A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System

Σχετικά έγγραφα
derivation of the Laplacian from rectangular to spherical coordinates

2 Composition. Invertible Mappings

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Eulerian Simulation of Large Deformations

Numerical Analysis FMN011

Answer sheet: Third Midterm for Math 2339

1 String with massive end-points

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Parametrized Surfaces

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Areas and Lengths in Polar Coordinates

Higher Derivative Gravity Theories

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.3 Forecasting ARMA processes

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Spherical Coordinates

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

Homework 3 Solutions

The Simply Typed Lambda Calculus

Example Sheet 3 Solutions

Concrete Mathematics Exercises from 30 September 2016

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( y) Partial Differential Equations

Solutions to Exercise Sheet 5

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

EE512: Error Control Coding

Approximation of distance between locations on earth given by latitude and longitude

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Statistical Inference I Locally most powerful tests

w o = R 1 p. (1) R = p =. = 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Geodesic Equations for the Wormhole Metric

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Matrices and Determinants

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

PARTIAL NOTES for 6.1 Trigonometric Identities

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Section 7.6 Double and Half Angle Formulas

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Notes on the Open Economy

Lecture 26: Circular domains

Example 1: THE ELECTRIC DIPOLE

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Second Order RLC Filters

Forced Pendulum Numerical approach

Solution to Review Problems for Midterm III

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Tridiagonal matrices. Gérard MEURANT. October, 2008

Section 9.2 Polar Equations and Graphs

An Inventory of Continuous Distributions

Lifting Entry (continued)

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

C.S. 430 Assignment 6, Sample Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.4 Superposition of Linear Plane Progressive Waves

Variational Wavefunction for the Helium Atom

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Math221: HW# 1 solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

CRASH COURSE IN PRECALCULUS

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Reminders: linear functions

Partial Trace and Partial Transpose

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The ε-pseudospectrum of a Matrix

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Durbin-Levinson recursive method

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

CE 530 Molecular Simulation

Second Order Partial Differential Equations

Solution Series 9. i=1 x i and i=1 x i.

Space-Time Symmetries

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Transcript:

A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System Hann- Ming Henry Juang Environment Modeling Center, NOAA/NWS/NCEP, Washington, DC 10 April 2014 PDEs 2014, H. Juang 1

Introduction While NCEP GFS extends its vertical domain to couple with space environmental model, we called this version of GFS as Whole Atmospheric Model (WAM). WAM is a hydrostatic system with enthalpy as thermodynamic variable (Juang 2011 MWR). We propose to do deep atmospheric dynamics for NCEP GFS to support WAM Here, we would lie to re-iterate the reasons to use deep atmospheric dynamics and to illustrate the discretization of deep atmospheric dynamics for NCEP GFS. 10 April 2014 PDEs 2014, H. Juang 2

Opr GFS vs WAM 64 layers 150 layers 10 April 2014 PDEs 2014, H. Juang 3

Example of T profile of 150 layers WAM uses generalized hybrid coordinate with enthalpy CpT as thermodynamics variables, where Cp is summaton of each gases. R Cp O 519.674 1299.18 O2 259.837 918.096 O3 173.225 820.239 Dry air 296.803 1039.64 H2O 461.50 1846.00 10 April 2014 PDEs 2014, H. Juang 4

