Table of Contents. Contents...IX

Σχετικά έγγραφα
Standard Definitions of Terms Relating to Mass Spectrometry

ΚΕΦΑΛΑΙΟ ΑΝΑΛΥΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ... 1

1.6 Other Intramolecular Decarboxylative Coupling Reactions Decarboxylative Coupling Reaction of Allyl Carboxylates

Τεχνολογία Εφαρµογές. Γ. Θεοδωρίδης Τµήµα Χηµείας ΑΠΘ

Supporting Information. Experimental section

Table of contents. 1. Introduction... 4

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Contents X-ray Fluorescence (XRF) and Particle-Induced X-ray Emission (PIXE)

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Φασματομετρία μάζας (Mass Spectrometry MS) και Υγρή ΧρωματογραφίαΥψηλής Απόδοσης συνδεδεμένη με Φασματομετρία μάζας (LC-MS)

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Supporting Information

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Chemistry 506: Allied Health Chemistry 2. Chapter 14: Carboxylic Acids and Esters. Functional Groups with Single & Double Bonds to Oxygen

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΑΣ. Αναστασία Δέτση Αναπληρώτρια Καθηγήτρια, Σχολή Χημικών Μηχανικών ΕΜΠ

Supporting Information

Supporting Information

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

MASS SPECTROMETRY ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ. MASS SPECTROMETRY (μέρος 2)

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPLEMENTARY MATERIAL

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

STUDY OF MAILLARD REACTIONS WITH COUPLED CHROMATOGRAPHIC AND SPECTROSCOPIC TECHNIQUES

Φασματομετρία Μαζών (Mass. Πέτρος Ταραντίλης- Αναπληρωτής καθηγητής Χρήστος Παππάς - Επίκουρος καθηγητής

DuPont Suva 95 Refrigerant

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Fundamentals of Signals, Systems and Filtering

APPENDIX A. Summary of the English Engineering (EE) System of Units

DuPont Suva 95 Refrigerant

difluoroboranyls derived from amides carrying donor group Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

of the methanol-dimethylamine complex

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

STEAM TABLES. Mollier Diagram

April 2013 Chinese Journal of Chromatography 380 ~ A

vibrational Supplementary density of the Beyer-

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Στοιχειακή ανάλυση. Ποιοτικήστοιχειακή ανάλυση: µε καύση της ένωσης παρουσία Ο 2 ανιχνεύεται το είδος των ατόµων του µορίου

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information

Electronic structure and spectroscopy of HBr and HBr +

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Non-Polar Columns. With the partnership of Teknokroma

Supporting Information. Experimental section

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

the total number of electrons passing through the lamp.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Electronic Supplementary Information (ESI)

Supporting Information

Μελέτη Πρότυπων Καταλυτικών Συστηµάτων. µε Επιφανειακά Ευαίσθητες Τεχνικές

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΩΝ ΠΡΟΪΟΝΤΩΝ ΟΞΕΙΔΩΣΗΣ ΤΗΣ ΧΟΛΗΣΤΕΡΟΛΗΣ ΣΤΑ ΚΥΠΡΙΑΚΑ ΤΡΟΦΙΜΑ ΜΕ ΤΗ ΧΡΗΣΗ ΝΕΩΝ ΒΕΛΤΙΩΜΕΝΩΝ ΑΝΑΛΥΤΙΚΩΝ ΤΕΧΝΙΚΩΝ

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

[1] P Q. Fig. 3.1

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Σπανό Ιωάννη Α.Μ. 148

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Electronic Supplementary Information

Supporting Information

Table of Contents 1 Supplementary Data MCD

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Η ΣΥΝΘΕΣΗ ΚΑΙ ΤΑ ΣΥΝΘΕΤΑ ΝΟΗΜΑΤΑ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΝΟΗΜΑΤΙΚΗ ΓΛΩΣΣΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Supplementary Information

Supporting Information

Supporting information

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Supporting Information

1 Properties and Applications of Recycled Polymers: An Introduction Introduction... 1

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Transcript:

