A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E

Σχετικά έγγραφα
Studies on the Athena Parthenos of Pheidias

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

Homework 8 Model Solution Section

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΟΥ ΕΡΓΑΛΕΙΟΥ BALANCED SCORECARD ΣΕ ΙΔΙΩΤΙΚΟ ΝΟΣΟΚΟΜΕΙΟ. Σπουδαστές: Δεληλίγκα Αργυρούλα, ΑΜ:

Example Sheet 3 Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Journal of the Institute of Science and Engineering. Chuo University

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Section 8.3 Trigonometric Equations

Second Order RLC Filters

Strain gauge and rosettes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solutions to Exercise Sheet 5

C.S. 430 Assignment 6, Sample Solutions

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Homework 3 Solutions

EE512: Error Control Coding

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Finite Field Problems: Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

derivation of the Laplacian from rectangular to spherical coordinates

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ST5224: Advanced Statistical Theory II

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Statistical Inference I Locally most powerful tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE101: Resonance in RLC circuits

the total number of electrons passing through the lamp.

D Alembert s Solution to the Wave Equation

[1] P Q. Fig. 3.1

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

5.4 The Poisson Distribution.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Το άτομο του Υδρογόνου

Math221: HW# 1 solutions

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

NPI Unshielded Power Inductors

Polymer PTC Resettable Fuse: KMC Series

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

rs r r â t át r st tíst Ó P ã t r r r â

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Chapter 6 BLM Answers

Spherical Coordinates

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Graded Refractive-Index

By R.L. Snyder (Revised March 24, 2005)

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

The Simply Typed Lambda Calculus

Section 7.6 Double and Half Angle Formulas

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

AN ANALYSIS OF LINEAR INDUCTION MOTORS FOR PROPULSION AND SUSPENSION OF MAGNETICALLY LEVITATED VEHICLES. Fang-Chou Yang. Antenna La b o ra to ry

The challenges of non-stable predicates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Solution Series 9. i=1 x i and i=1 x i.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Differential equations

Chapter 7 Transformations of Stress and Strain

Calculating the propagation delay of coaxial cable

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Reminders: linear functions

Lifting Entry (continued)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

T he Op tim al L PM Po rtfo lio M odel of H arlow s and Its So lving M ethod

PARTIAL NOTES for 6.1 Trigonometric Identities

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Variational Wavefunction for the Helium Atom

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

Other Test Constructions: Likelihood Ratio & Bayes Tests

Assalamu `alaikum wr. wb.

Solution to Review Problems for Midterm III

NTC Thermistor:TSM type

Transcript:

TECHNICAL INFORMATION SERIES July 1976 Number 1 A T H E R M A L M O D E L F O R T H E S U R F A C E T E M P E R A T U R E O F M A T E R I A L S O N T H E E A R T H 'S S U R F A C E LO G A N K. K U IP E R IO W A GEOLOGIC SURVEY DR. STANLEY C. GRANT Director and State Geologist 123 North Capitol Street Iowa City, Iowa 52242

TECHNICAL INFORMATION SERIES J u ly 1976 Number 1 A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r IOWA GEOLOGICAL SURVEY DR. STANLEY C. GRANT DIRECTOR AND STATE GEOLOGIST 123 NORTH CAPITOL STREET I owa c i t y, I owa 52242

A THERMAL MODEL FOR THE SURFACE TEMPERATURE OF MATERIALS ON THE EARTH'S SURFACE Logan K. K u ip e r R esearch D iv is io n Iowa G e o lo g ic a l S urve y Abstract A mathematical model fo r the determ ination o f the surface temperature o f m aterials on the surface o f the earth is derived and solved nu m erica lly. The m aterial is assumed to be opaque and compact. Its surface is assumed to be f l a t and coincident w ith the plane o f the e a rth ' s surface. The problem is m athem atically represented by the fo llo w in g one dimensional heat conduction equation and boundary co n d itio n : (k /ρc) ϑ2t (x,t) / ϑx2=ϑt(x, t ) / ϑt 0<x k ϑt( x,t) / ϑx x =0 = f [T ( 0,t),t] T (x,0) =constant The temperature of the m a te ria l a t distance x beneath it s surface a t time t is T(x, t). The thermal c o n d u c tiv ity, d e n s ity, and s p e c ific heat are k, ρ, and c re spective ly and are assumed to be