Maxima wind (m/s) at NCEP GFS 150 layers WAM in do_dynamics_two_loop for spdmx at = 40825 spdmx(001:010)= 19. 20. 21. 23. 25. 26. 27. 28. 28. 28. spdmx(011:020)= 28. 27. 27. 27. 27. 28. 28. 28. 29. 30. spdmx(021:030)= 31. 33. 35. 37. 40. 42. 44. 46. 49. 53. spdmx(031:040)= 58. 61. 63. 63. 62. 60. 55. 47. 45. 44. spdmx(041:050)= 45. 45. 47. 49. 52. 55. 59. 62. 65. 68. spdmx(051:060)= 72. 76. 80. 84. 87. 90. 93. 95. 97. 98. spdmx(061:070)= 102. 110. 118. 127. 135. 143. 149. 153. 155. 152. spdmx(071:080)= 147. 145. 142. 138. 135. 132. 130. 126. 121. 119. spdmx(081:090)= 114. 112. 110. 106. 100. 95. 94. 90. 89. 89. spdmx(091:100)= 87. 82. 91. 95. 99. 97. 104. 100. 111. 120. spdmx(101:110)= 125. 133. 148. 167. 172. 164. 159. 160. 147. 124. spdmx(111:120)= 117. 125. 133. 138. 137. 157. 183. 202. 220. 243. spdmx(121:130)= 269. 297. 319. 338. 355. 368. 378. 386. 392. 396. spdmx(131:140)= 399. 402. 404. 405. 406. 407. 408. 409. 410. 410. spdmx(141:150)= 411. 412. 412. 413. 413. 414. 414. 415. 415. 418. 10 April 2014 PDEs 2014, H. Juang 5

Shallow (r=a) vs Deep (r=a+z) Assume at z=637.12m, so r = 1.1a For shallow dynamic u = acosφ dλ For deep atmosphere u = r cosφ dλ For example, ϕ=45, u=400m/s, after one hour advection, the displacement has about 1 error in λ. 10 April 2014 PDEs 2014, H. Juang 6

Deep atmospheric equation in height spherical coordinates du uvtanφ + uw r r (2Ωsinφ)v + (2Ωcosφ)w + 1 p ρ r cosφ = F u Momentum where dv + u2 tanφ + vw r r + (2Ωsinφ)u + 1 p ρ r φ = F v dw u2 + v 2 r da = A t + u A r cosφ + v A r φ + w A r p = p n = ρ n R n T = ρ n n n ρ n R n ρ ρ t + ρu r cosφ + ρvcosφ r cosφ φ + ρr2 w r 2 r = F ρ T = ρ (2Ωcosφ)u + 1 p ρ r + g = F w n q n R n T = ρrt r = a + z u = r cosφ dλ v = r dφ Gas law Density 10 April 2014 PDEs 2014, H. Juang 7

From IEE ρe t + ρev + p V = ρq replace N e = q i e i = q i C Vi T = C V T i=1 N i=1 = ( C P R)T = h RT We have where N ρh t Combine IEE in h form with + ρhv dp = ρq C V = q i C Vi C P = q i C Pi R = q i R i i=1 N i=1 N i=1 ρ t + ρv = F ρ Specific value q i = ρ i ρ ρ = N n=1 ρ n We have dh κh p dp = Q h ρ F ρ we need dq i = F q i where h=cpt is an Enthalpy 10 April 2014 PDEs 2014, H. Juang 8

du uvtanφ + uw r r f sv + f c w + κh p dv dw + u2 tanφ r + vw r u2 + v 2 r + f s u + κh p f c u Deep Atmos Dyn in generalized coordinate Staniforth and Wood (2003) where d() = () t + λ () +φ () φ +ζ () 1 p r cosφ p r = F u r 1 r p φ p r = F v r φ + κh p f s = 2Ωsinφ ; f c = 2Ωcosφ ; g = g(r) ; p = ρκh p r + g = F w dh κh p dp = F h β t + β λ + β φ φ + βζ = F β ρ dq i = F q i ; β = ρr 2 cosφ r ; w = r t + λ r +φ r φ +ζ r 10 April 2014 PDEs 2014, H. Juang 9

da Angular momentum put = r cosφ du We have + ( u + 2Ωr cosφ) du = uvtanφ uw r r + f sv f c w κh p da = r cosφ ( * F u κh ) p A = r cosφ ( u + Ωr cosφ) dr cosφ = r cosφ du + ( u + 2Ωr cosφ) ( wcosφ vsinφ) 1 p r cosφ p r + F u r 1 p r cosφ p r + - r, in da = A t + u A r cosφ + v A A r φ +ζ β t + u r cosφ β v + r β β φ + = 0 βa t u r cosφ βa + v + r βa + βa φ = β da where β = ρr 2 cosφ r 10 April 2014 PDEs 2014, H. Juang 10