Table of Contents Contents...IX 1 Introduction...1 1.1 Aims and Scope...1 1.2 What Is Mass Spectrometry?...2 1.2.1 Mass Spectrometry...3 1.2.2 Mass Spectrometer...3 1.2.3 Mass Spectrum...4 1.3 Filling the Black Box...7 1.4 Terminology...7 1.5 Units, Physical Quantities, and Physical Constants...9 Reference List...10 2 Gas Phase Ion Chemistry...13 2.1 Quasi-Equilibrium Theory...13 2.1.1 Basic Assumptions of QET...14 2.2 Ionization...14 2.2.1 Electron Ionization...15 2.2.2 Ionization Energy...16 2.3 Vertical Transitions...18 2.4 Ionization Efficiency and Ionization Cross Section...20 2.5 Internal Energy and the Further Fate of Ions...21 2.5.1 Degrees of Freedom...21 2.5.2 Appearance Energy...22 2.5.3 Bond Dissociation Energies and Heats of Formation...24 2.5.4 Randomization of Energy...26 2.6 Rate Constants from QET...27 2.6.1 Meaning of the Rate Constant...28 2.6.2 Typical k (E) Functions...29 2.6.3 Description of Reacting Ions Using k (E) Functions...29 2.6.4 Direct Cleavages and Rearrangement Fragmentations...30 2.6.5 Practical Consequences of Internal Energy...31

X Table of Contents 2.7 Time Scale of Events... 32 2.7.1 Stable, Metastable, and Unstable Ions... 33 2.7.2 Kinetic Shift... 35 2.8 Activation Energy of the Reverse Reaction and Kinetic Energy Release.. 36 2.8.1 Activation Energy of the Reverse Reaction... 36 2.8.2 Kinetic Energy Release... 37 2.9 Isotope Effects... 40 2.9.1 Kinetic Isotope Effects... 40 2.10 Determination of Ionization Energies and Appearance Energies... 44 2.10.1 Conventional Determination of Ionization Energies... 44 2.10.2 Experimental Improvements of IE Accuracy... 45 2.10.3 Photoelectron Spectroscopy and Derived Modern Methods... 46 2.10.4 Determination of Appearance Energies... 48 2.10.5 Breakdown Graphs... 49 2.11 Gas Phase Basicity and Proton Affinity... 50 2.12 Tandem Mass Spectrometry... 53 2.12.1 Collision-Induced Dissociation... 53 2.12.2 Other Methods of Ion Activation... 57 2.12.3 Reactive Collisions... 59 Reference List... 61 3 Isotopes... 67 3.1 Isotopic Classification of the Elements... 67 3.1.1. Monoisotopic Elements... 68 3.1.2 Di-isotopic Elements... 68 3.1.3 Polyisotopic Elements... 69 3.1.4 Calculation of Atomic, Molecular, and Ionic Mass... 71 3.1.5 Natural Variations in Relative Atomic Mass... 73 3.2 Calculation of Isotopic Distributions... 74 3.2.1 X+1 Element Carbon... 74 3.2.2 Binomial Approach... 77 3.2.3 Halogens... 78 3.2.4 Combinations of Carbon and Halogens... 79 3.2.5 Polynomial Approach... 80 3.2.6 Oxygen, Silicon and Sulfur... 81 3.2.7 Polyisotopic Elements... 83 3.2.8 Practical Aspects of Isotopic Patterns... 84 3.2.9 Isotopic Enrichment and Isotopic Labeling... 87 3.3 High-Resolution and Accurate Mass... 88 3.3.1 Exact Mass... 88 3.3.2 Deviations from Nominal Mass... 89 3.3.3 Mass Accuracy... 92 3.3.4 Resolution... 96 3.3.5 Mass Calibration... 99 3.4 Interaction of Resolution and Isotopic Patterns... 104 3.4.1 Multiple Isotopic Compositions at Very High Resolution... 104