constant. The function f is e x p lic itly and n o nlinearly dependent upon T(0,t) and t, and is composed o f the follo w in g heating or cooling e ffe c ts : d ire c t and scattered s u n lig h t, ra diant thermal energy em itted by the m a te ria l, a ir convection, evaporation, and condensation a t the m a te ria l s surface. The function o f f is dependent upon: the albedo, e m is s iv ity, and evaporation opportunity o f the m a te ria l, the temperature, re la tiv e hum idity, and wind v e lo c ity o f the a ir above the m a te ria l, the d e clin a tio n o f the sun, and the geographical la titu d e o f the m a te ria l. The temperature, re la tiv e hum idity and wind v e lo c ity of the a ir above the m a teria l were assumed to be constant. Results fo r T(0,t ),f[ T ( 0,t),t], and the various components of f [ T ( 0, t ), t ) are presented in graphical form. Results fo r T (0,t) a t various s ig n ific a n t items t during the solar day are given in tabular form. The solutions were ca rrie d out fo r t s u ffic ie n tly large th a t T(0,t) became approximately p e rio d ic. The model predicts th a t the surface temperature o f a ty p ic a l earth cru st m aterial a t a given time is dependant only to a ra th e r small degree upon the temperature o f the m aterial more than approximately 6 days p r io r to th a t tim e. In tro d u c tio n The d a i ly and s e a s o n a l v a r ia t io n o f th e s u rfa c e te m p e ra tu re o f m a te r ia ls on th e e a r t h s s u rfa c e is a phenomena w h ic h is f a m i lia r to a l l o f u s. A q u a n t it a t iv e u n d e rs ta n d in g o f t h is phenomena and i t s n a tu r a l causes is im p o rta n t i n te m p e ra tu re m apping o f th e e a r t h 's s u rfa c e by means o f rem ote s e n sors lo c a te d in a i r o r s p a c e c r a ft. 2

The s u rfa c e te m p e ra tu re o f a g iv e n m a t e r ia l a t a g iv e n tim e o f th e y e a r and day depends on a v a r ie t y o f n a t u r a l h e a tin g and c o o lin g e f f e c t s and on th e in h e r e n t p r o p e r tie s o f th e m a t e r ia l. Any re a s o n a b ly p r a c t ic a l m a th e m a tic a l model d e s ig n e d t o q u a n t it a t iv e ly p r e d ic t s u rfa c e te m p e ra tu re s w i l l n o t be a c c u ra te s im p ly because m ost n a t u r a l h e a tin g and c o o lin g e f f e c t s a re d e pendent upon w e a th e r c o n d itio n s, w h ic h a re im p o s s ib le t o p r e d ic t a c c u r a te ly. W ith c e r t a in a ssu m p tio n s a b o u t w e a th e r c o n d itio n s, how ever, a m a th e m a tic a l m odel can be d e velo p e d w h ic h le n d s c o n s id e ra b le in s ig h t in t o th e s u r fa c e te m p e ra tu re phenomena and i t s c a u s e s, and w h ic h can be used as a g u id e f o r th e q u a n t it a t iv e p r e d ic t io n o f s u rfa c e te m p e ra tu re s. Problem and S o lu tio n The p ro b le m i s t o d e te rm in e th e s u r fa c e te m p e ra tu re o f an opaque, com pact m a te r ia l on th e e a r t h 's s u r fa c e. Suppose t h a t th e m a t e r ia l's s u r fa c e, in c o n ta c t w ith th e atm osphere, i s f l a t and c o in c id e n t w it h th e p la n e o f th e e a r th 's s u r fa c e. F u r th e r, assume t h a t c o n d itio n s a re such t h a t, a t a g iv e n tim e t, th e te m p e ra tu r e t o f th e m a te r ia l i s th e same a t a l l p o in ts a t d is ta n c e x v e r t i c a l l y b e lo w th e m a t e r ia l's s u r fa c e. The d is ta n c e x is zero on th e s u rfa c e and in c re a s e s fro m zero to w a rd th e e a r th 's c e n te r. W ith t h i s a s s u m p tio n re g a rd in g T i t fo llo w s th a t th e f o llo w in g fo rm o f th e h e a t e q u a tio n 3