βa +! t ) = βr cosφ+ F u κh * p uβa +! r cosφ φ vβa r + βa 1! p r cosφ p r,. r - = r 2 cosφ r p + r2 cosφ p r + βr cosφf u pr 2 cosφ r = + p pr 2 cosφ r = + t r 2 cosφ r + pr 2 cosφ r p pr 2 cosφ r + βr cosφf u ρadv = ρr cosφf u dv r 2 cosφ r + βr cosφf u + p r ( ds p r ( T B ds Angular momentum conserved if top p=0 or r=constant thus the bottom is the only torque. 10 April 2014 PDEs 2014, H. Juang 11

Consider Kinetic energy from momentum equations u du u uvtanφ + u uw r r uf v + uf w + uκh s c p v dv w dw + v u2 tanφ r + v vw r w u2 + v 2 K t + λ K +φ K φ +ζ K = 1 ρ λ r + vf s u + v κh p wf c u Sum them together, we have βk t β t + β λ + β φ φ + βζ 1 p r cosφ p r = 0 r 1 r p φ p r = 0 r φ + w κh p Combine with mass and w equations as p r + wg = 0 p p r ( 1 p r ρ φ φ p r ( 1 r φ ρ w p r gw = 0 and w = r λ β K + p φ β K + p β K + p ρ ρ ρ + + + φ β ρ λ β = p + ρ φ β φ + ρ ζ pr 2 cosφ r t β ρ λ = p r 2 cosφ r + p t t + r r r λ +φ φ +ζ β + p ρ φ φ β ρ βgw = p t ( ) K = 1 2 u2 + v 2 + w 2 β + p ρ ζ p β r ρ t r + p β ρ λ β + + ρ φ β φ + ρ ζ We have β r ρ t r βgw pr 2 cosφ r t βgw 10 April 2014 PDEs 2014, H. Juang 12

Consider geo-potential energy gdr = Φ or g = dφ gw = dφ dr dr = Φ t + Φ Φ Φ λ +φ φ +ζ Combine with mass equation We have βφ t + λ βφ Consider internal energy dc P T 1 dp ρ = dc VT + φ βφ + βφ φ + drt β t + β λ + β φ φ + βζ = 0 = βgw 1 dp ρ = dc VT d 1 ρ + p = 0 Apply mass equations in both total derivative terms, We have βc V T t + βc V T + φ βc V T φ + βc V T ) = p β (+ β t ρ λ (+ β ρ φ φ (+ β, + ρ ζ (. * ρ - 10 April 2014 PDEs 2014, H. Juang 13

Combine previous three red enclosed equations βk t βφ t βc V T t λ β K + p φ β K + p β K + p β β ρ ρ ρ ρ ρ λ β + + + = p + φ r t + ρ φ β φ + ρ ζ + λ βφ + βc V T + φ βφ + βφ φ + φ βc V T φ βk + βc T V + βφ ( t t t = βgw + βc V T Integral globally with all BC, include dζdλdφ = - pr 2 cosφ r ) = p β (+ β t ρ λ (+ β ρ φ φ (+ β, + ρ ζ (. * ρ - r p ζt = 0 = 0 t ζ B +, ( t ζ T pr 2 cosφ r ( t pr 2 cosφ r t ζ B. 0dλdφ / βgw and BC give t ( ) β K + C V T + Φ dζdλdφ = t Total energy conserved ρ ( K + C V T + Φ) dv = 0 10 April 2014 PDEs 2014, H. Juang 14