XI 3.4.2 Multiple Isotopic Compositions and Accurate Mass...106 3.4.3 Isotopic Patterns of Large Molecules...106 3.5 Interaction of Charge State and Isotopic Patterns...108 Reference List...109 4 Instrumentation...111 4.1 Creating a Beam of Ions...112 4.2 Time-of-Flight Instruments...113 4.2.1 Introduction to Time-of-Flight...113 4.2.2 Basic Principle of TOF Instruments...114 4.2.3 Linear Time-of-Flight Analyzer...117 4.2.4 Reflector Time-of-Flight Analyzer...119 4.2.5 Further Improvement of Resolution...122 4.2.6 Orthogonal Acceleration TOF...125 4.2.7 Tandem MS on TOF Instruments...128 4.3 Magnetic Sector Instruments...130 4.3.1 Introduction to Magnetic Sector Instruments...130 4.3.2 Principle of the Magnetic Sector...131 4.3.3 Double-Focusing Sector Instruments...134 4.3.4 Setting the Resolution of a Sector Instrument...138 4.3.5 Further Improvement of Sector Instruments...139 4.3.6 Tandem MS with Magnetic Sector Instruments...140 4.4 Linear Quadrupole Instruments...145 4.4.1 Introduction to the Linear Quadrupole...145 4.4.2 Principle of the Linear Quadrupole...146 4.4.3 Resolving Power of Linear Quadrupoles...150 4.4.4 RF-Only Quadrupoles...151 4.4.5 Tandem MS with Quadrupole Analyzers...152 4.4.6 Linear Quadrupole Ion Traps...153 4.5 Three-Dimensional Quadrupole Ion Trap...154 4.5.1 Introduction to the Quadrupole Ion Trap...154 4.5.2 Principle of the Quadrupole Ion Trap...155 4.5.3 Operation of the Quadrupole Ion Trap...157 4.5.4 External Ion Sources for the Quadrupole Ion Trap...162 4.5.6 Tandem MS with the Quadrupole Ion Trap...163 4.6 Fourier Transform Ion Cyclotron Resonance...164 4.6.1 Introduction to Ion Cyclotron Resonance...164 4.6.2 Principle of Ion Cyclotron Resonance...165 4.6.3 Fourier Transform Ion Cyclotron Resonance...166 4.6.4 Experimental Setup of FT-ICR-MS...167 4.6.5 Excitation Modes in FT-ICR-MS...168 4.6.6 Detection in FT-ICR-MS...169 4.6.7 External Ion Sources for FT-ICR-MS...171 4.6.8 Tandem MS with FT-ICR Instruments...172 4.7 Hybrid Instruments...173 4.8 Detectors...175

XII Table of Contents 4.8.1 Discrete Dynode Electron Multipliers... 175 4.8.2 Channel Electron Multipliers... 176 4.8.3 Microchannel Plates... 177 4.8.4 Post-Acceleration and Conversion Dynode... 178 4.8.5 Focal Plane Detectors... 179 4.9 Vacuum Technology... 180 4.9.1 Basic Mass Spectrometer Vacuum System... 180 4.9.2 High Vacuum Pumps... 181 4.10 Buying an Instrument... 182 Reference List... 182 5 Electron Ionization... 193 5.1 Behavior of Neutrals Upon Electron Impact... 193 5.1.1 Formation of Ions... 193 5.1.2 Processes Accompanying Electron Ionization... 195 5.1.3 Efficiency of Electron Ionization... 196 5.1.4 Practical Consequences of Internal Energy... 197 5.1.5 Low-Energy Electron Ionization Mass Spectra... 198 5.2 Electron Ionization Ion Sources... 200 5.2.1 Layout of an Electron Ionization Ion Source... 200 5.2.2 Generation of Primary Electrons... 202 5.2.3 Overall Efficiency of an Electron Ionization Ion Source... 203 5.2.4 Optimization of Ion Beam Geometry... 205 5.3 Sample Introduction... 206 5.3.1 Direct Insertion Probe... 206 5.3.2 Direct Exposure Probe... 210 5.3.3 Reference Inlet System... 211 5.3.4 Gas Chromatograph... 213 5.3.5 Liquid Chromatograph... 213 5.4 Ion Chromatograms... 214 5.4.1 Total Ion Current... 214 5.4.2 Reconstructed Ion Chromatogram... 215 5.5 Mass Analyzers for EI... 217 5.6 Analytes for EI... 217 5.7 Mass Spectral Databases for EI... 218 Reference List... 218 6 Fragmentation of Organic Ions and Interpretation of EI Mass Spectra... 223 6.1 Cleavage of a Sigma-Bond... 223 6.1.1 Writing Conventions for Molecular Ions... 223 6.1.2 σ-bond Cleavage in Small Non-Functionalized Molecules... 225 6.1.3 'Even-Electron Rule'... 226 6.1.4 σ-bond Cleavage in Small Functionalized Molecules... 228 6.2 Alpha-Cleavage... 229 6.2.1 α-cleavage of Acetone Molecular Ion... 229 6.2.2 Stevenson's Rule... 230