i s v a l i d in th e m a te r ia l : ( k / ρc)ϑ 2T( x, t ) / ϑ x 2=ϑT( x,t ) / ϑt 0<x ( 1 ) The th e rm a l c o n d u c t iv it y, d e n s ity, and s p e c if ic h e a t a re assumed t o be c o n s ta n t and a re r e s p e c t iv e ly d e n o te d by k, p, and c. One a ls o h a s: k ϑt( x,t ) / ϑx = f ( t) (2 ) X =0 w here f ( t ) i s d e fin e d as th e r a te o f h e a t flo w o u t o f th e m a t e r ia l a t i t s s u rfa c e p e r u n i t s u rfa c e a re a. D iv id in g f ( t ) in t o 5 s e p a ra te te rm s : f ( t )= 5 i=1f i (t) (3 ) -f1(t ) =(1-A)R 0co sθ 0e x p (-.3 6 5 s e c Ө0) /. 9 0 (4) A - A lbedo o f m a te r ia l. R0 - Ir r a d ia n c e re c e iv e d fro m th e sun above e a r th 's atm osphere (.139 Wcm- 2 ). Ө0 - Sun z e n ith a n g le. co s Ө0 = c o s Өc o s φc o s [2 t( 2 4 h r ) -1] + s in Өs in φ Ө - D e c lin a tio n o f sun. φ- G e o g ra p h ic a l l a t i t u d e o f m a te r ia l on e a r th 's s u r fa c e. t - L o c a l s o la r tim e. 4

- f ( t ) = ϵ ot 4 (.3 7 +. 019xa m3gm- 1 ) (5) 2 a ϵ σ - Absorbtance (emissivity) of material. - Stephan-Boltzmann constant (5.67x10-12 Wcm-2 K -4 ). Ta- Air temperature above the material's surface in degrees Kelvin. xα - Absolute humidity of air above material's surface. f 3 ( t ) = ϵ σt4 (0, t ) (6) f ( t ) = [ T ( 0, t ) ~ T a ] (1.0 9 +.23V sec f t - 1 )x 4 a (.000568 Wcm-2 K-1 ) (7) v a- Velocity of air assumed to be moving parallel to and above the materials - surface. T (0,t) - Surface temperature of material in degrees Kelvin. f 5 ( t ) = a { e [ T ( 0, t ) ] - e [ T a]ra } (mm o f Hg)-1 x (.4 4 +.1 7 3 Va sec f t - 1) (.0 0 1 8 3 Wcm- 2 ) (8) a - E v a p o ra tio n o p p o r tu n it y o f th e m a t e r ia l. Ra - R e la tiv e h u m id ity o f a i r above m a t e r ia l's s u r fa c e. e [ t ] -S a tu ra te d v a p o r p re s s u re o f w a te r a t te m p e ra tu re T. e [T ]= [5.8 0 +. 0295 (T K -1 ~ 2 7 3.2 )2 ](mm o f Hg) t - T e m p e ra tu re in d e g re e s K e lv in. 5

The f i r s t te rm f 1 ( t ) a p p ro x im a te s th e r a d ia n t e n e rg y fro m th e sun and in a d d it io n t h a t r a d ia n t e n e rg y re c e iv e d fro m th e sun b u t s c a tte re d by th e atm osphere b e fo re a r r iv in g a t th e m a t e r ia l's s u r fa c e. M ost o f t h i s r a d ia n t e n e rg y w i l l have w a v e le n g th s in th e.3-3 μ r e g io n. The s e m ie m p ir ic a l e x p re s s io n g iv e n f o r f 1 (t) was d e te rm in e d fro m m easurem ents ta k e n d u r in g th e summer in C o lo ra d o (H u ls tro m, 1 9 7 0 ). I t i s in te n d e d t o be a re a s o n a b le a p p ro x im a tio n f o r c le a r a tm o s p h e ric c o n d itio n s o n ly. The second te rm f 2( t) a p p ro x im a te s th e th e rm a l r a d ia n t e n e rg y re c e iv e d fro m th e a tm o sphere. M ost o f t h i s r a d ia n t en erg y w i l l have w a v e le n g th s in th e 3-14 μ r e g io n and o r ig in a t e s p r i n c i p a l l y fro m th e w a te r v a p o r in th e a tm o sp h e re. P a r t o f th e e x p re s s io n g iv e n f o r f 2 (t) was d e riv e d fro m g r a p h ic a lly p re s e n te d m easured d a ta ta k e n by S loan e t a l. (1 9 5 6 ). The t h i r d te rm g iv e s th e th e rm a l r a d ia n t e n e rg y e m itte d by th e m a te r ia l as d ic t a t e d by th e S te p h a n - B o ltzm a n n la w. The f o u r t h te rm a p p ro x im a te s th e c o n v e c tiv e h e a t lo s s (g a in ) due to th e passage o f a i r assumed t o be m oving p a r a l l e l t o and above th e m a t e r ia l's s u r fa c e. I t is an exam ple o f th e s o - c a lle d Newton h e a t exchange b o u n d a ry c o n d it io n. The n u m e ric a l c o e f f ic ie n t s in th e te rm w ere d e te rm in e d (McAdams, 1954) by la b o r a to r y e x p e rim e n ts m e a s u rin g th e te m p e ra tu re o f a ro u g h copper p la t e b e in g c o o le d (h e a te d ) by a w in d o f v e lo c it y v p a r a l l e l t o th e p l a t e 's s u r fa c e. 6

