JFE No. 8 25 6p. 49 56 2,3,6,7-Naphthalenetetracarboxylic Acid Dianhydride as a Monomer for Polyimide MRI Hiroaki JFE NAKA Hiroaki JFE JFE 2,3,6,7- NTC JFE ZnI2 NTC 25 NTC 5 l NTC Abstract: JFE Chemical has developed the thermal transformation of aromatic carboxylates to industrially produce 2,3,6,7-naphthalenet etracarboxylic acid (NTC) dianhydride. The metal ion-catalyzed transformation was investigated on the influence of the anion moiety. The probable mechanism of the reaction is the formation of the metal salt of the carboxylic acid as an intermediate of the transformation. Further, the catalytic activity of the zinc compounds is examined in detail on the transformation of disodium naphthalenedicarboxylate. By optimizing ZnI2-catalyzed transformation NTC yield improved to about 25%, that is almost equal to that by the cadmium catalyst with high toxicity. Based on this result, a new process for NTC dianhydride is developed. Polyimides derived from NTC dianhydride are synthesized. Those polyimide films showed high modulus of elasticity, low thermal expansion coefficient and electrical reliability. They satisfy the required properties of printed circuits with high performance. 1. JFE 2,3,6,7- NTC 1,2) JFE NTC JFE NTC NTC 49
2. NTC 2.1 NTC C2 4 5 C NTC NaI NTC NTC NTC Y npntc/pncas 1 Y : NTC PNTC : NTC mol PNCAs : mol n : 2.2 2.2.1 I Cl F C3 2 2 3) NTC Fig. 1 1,8-1,8-NDCNa2 2,6-NDCCd 1,8-NDCCd 1-NMCCd Cd (H) 2 Cd Cd (Ac) 2 Fig. 1 PACd NTCCd CdS CdF 2 CdCl 2 CdBr 2 CdI 2 1 2 3 4 5 6 Ac 2 H I Br Cl F 3) NTC 3 2.2.2 NTC/cat. (mol/mol) The reactions were carried out at 43 C for 3 h in the presence of 75 wt% of NaI and 5 wt% of the catalyst on disodium 1,8- naphthalate. The initial pressure of C 2 was 3 MPa. PACd: Phthalic acid cadmium salt NTCCd: 2,3,6,7-Naphthalenetetracarboxylic acid cadmium salt NDCCd: Naphthalenedicarboxylic acid cadmium salt 1-NMCCd: 1-Naphthalic acid cadmium salt Catalytic activity of various cadmium compounds on the Henkel Reaction of disodium 1,8-Naphthalate NaI CdCl2 KI 1,8-1,8-NDCNa2 NaCl 1,8-NDCNa2 CdCl2 1,8-1,8-NDCCd JFENo. 8 25 6 5
NTC NTCCd2 NaI Na NTC NTCCd2 Na I ( 1 3 ) I ( 1 3 ) Fig. 2 2. 1.6 1.2.8.4 2. 1.6 1.2.8.4 (1) Product 2,6-NDCNa 2 Double salt 2. 4. 2θ 6. 8. (2) Authentic double salt ( (NTCNa 4 )(2,6-NDCNa 2 ) 2 ) 2. 4. 6. 8. 2θ XRD of the typical Henkel Reaction product (1) and double salt consisted of 2,3,6,7-NTC and 2,6-NDCNa (2) NTCCd2 NaI NTC Na NTCNa4 NTC 3 X Fig. 2)NTCNa4 NDCNa2 NTCNa4 NDCNa2 NTCNa4/ NDCNa2 1/2X Fig. 2 NTCNa4 NDCNa2 TD2 TD2 Fig. 3 NTCNa4 1 2,6-NDCNa2 4 2.2.3 2,6-NDCNa2 Zn ZnCl2 NTC ZnI2.5 2,6-NDCNa 2 Cd 2 Na Cd 2 Na Cd 2 Na Cd 2 Na NTCNa 4 NTC(NDC) 2 Na 8 double salt 2 Fig. 3 Proposed mechanism of the Henkel Reaction of naphthalenecarboxylic acid sodium salt 51 JFE No. 8 25 6
None 1,3,4,5-C 6 H 2 (CK) 4 Preparation 2,6-NDCNa 2 2,6-NDCK 2 Zinc iodide 1,3,5-C 6 H 3 (CK) 3 1,2,4-C 6 H 3 (CK) 3 Reaction Reactant 1,3-C 6 H 4 (CK) 2 1,4-C 6 H 4 (CK) 2 1,2-C 6 H 4 (CH)(CK) 1,2-C 6 H 4 (CK) 2 C 6 H 5 CK 1,8-C 1 H 6 (CK) 2 2,6-C 1 H 6 (CK) 2 1-C 1 H 7 CK Fig. 4 5 1 15 2 25 NTC yield (%) The reactions were carried out at 45 C for 3 h in the presence of equimolar potassium salt, 75 wt% of NaI and 5 wt% of the catalyst on 2,6-NDCNa 2. The initial pressure of C 2 was 3 MPa. Influence of various carboxylic acid potassium salts added on ZnI2-catalyzed Henkel Reaction of disodium 2,6-Naphthalenedicarboxylate Extraction with water Acidification Washing with water Drying