XIII 6.2.3 α-cleavage of Non-Symmetrical Aliphatic Ketones...232 6.2.4 Acylium Ions and Carbenium Ions...234 6.2.5 α-cleavage of Amines, Ethers, and Alcohols...235 6.2.6 α-cleavage of Halogenated Hydrocarbons...243 6.2.7 Double α-cleavage...244 6.3 Distonic Ions...247 6.3.1 Definition of Distonic Ions...247 6.3.2 Formation and Properties of Distonic Ions...247 6.3.3 Distonic Ions as Intermediates...248 6.4 Benzylic Bond Cleavage...249 6.4.1 Cleavage of the Benzylic Bond in Phenylalkanes...249 6.4.2 The Further Fate of [C 6 H 5 ] + and [C 7 H 7 ] +...251 6.4.3 Isomerization of [C 7 H 8 ] + and [C 8 H 8 ] + Ions...252 6.4.4 Rings Plus Double Bonds...254 6.5 Allylic Bond Cleavage...255 6.5.1 Cleavage of the Allylic Bond in Aliphatic Alkenes...255 6.5.2 Methods for the Localization of the Double Bond...257 6.6. Cleavage of Non-Activated Bonds...258 6.6.1 Saturated Hydrocarbons...258 6.6.2 Carbenium Ions...260 6.6.3 Very Large Hydrocarbons...262 6.6.4 Recognition of the Molecular Ion Peak...263 6.7 McLafferty Rearrangement...264 6.7.1 McLafferty Rearrangement of Aldehydes and Ketones...264 6.7.2 Fragmentation of Carboxylic Acids and Their Derivatives...267 6.7.3 McLafferty Rearrangement of Aromatic Hydrocarbons...271 6.7.4 McLafferty Rearrangement with Double Hydrogen Transfer...272 6.8 Retro-Diels-Alder Reaction...276 6.8.1 Properties of the Retro-Diels-Alder Reaction...276 6.8.2 Influence of Positional Isomerism on the RDA Reaction...278 6.8.3 Is the RDA Reaction Stepwise or Concerted?...279 6.8.4 RDA Reaction in Natural Products...279 6.8.5 Widespread Occurrence of the RDA Reaction...280 6.9 Elimination of Carbon Monoxide...281 6.9.1 CO Loss from Phenols...281 6.9.2 CO and C 2 H 2 Loss from Quinones...283 6.9.3 Fragmentation of Arylalkylethers...285 6.9.4 CO Loss from Transition Metal Carbonyl Complexes...287 6.9.5 CO Loss from Carbonyl Compounds...288 6.9.6 Differentiation Between Loss of CO, N 2, and C 2 H 4...288 6.10 Thermal Degradation Versus Ion Fragmentation...289 6.10.1 Decarbonylation and Decarboxylation...289 6.10.2 Retro-Diels-Alder Reaction...289 6.10.3 Loss of H 2 O from Alkanols...290 6.10.4 EI Mass Spectra of Organic Salts...291 6.11 Alkene Loss from Onium Ions...292