The f i f t h term a p p ro x im a te s th e h e a t lo s s due to th e e v a p o ra tio n o f w a te r fro m th e m a t e r ia l's s u r fa c e. T h is te rm was o b ta in e d by m u lt ip ly in g th e e v a p o ra tio n r a te o f w a te r from th e m a t e r ia l by th e h e a t o f v a p o r i z a tio n o f w a te r. S e v e ra l s e m ie m p e ric a l fo rm u la e f o r th e e v a p o ra tio n r a te o f w a te r fro m m a te r ia ls e x is t in th e l i t e r a t u r e (W is le r, 1 9 4 9 ). The one chosen was d e te rm in e d by Rohwer, and sea le v e l b a ro m e tric p re s s u re was used in h is fo r m u la. The c o n s ta n t a i s th e s o - c a lle d e v a p o ra tio n o p p o r tu n ity (W is le r, 1949) o f th e m a t e r ia l. F o r m a te r ia ls c o n ta in in g no w a te r a w o u ld be z e ro. F o r h ig h ly p o ro u s m a te r ia ls w h ic h a re s a tu r a te d w ith w a te r a w o u ld be a p p ro x im a te ly 1. The a b s o lu te h u m id ity xa in te rm f 2 ( t ) i s o b ta in e d by means o f th e id e a l la w w it h te m p e ra tu re Ta and p re s s u re e [ta ] Ra. The a p p ro x im a tio n g iv e n f o r e[t] was d e te rm in e d e m p ir ic a lly fro m t a b u la t io n s f o r s a tu r a te d w a te r v a p o r p re s s u re and is re a s o n a b ly a c c u ra te f o r 27 3.2 k <t <310 k. I n te rm s f 2 ( t ), f 4 ( t ), and f 5 (t) th e q u a n t it ie s ta, Va, and Ra o c c u r. These q u a n t it ie s depend upon w e a th e r c o n d itio n s and th u s change w it h tim e. A t f i r s t assume t h a t th e y a re c o n s ta n t, and n o te t h a t f 1 (t) depends e x p l i c i t l y upon t, t h a t f2(t) is a c o n s ta n t, and t h a t f 3 ( t ), f 4 (t), and f 5 (t) depend e x p l i c i t l y upon T ( 0, t ) T h u s : f ( t ) = f [ T ( 0, t ), t ] 7

In (1) and (2) T ( x, t ), x, and t have th e d im e n s io n s o f te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. T ra n s fo rm th e s e th re e q u a n t it ie s in t o d im e n s io n le s s fo rm by means o f th e fo llo w in g s u b s t it u t io n s : T ( x,t) = K 0u ( y,τ) x = c 0y t= S0τ w here K0=R01/4σ- l / 4 c0=kr0-3/ 4 σ- l / 4 S0=R0-3 / 2σ- l / 2 k ρc The q u a n t it ie s u ( y, τ ), y, and τ a re d im e n s io n le s s te m p e ra tu re, d is ta n c e, and tim e r e s p e c t iv e ly. In te rm s o f th e s e new q u a n t i t i e s (1) and (2) become: ϑu2( y, τ ) /ϑ y 2 = ϑu (y, τ ] / ϑτ 0<y (9) ϑu ( y, τ ) / ϑy y=0= f [ K0u(0, τ ), S 0 τ]r0-1 = F [u(0,τ ), τ ] (10) The o n ly p la c e w here t e x p l i c i t l y o c c u rs in f ( t ) is in th e c o s [2 t(2 4hr)-1] te rm f o r c o s Ө0 in f 1 ( t ). T h is te rm becomes cos [2 η-1τ] where η = (2 4 h r)s 0-1 when one re p la c e s t by S0τ. The q u a n t it y η is d im e n s io n le s s and is in v e r s e ly p r o p o r tio n a l t o th e square o f th e th e rm a l i n e r t i a (k ρc ) 1/2. 8

