1) such that t a 1+a + a4 (3a+1) (6a 1)(a+1) = t a 3 a 1 + If we calculate t(14) + (13), we will get a4 (3a 1) (6a 1)(a 1) 3 a (t + 1)A + (t 1 + a + a 4 (3a + 1) (6a )(B + C) 0 1)(a + 1) 3 10a6 + 13a 4 8a + 1 (6a 1)(a 1) (a + 1) A a 4 (5a 1) (6a 1)(a 1) (B + C) 0 (a + 1)

notice that a 4 (5a 1) (6a 1)(a 1) 0 and we plug in (15). (a + 1) 10a6 + 13a 4 8a + 1 (6a 1)(a 1) (a + 1) A a 4 (5a 1) (6a 1)(a 1) A(A 1) 0 (a + 1) 10a6 + 13a 4 8a + 1 (6a 1)(a 1) (a + 1) a 4 (5a 1) (6a 1)(a 1) (A 1) (a + 1) 1 3a a 4 a 4 A 1 A 1 3a a 4 Then, it is not hard to see that A + 1 1 ( 1 a )( 1 a 1).

New bounds for equiangular lines Theorem (Glazyrin and Yu 016+) M 1 (n) n( a 3 a + 4 7 ) +, for all a 3 and for all n N. Theorem If n 359, then M(n) (a )(a 1), where a is the unique positive odd integer such that a n (a + ) 3. Notice that if n = a, then we just obtain Gerzon bound M(n) n(n+1). For other cases, we can prove that M(n) n(n 1).

Maximum spherical two-distance sets Theorem (Glazyrin and Yu 016+) g(n) = n(n + 1) n N, except n = (k + 1) 3, k N.

Future work 1 M(14) = 8 or 9. M(16) = 40 or 41. Can we determine them? The constructions and upper bounds for complex equiangular lines. 3 The maximum spherical 3-distance sets in R n. (only n =, 3, 8 and are known) 4 How much do we know the Maximum Separation Codes on sphere? If we have M points on S n 1, then max x i, x j M n n(m 1). = attained iff equiangular tight frames.