XIV Table of Contents 6.11.1 McLafferty Rearrangement of Onium Ions... 293 6.11.2 Onium Reaction... 296 6.12 Ion-Neutral Complexes... 300 6.13 Ortho Elimination (Ortho Effect)... 304 6.13.1 Ortho Elimination from Molecular Ions... 305 6.13.2 Ortho Elimination from Even-Electron Ions... 306 6.13.3 Ortho Elimination in the Fragmentation of Nitroarenes... 308 6.14 Heterocyclic Compounds... 311 6.14.1 Saturated Heterocyclic Compounds... 311 6.14.2 Aromatic Heterocyclic Compounds... 315 6.15 Guidelines for the Interpretation of Mass Spectra... 319 6.15.1 Summary of Rules... 319 6.15.2 Systematic Approach to Mass Spectra... 320 Reference List... 320 7 Chemical Ionization... 331 7.1 Basics of Chemical Ionization... 331 7.1.1 Formation of Ions in Chemical Ionization... 331 7.1.2 Chemical Ionization Ion Sources... 332 7.1.3 Sensitivity of Chemical Ionization... 333 7.2 Chemical Ionization by Protonation... 333 7.2.1 Source of Protons... 333 7.2.2 Methane Reagent Gas Plasma... 334 7.2.3 Energetics of Protonation... 336 7.2.4 Methane Reagent Gas PICI Spectra... 337 7.2.5 Other Reagent Gases in PICI... 338 7.3 Charge Exchange Chemical Ionization... 341 7.3.1 Energetics of CE... 341 7.3.2 Reagent Gases for CE-CI... 342 7.3.4 Compound Class-Selective CE-CI... 343 7.3.5 Regio- and Stereoselectivity in CE-CI... 344 7.4 Electron Capture... 345 7.4.1 Ion Formation by Electron Capture... 345 7.4.3 Energetics of EC... 345 7.4.4 Creating Thermal Electrons... 347 7.4.5 Appearance of EC Spectra... 348 7.4.6 Applications of EC... 348 7.5 Sample Introduction in CI... 348 7.5.1 Desorption Chemical Ionization... 349 7.6 Analytes for CI... 350 7.7 Mass Analyzers for CI... 351 Reference List... 351 8 Field Ionization and Field Desorption... 355 8.1 Field Ionization Process... 355 8.2 FI and FD Ion Source... 357

XV 8.3 Field Emitters...358 8.3.1 Blank Metal Wires as Emitters...358 8.3.2 Activated Emitters...358 8.3.3 Emitter Temperature...359 8.3.4 Handling of Activated Emitters...360 8.3.5 Liquid Injection Field Desorption Ionization...362 8.4 FI Spectra...363 8.4.1 Origin of [M+H] + Ions in FI-MS...363 8.4.2 Field-Induced Dissociation...364 8.4.3 Multiply-Charged Ions in FI-MS...364 8.5 FD Spectra...365 8.5.1 Ion Formation in FD-MS...365 8.5.2 Cluster Ion Formation in FD-MS...369 8.5.3 FD-MS of Ionic Analytes...371 8.5.4 Best Anode Temperature and Thermal Decomposition...372 8.5.5 FD-MS of Polymers...373 8.5.6 Sensitivity of FI-MS and FD-MS...373 8.5.7 Types of Ions in FD-MS...374 8.6 Analytes for FI and FD...375 8.7 Mass Analyzers for FI and FD...376 Reference List...376 9 Fast Atom Bombardment...381 9.1 Ion Sources for FAB and LSIMS...382 9.1.1 FAB Ion Sources...382 9.1.2 LSIMS Ion Sources...383 9.1.3 FAB Probes...383 9.2 Ion Formation in FAB and LSIMS...384 9.2.1 Ion Formation from Inorganic Samples...384 9.2.2 Ion Formation from Organic Samples...385 9.3 FAB Matrices...387 9.3.1 The Role of the Liquid Matrix...387 9.3.2 Characteristics of FAB Matrix Spectra...388 9.3.3 Unwanted Reactions in FAB-MS...389 9.4 Applications of FAB-MS...389 9.4.1 FAB-MS of Analytes of Low to Medium Polarity...389 9.4.2 FAB-MS of Ionic Analytes...391 9.4.3 High-Mass Analytes in FAB-MS...392 9.4.4 Accurate Mass Measurements in FAB...393 9.4.5 Continuous-Flow FAB...395 9.4.6 Low-Temperature FAB...396 9.4.7 FAB-MS and Peptide Sequencing...398 9.5 Massive Cluster Impact...400 9.6 252 Californium Plasma Desorption...400 9.7 General Characteristics of FAB and LSIMS...402 9.7.1 Sensitivity of FAB-MS...402