μ (y,0 ) = μ0 0< y (11) The s o lu t io n f o r μ (0,τ ) as d e te rm in e d fro m ( 9 ), ( 1 0 ), and (11) is (C arslaw and J a e g e r, 1 9 5 9 ): μ (0,τ )= u0- -1/2 0 τ(τ - z )-1/2 F [ μ (0,z ), z] dz (12) E q u a tio n (12) was s o lv e d n u m e r ic a lly. The p r o cedure was to a p p ro x im a te F [ μ ( 0, z ), z ] in th e u s u a l manner by a s e r ie s o f p o ly n o m ia ls o f 1 s t o r 2nd o r d e r. An in d ic a t io n o f th e a c c u ra c y o f t h i s p ro c e d u re may be o b ta in e d by com paring th e r e s u lt s f o r μ ( 0, τ ) f o r th e two o r d e r s. The d is c re p a n c y betw een u ( 0, τ ) u s in g 2nd o rd e r p o ly n o m ia ls was le s s th a n.01% f o r τ >0. The d is c re p a n c y te n d e d t o become le s s f o r la r g e r τ. These s o lu tio n s show t h a t μ ( 0, τ ) - μ ( 0, τ +n) f o r s u f f i c i e n t l y la r g e v a lu e s o f τ. f o r u0. T h is is p a r t i c u l a r l y tr u e f o r an a p p r o p r ia te c h o ic e T h is r e s u lt is p h y s ic a lly re a s o n a b le s in c e one w ould e x p e c t th a t μ ( 0, τ ) w ould be m a in ly d e te rm in e d by th e f o r c in g fu n c tio n F f o r s u f f i c i e n t l y la r g e τ, r a th e r th a n th e m a t e r ia l' s i n i t i a l te m p e ra tu re a t some la r g e tim e in th e p a s t. The n u m e ric a l s o lu tio n s were tim e phased in a manner such t h a t τ and t w ere zero a t 18 h rs (6 PM) lo c a l s o la r tim e. S o lu tio n s f o r μ ( 0, τ ) w ere fo u n d f o r 0<τ <6η, o r e q u iv a le n t ly T ( 0,t) was fo u n d f o r 0<t <6 d a ys. V a lu e s f o r T ( 0, t ) - T a a t 6 h rs lo c a l s o la r tim e, τ [0,1 2 h r + n ( 2 4 h r ) ]- T a, in d e g re e s K e lv in a re g iv e n in T a b le 1 f o r tw o v a lu e s o f T0=K0μ0=T( x,0 ) ' The v a lu e s ta k e n f o r th e c o n s ta n ts in F 9

w e re : A=.05, ϵ = l.0,ra =. 2 5, Va =5 f t / s e c, T a =285 K, η=.1 8, a=.1,0 = 0, and φ=4 5. N ote t h a t th e v a lu e s l i s t e d f o r τ - τa in T a b le 1 in c re a s e a s y m p to tic a lly w it h n f o r T0=279 K b u t d e cre a se a s y m p to t ic a lly w ith η f o r T0=285 K. F o r s u f f i c i e n t l y la r g e η b o th s h o u ld converg e t o th e same v a lu e. P re v io u s tre a tm e n ts o f t h i s s u rfa c e te m p e ra tu re p ro b le m (W atson, 1971; J a e g e r, 1953) have used a p e r io d ic s o lu t io n f o r τ ( 0, t ). F o r th e s e s o lu tio n s th e i n i t i a l t r a n s ie n t b e h a v io r o f T ( 0, t ), w h ic h depends upon o n e 's c h o ic e o f T (0, t ), w h ic h depends upon o n e 's c h o ic e o f τ 0, is n o t p r e s e n t. Such s o lu tio n s a re le s s com plex b u t c o n ta in le s s in fo r m a tio n p a r t i c u l a r l y i f one supposes t h a t τ0 is an a p p r o p r ia te e a rth s u b s u rfa c e te m p e ra tu re. R e fe r r in g t o th e p r e v io u s ly l i s t e d v a lu e s f o r th e c o n s ta n ts i n F, to g e th e r w it h τ0 =28 2 K as th e "s ta n d a rd c h o ic e " o f c o n s ta n ts, f ig u r e 1 shows T ( 0, t ), 5 days <t <6 d a y s, f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. F ig u re _ 2 shows F ( τ )= 5 i=1 F i ( τ ) and F i ( τ ) = f i (t)r 0-1, i = l, 2, 3, 4 / 5, 5 days <t <6 days a g a in w it h th e "s ta n d a rd c h o ic e " o f c o n s ta n ts. TABLE 1. T [0,1 2 h r + n ( 2 4 h r) } - Ta T0(K) n 279 285 0-1 0.9 4-9. 030 1-1 0.4 4-9.2 4 3 10