Extraction with methanol Dehydration Recrystallization Aquaous carboxylates Free acids Free acids Free acids NTC free acids, Concentrated NTC Dianhydride NTC Dihydride, Highly-purified 1,8-1,8-NDCK2 2,6-NDCK2 4 7) NTC 2,6-NDCNa2 Fig. 4 1- NTC 25 NTC 2.2.4 NTC 2.2.2 NTCNa2/NDCNa2 1/2 TD2 Fig. 5 NTCNa4 4 mass 55 6 mass 2,6-NDCNa2 NTC 99 8) NTC 2,6-NDC NTC NTC CH3H NTC 3 CH3H NTC CH3H 98 NTC 95 NTC Fig. 5 2,6-NDCNa2 2,6-NDCK2 NTCDA 99.9 2,3,6,7-Naphthalenetetracarboxylic dianhydride Schematic diagram of NTCDA production 2.2.5 5 l JFENo. 8 25 6 52
32 cm 24 cm 16 cm 8 cm Position ( C) 32 28 24 2 16 12 8 Table 1 Dianhydrides used for polyimide films Formula Chemical name Abbreviation Pyromellitic dianhydride Biphenyl tetracarboxylic dianhydride PMDA BPDA 4 41 43 45 47 Temperature ( C) 2,3,6,7- Naphthalentetracarboxylic acid dianhydride NTCDA JFE 5 l 1 C Fig. 6 1 kg/d NTCDA NTCDA Fig. 6 3. NTC 9) 1 2 3 IC 4 PMDA BPDA JFE NTC NTC PMDA BPDA NTC NTC Production using 5 l autocrave (1) product appearance, (2) temperature distribution Table 1 4,4'-DA 3.1 NTC 3.1.1 5 ml 15 mass N N- 5 ppm DA.7 mol DA 3 h 8 C 3.1.2 3.1.1 6 15 C 1 15 C 3 min 2 2 C 6 min 3 3 C 1 min 3 C 6 min 3.1.3 1 5 T1 : TGA-5 3 1 C 1 C/min N2 T2 : DSC-5 3 5 C 2 C/min N2 CTE : TMA-5 5 2 C 1 C/min N2 2 JIS C 2318 53 JFE No. 8 25 6
3 4 524 h 24 h JIS C 6471 3.2 3.2.1 Table 2 3 NTC PMDA BPDA CTE NTC PMDA BPDA CTE 9) Table 2 Thermogravimetric analysis and coefficient of linear thermal expantion of polyimide films Polyimide PMDA/DA BPDA/DA NTCDA/DA a) Temperature at which 5% weight loss was measured b) Glass transition point c) Coefficient of linear thermal expantion Table 3 Polyimide PMDA/DA BPDA/DA NTCDA/DA : CTE (ppm/ C) Fig. 7 3 25 2 15 1 5 T1 a) ( C) 576 53 592 T2 b) ( C) CTE c) (ppm/ C) 4 24.6 3 4 Tensile properties of polyimide films Tenacity (MPa) 98.8 1.5 84.6 Elongation (%) 28.5 17. Modulus of elasticity (GPa) 14.1 4. 16.4 8.5 5 NTCDA contents (%) 1 3.9 6. : Modulus of elasticity (GPa) The relation of NTCDA content, CTE, and modulus of elasticity 1 5 PMDA DA PMDA NTC CTE Fig. 7 NTC CTE NTC 3.2.2 1) Table 4 NTC PMDA BPDA PMDA BPDA 1) NTC 3.2.3 Table 5 NTC PMDA BPDA 3.2.4 9) Table 4 Polyimide PMDA/DA BPDA/DA NTCDA/DA Hygroscopic and water content, surface energy of polyimide films Table 5 Polyimide PMDA/DA BPDA/DA NTCDA/DA Hygroscopic content (%/5%RH) 1.3.9.7 Water content (%) Surface energy (mmj/m 2 ) 2.7 66.9 1.3 1.2 31.1 29.1 Electrical properties of polyimide films Dielectric breakdown voltage (kv/mm) 173. 172. 11. Volume resistivity ( 1 16 Ωcm) Dielectric constant (1 khz) 3.1 3.2 3. 5. 3.2 3.1 JFENo. 8 25 6 54
Weight increase (%) Fig. 8 PMDA NTC NTC 3 Fig. 8 NTC BPDA NTC 3.2.5 9) 8 C Fig. 9 1) Intrinsic viscosity Fig. 9 11. 17.5 15. 12.5 1. 3. 2.5 2. 1.5 1..5 1 NTCDA PMDA BPDA 2 4 6 Time (d) Hygroscopicity of tetracarboxyllic dianhydrides Thermal treatment time (min) NTC PMDA BPDA 2 3 The polyamido acid were treated at 8 C. The temperature dependence of intrinsic viscosity Fig. 1 NTC PMDA BPDA NTC 3.3 NTC NTC NTC 4. NTC 1 2,3,6,7-2,6-2 NTC 25 3 5 l 1 g kg 4 NTC 1 2,3,6,7- H 2 N Fig. 1 Ar H N Ar H The reaction mechanism of dianhydrides and diamin C (Ar: Aryl group) H C N Ar H 55 JFE No. 8 25 6
2-69433 199-3-8 2 69 2B1 1992 3 Mitamura, S. et al. Bull. Chem. Soc. Jpn. vol. 62, 1989, p. 786. 4 Raecke, B. et al. German Patent. 93636. 1955. 5 Henkel & Cie. French Patent. 118451. 1959. 6 vol. 69 no. 7 1966 p. 1294 7 vol. 62 no. 4 1967 p. 238 8 4-89453 1992-3-23 9 1 56