XVI Table of Contents 9.7.2 Types of Ions in FAB-MS... 402 9.7.3 Analytes for FAB-MS... 403 9.7.4 Mass Analyzers for FAB-MS... 403 Reference List... 404 10 Matrix-Assisted Laser Desorption/Ionization... 411 10.1 Ion Sources for LDI and MALDI... 411 10.2 Ion Formation... 413 10.2.1 Ion Yield and Laser Fluence... 413 10.2.2 Effect of Laser Irradiation on the Surface... 414 10.2.3 Temporal Evolution of a Laser Desorption Plume... 415 10.2.4 Ion Formation in MALDI... 416 10.3 MALDI Matrices... 416 10.3.1 Role of the Solid Matrix... 416 10.3.2 Matrices in UV-MALDI... 417 10.3.3 Characteristics of MALDI Matrix Spectra... 418 10.4 Sample Preparation... 419 10.4.1 Standard Sample Preparation... 419 10.4.2 Cationization and Cation Removal... 420 10.4.3 Solvent-Free Sample Preparation... 421 10.4.4 Sample Introduction... 422 10.4.5 Additional Methods of Sample Supply... 423 10.4 Applications of LDI... 423 10.5 Applications of MALDI... 425 10.5.1 MALDI-MS of Synthetic Polymers... 425 10.5.2 Fingerprints by MALDI-MS... 427 10.5.3 Carbohydrates by MALDI-MS... 427 10.5.4 Structure Elucidation of Carbohydrates by MALDI... 428 10.5.5 Oligonucleotides in MALDI... 429 10.6 Desorption/Ionization on Silicon... 430 10.7 Atmospheric Pressure MALDI... 431 10.8 General Characteristics of MALDI... 432 10.8.1 Sample Consumption and Detection Limit... 432 10.8.2 Analytes for MALDI... 432 10.8.3 Types of Ions in LDI and MALDI-MS... 433 10.8.4 Mass Analyzers for MALDI-MS... 433 Reference List... 434 11 Electrospray Ionization... 441 11.1 Development of ESI and Related Methods... 441 11.1.1 Atmospheric Pressure Ionization... 441 11.1.2 Thermospray... 442 11.1.3 Electrohydrodynamic Ionization... 443 11.1.4 Electrospray Ionization... 444 11.2 Ion Sources for ESI... 444 11.2.1 Basic Design Considerations... 444

XVII 11.2.2 ESI with Modified Sprayers...445 11.2.3 Nano-Electrospray...447 11.2.4 ESI with Modified Spray Geometries...449 11.2.5 Skimmer CID...451 11.3 Ion Formation...451 11.3.1 Formation of an Electrospray...451 11.3.2 Disintegration of Charged Droplets...453 11.3.3 Formation of Ions from Charged Droplets...454 11.4 Charge Deconvolution...455 11.4.1 Problem of Multiple Charging...455 11.4.2 Mathematical Charge Deconvolution...458 11.4.3 Hardware Charge Deconvolution...460 11.4.4 Controlled Charge Reduction in ESI...461 11.5 Applications of ESI...462 11.5.1 ESI of Small Molecules...462 11.5.2 ESI of Metal Complexes...462 11.5.3 ESI of Surfactants...464 11.5.4 Oligonucleotides, DNA, and RNA...464 11.5.5 ESI of Oligosaccharides...465 11.6 Atmospheric Pressure Chemical Ionization...465 11.7 Atmospheric Pressure Photoionization...467 11.8 General Characteristics of ESI...467 11.8.1 Sample Consumption...467 11.8.2 Types of Ions in ESI...468 11.8.3 Mass Analyzers for ESI...468 Reference List...468 12 Hyphenated Methods...475 12.1 General Properties of Chromatography-Mass Spectrometry Coupling..475 12.1.1 Chromatograms and Spectra...477 12.1.2 Selected Ion Monitoring...478 12.1.3 Quantitation...479 12.2 Gas Chromatography-Mass Spectrometry...482 12.2.1 GC-MS Interfaces...482 12.2.2 Volatility and Derivatization...483 12.2.3 Column Bleed...483 12.2.4 Fast GC-MS...484 12.3 Liquid Chromatography-Mass Spectrometry...485 12.3.1 LC-MS Interfaces...485 12.3.2 Multiplexed Electrospray Inlet Systems...487 12.3 Tandem Mass Spectrometry...488 12.4. Ultrahigh-Resolution Mass Spectrometry...490 Reference List...491

XVIII Table of Contents Appendix... 495 1 Isotopic Composition of the Elements... 495 2 Carbon Isotopic Patterns... 501 3 Silicon and Sulfur Isotopic Patterns... 502 4 Chlorine and Bromine Isotopic Patterns... 503 5 Characteristic Ions... 503 6 Frequent Impurities... 505 Subject Index... 507