3-1 0.2 5-9.4 4 1 4-1 0.2 1-9.4 9 5 5-1 0.1 8-9.5 3 6 TABLE 2. a1, a2, and a 3 o f T ( 0, t ) f o r 5 d a ys < t <6 d a y s. C o n s ta n ts a1 ( K) a 2 ( K) a 3 ( K) s ta n d a rd 5.07 9.8 6 7.0 7 A=.15 5.76 1 0.1 5.1 4 ε =. 9 4.05 8.92 8.1 6 R =.75 a V =15 f t / s e c a T = 2 9 5 K a 3.66 8.3 7 8.4 4 4.57 6.9 1 5.1 5 7.57 11.9 4.3 8 η=. 12 4.57 9.3 3 5.8 8 a=. 5 7.44 11.7 3.7 4 θ=.3 ra d ia n s -1.1 0 8.29 1 5.3 T0=2850K 4.75 9.5 4 7.3 6 T a b le 2 shows th e v a lu e s fo u n d f o r a1, a2, and a3 as d e p ic te d in F ig u re 1: - a1 = T (0, 5 d a y s )-T a - a2 = T ( 0,t)m in -T a a3 = T ( 0,t) max -T a 11

LOCAL SOLAR TIME (HRS) Figure I. T(0,t) for 5 days < t < 6 days and with the "standard choice" of constants. 12

Figure 2. Ft } F1,F2,F3, and F4 for 5 days / 6 days and with the "standard choice" of constants. 13

The minimum and maximum v a lu e s f o r T ( 0, t ), 5 days < t< 6 d a y s, a re r e s p e c tiv e ly T ( 0, t ) min and T ( 0, t ) max E n tr ie s shown in th e colum n headed " c o n s ta n ts " in T a b le 2 show th e d e p a rtu re s fro m th e "s ta n d a rd c h o ic e ". Thus A=.15 in th e second row o f T a b le 2 means t h a t th e s e le c tio n o f c o n s ta n ts was th e "s ta n d a rd c h o ic e " e x c e p t t h a t A was e q u a l t o.1 5 r a th e r th a n.05 as i t is in th e "s ta n d a rd c h o ic e ". The re ason t h a t th e s e r e s u lt s a re in t a b u la r r a t h e r th a n g r a p h ic a l fo rm i s t h a t th e v a r io u s c u rv e s f o r T (0, t ) a re a l l v e ry s im ila r in shape b u t have d i f f e r e n t v a lu e s f o r a 1, a2, and a3. In e v e ry case T ( 0, t ) min was r e a liz e d a t fro m 12 to 36 m in u te s a f t e r s u n r is e. E x c e p t f o r th e va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t ' s maximum v a lu e a t fro m 60 t o 84 m in u te s a f t e r 12 h rs lo c a l s o la r tim e. F o r th e Va = 1 5 ft/s e c and a =.5 c a s e s, T ( 0, t ) r e a liz e d i t s maximum v a lu e a t fro m 36 to 60 m in u te s a f t e r 12 h r s. lo c a l s o la r tim e. F o r an u n d e rs ta n d in g o f th e r e s u lt s in T a b le 2 i t is im p o r ta n t t o u n d e rs ta n d th e b e h a v io r o f th e te rm s Fi, i = l, 2, 3, 4, 5, as th e y depend upon th e c o n s ta n ts in F. F1 and F2 a re h e a tin g te rm s, F 3 i s a c o o lin g te rm. F 4 and F 5 can e it h e r h e a t o r c o o l th e m a t e r ia l. The h e a tin g e f f e c t o f F1 is decreased f o r in c r e a s in g A and, f o r p o s it iv e φ in c re a s e d f o r ϴ in c r e a s in g fro m z e ro. The h e a tin g e f f e c t o f F2 in c re a s e s f o r in c r e a s in g ϵ, t a, and R. a F1 is t y p i c a l ly o f g r e a te r im p o rta n c e th a n F2, b u t c o u ld have le s s n e t h e a tin g e f f e c t th a n F2 when ϵ, Ta, 14

and Ra a re la r g e. The c o o lin g e f f e c t o f F3 is in c re a s e d f o r in c r e a s in g ϵ. F3 is p e rh a p s t y p i c a l l y th e m ost im p o rta n t c o o lin g te rm. The e f f e c t o f F4 is to c o o l th e m a te r ia l when T ( 0,t) > T a b u t t o h e a t th e m a te r ia l when T ( 0, t ) <Ta. I t s e f f e c t i s in c re a s e d f o r in c r e a s in g V a. I t ' s im p o rta n c e becomes c o n s id e r a b le when Va becomes s u f f i c i e n t l y la r g e, f 5 can e it h e r c o o l (e v a p o ra tio n ) o r h e a t (c o n d e n s a tio n ) th e m a t e r ia l. I t ' s e f f e c t i s in c re a s e d f o r in c r e a s in g va and a, and can be o f co n s id e r a b le im p o rta n c e when va and / o r a become s u f f i c i e n t l y la r g e. I t ' s e f f e c t te n d s t o be t h a t o f c o o lin g f o r s m a ll Ra and T a. T a b le 2 is q u it e in c o m p le te. I t c o n ta in s o n ly s in g le v a r ia b le d e p a rtu re s fro m th e "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts. The ta b le may, h o w e ver, be used f o r cru d e a p p ro x im a tio n s f o r a g e n e ra l s e le c t io n o f th e c o n s ta n ts v ia th e f i r s t o rd e r T a y lo r e x p a n s io n : ai (c 1 + Δc 1, c 2+Δc2,.c9+ Δ c 9 ) =a1 (c 2, c 2,... c9) 9 + Δ c jϑ ai ( c l, c 2,... c9 ) / ϑcj j = l i = l, 2,3 The "s ta n d a rd c h o ic e " e v a lu a tio n o f th e c o n s ta n ts a re cl, + c 2,.c 9. The p a r t i a l d e r iv a t iv e s ϑai / ϑcj may be a p p ro x im a te d fro m T a b le 2. D e p a rtu re s o f th e c o n s ta n ts fro m th e s ta n d a rd c h o ic e a re Δcj. I t is a p p ro p ria te t o c o n s id e r th e l i m i t a t i o n s and 15

e x p e c te d a c c u ra c y o f th e s e s o lu t io n s. The te rm F1 assumes c le a r a tm o s p h e ric c o n d itio n s, th u s o u r r e s u lt s a p p ly o n ly in t h i s c a s e. The c o n s ta n ts ta, V a, and Ra a re d e te rm in e d by w e a th e r c o n d itio n s and i n r e a l i t y change c o n s id e r a b ly w it h tim e. I t has been assumed t h a t th e y a re c o n s ta n t, how e ve r. T h is a ssu m ptio n c le a r ly in tr o d u c e s e r r o r in t o th e s o lu t io n s. T r a n s p ir a tio n fro m v e g e ta tio n was n o t c o n s id e re d so t h a t o u r r e s u lt s do n o t a p p ly t o v e g e ta tio n. The m odel is c le a r ly to o s im p le t o p r e d ic t w it h any a c c u ra c y s u rfa c e te m p e r a tu r e s t h a t one w o u ld a c t u a lly m easure in th e f i e l d. I t s h o u ld, h o w e ve r, be u s e fu l f o r p r e d ic t in g, w it h lim it e d a c c u ra c y, th e s u rfa c e te m p e ra tu r e s o f n o n -v e g e ta te d m a te r ia ls u n d e r c le a r a tm o s p h e ric c o n d itio n s when ta, V a, and Ra a re r e l a t i v e l y c o n s ta n t. In c o n c lu s io n i t s h o u ld p e rhaps be em phasized t h a t r e l a t i v e l y l i t t l e a t t e n t io n has been g iv e n t o th e r a t e a t w h ic h th e s o lu tio n s p re s e n te d in T a b le 2 become a p p r o x i m a te ly p e r io d ic. O nly th e d a ta p re s e n te d in T a b le 1 d e a ls w it h t h i s phenomena. R e p re s e n tin g T[0, t + n ( 2 4 h r )], 0<t <2 4 h r, by Tη (O,t ), r e p r e s e n ta tiv e v a lu e s o f T 5(O, t) a re g iv e n in T a b le 2. I t i s e x p e c te d t h a t Tn (0, t ) - T (0, t ) f o r n s u f f i c i e n t l y la r g e. T h is is e x p e c te d to be v a l i d f o r r e l a t i v e l y s m a ll n i f th e 24hr tim e ave rage o f T ( 0, t ) and T0 a re n o t s i g n i f i c a n t l y d i f f e r e n t and η is r e l a t i v e l y la r g e. S o lu tio n s w ere c a r r ie d o u t f o r T ( 0, t ), 0<t <l2 days f o r th e "s ta n d a rd c h o ic e " o f c o n s ta n ts e x c e p t Ө=.3 r a d ia n and w ith η=.18 and. 016. F o r η=.18, a1, a2, 16

and a a re r e s p e c tiv e ly -1.0 9 9, 8.2 8 6, and 15.2 9 f o r n=5 and - 1.2 5 3, 8.1 3 5, and 15. 42 f o r n= l l. F o r n =.0 1 6, a1, a 2, and a3 are r e s p e c t iv e ly - 1.4 2 1, 4. 400 and 6.4 2 1 f o r n=5 and -1.8 4 4, 4.0 0 4, and 6.7 84 f o r n = l l. The changes in a1, a 2, and a 3 a re a p p ro x im a te ly.4 f o r η =. 016 b u t a p p ro x im a te ly.15 f o r η=.1 8. I t w o u ld be e x p e c te d t h a t th e changes f o r a1, a 2, and a 3 w o u ld n o t be g r e a te r th a n.15 f o r th e s o lu tio n s in T a b le 2. The v a lu e ta k e n by η f o r m ost e a rth c r u s t m a te r ia ls i s la r g e r th a n.1 8. The m odel w o u ld th u s p r e d ic t t h a t th e te m p e ra tu re o f a t y p ic a l e a r th c r u s t m a t e r ia l a t a g iv e n tim e is d e pendent o n ly t o a r a th e r s m a ll d e g re e upon th e te m p e ra tu re o f th e m a te r ia l more th a n a p p ro x im a te ly 6 days p r i o r to t h a t t im e. 17

REFERENCES CITED C a rs la w, H., and Ja e g e r, J., 1959, "C o n d u c tio n o f H eat in S o lid s ", 2nd e d., O x fo rd U n iv e r s it y P re s s, London and New Y o rk, p, 76. H u ls tro m, R.L., 1970, A summary o f s o la r r a d ia t io n measu re m e n ts and a n a ly s e s made d u r in g 1970, R e p o rt No. R -7 0-4 8 6 1 0-0 0 5, M a r tin M a r ie tta C o r p., D enver D iv is io n, p. 22-26. J a e g e r, J. C., 1953, C o n d u c tio n o f h e a t in a s o lid w it h p e r io d ic boundary c o n d itio n s, w it h an a p p lic a t io n t o th e s u rfa c e te m p e ra tu re o f th e moon, C a m b ri d g e Philos.So c., P ro c., v. 49, p t. 2, p. 355-3 5 9. McAdams, W.H., 1954, "H eat T r a n s m is s io n ", 3 rd e d., M c G ra w -H ill Book Company, New Y o rk, p. 249-2 5 0. Rohwer C., E v a p o ra tio n fro m fr e e w a te r s u r fa c e s, U.S. D e p a r t m e n t o f A g r i c u l t u r e T e c h. B u l l. 271, Decem ber 1931. S lo a n, R., Shaw, J. H., and W illia m s, D., 1956, T herm al r a d ia t io n fro m th e a tm o sphere, J. O p t. Soc. Am., 46, p. 543. W atson, K., 1971, A p p lic a tio n o f th e rm a l m o d e lin g i n th e g e o lo g ic a in t e r p r e t a t io n o f IR im ages, P ro c e e d in g s o f th e Seventh I n t e r n a t io n a l Symposium on Remote S e n sin g o f E n v iro n m e n t, The U n iv e r s it y o f M ic h ig a n, p. 2 0 1 7-2 0 4 1. W is le r, C.O., and B r a te r, E.F., 1949, "H y d ro lo g y ", John W ile y & Sons I n c., New Y o rk, p. 152, 167. 18

H 6618