Deep Atmos vs non- Hydro From Deep atmosphere, we require r changes with Tme, thus we need dw/ equaton And we need full curvature and Coriolis force terms to satsfy conservaton Thus, based on conservaton requirement, a deep atmospheric dynamic is a non- hydrosta)c dynamic. A non- hydrosta)c dynamics can be shallow or deep atmospheric dynamics. Both r and vertcal components of curvature and Coriolis force should be considered in deep atmosphere; and should not be considered in shallow atmosphere. 10 April 2014 PDEs 2014, H. Juang 15

du * + u* w r dv * + v* w r dw s * 2 m2 r f s v * + f c * w + κh p + f s u * + m 2 s * 2 Deep Atmos Dyn in spherical mapping generalized coordinates m 2 f c * u * r sinφ + κh p ρ * t + κh p 1 r 1 r * ρ * u + m 2 r p p r r p ϕ p r r ϕ p r * v * ρ + r m2 ϕ dh κh p = F u = F v +g = F w dp = F h + ρ* ζ = F * ρ Staniforth and Wood (2003) Juang (2014) NCEP Office Note dq i = F q i p = ρκh where d() = () t + λ () +ϕ () ϕ +ζ () = () t + m2 u * () r + m2 v * () r ϕ +ζ () f s = 2Ωsinφ ; f c * = 2Ωcos 2 φ ; g = g(r) ; κ = R C P ; γ = C P ; s * 2 C V ; ρ * = ρ r2 a 2 r = u *2 + v *2 10 April 2014 PDEs 2014, H. Juang 16

Start from continuity equation to have similar to shallow and hydrostatic system to mae as mass coordinates, Mass at give area can be obtained by integral vertical as Mass = φ 2 φ 1 λ 2 λ 1 ζ Top ζ sfc ρr 2 cosφ r dζ dλ dφ Then project this mass to earth surface pressure = Mass g Area = ρgr 2 cosφ r dζ dλ dφ a 2 cosφ dλ dφ We define it as coordinate pressure 10 April 2014 PDEs 2014, H. Juang 17

Previous integral can be deduced to be only in vertical as ζ TOP ρg r2 =!p ζsurface = ζ surface r a 2 dζ ζ TOP ζ surface!p dζ Thus, we have!p r2 r = ρg a 2 = ρ* g Put into continuity equation ρ * t ρ * u + m 2 r * * v * ρ + r m2 ϕ + ρ* ζ = 0 We have p t p u * + m 2 r p + ϕ v * r p ζ + = 0 10 April 2014 PDEs 2014, H. Juang 18

Since!p = ρ* g and ρ * > 0 Thus!p is monotone with vertical coordinate We can use it for coordinate definition and we can call it height weighted coordinate pressure or simply coordinate pressure So we can have!ˆp = Â + ˆB!p s + Ĉ h 1 + h h 0 1 + h 0 C pd /R d For opr compatibility, we use!ˆp = Â + ˆB!p s 10 April 2014 PDEs 2014, H. Juang 19

=K, last layer at the top ζˆ +1 ˆp +1 ˆr +1 u v w h p q ζˆ ˆp ˆr =1, the first layer next to ground For dynamics, all source terms are set to be zero! 10 April 2014 PDEs 2014, H. Juang 20

Vertical integral angular momentum principle, we have ζ T p κh p p p ζ r T (dζ = p r ζ S ζ S κh p p p κh p p r (dζ r ζ T = r gr 2 p a 2 + gr2 p r (dζ a 2 ζ S ζ T = g r3 p 3a 2 + p r 3 (dζ ζ S ζ T = g 3a 2 ζ S r3 p + r 3 p r3 = g r 3 p 3 p ζ T r ( 3a 2 ( dζ ζ S ( = ζ T g p 3a 2 r3 dζ gr T3 ζ S 3a 2 p T p ( ( dζ ( + gr 3 S p S 3a 2 10 April 2014 PDEs 2014, H. Juang 21

Discretize the fourth and last LHSs ζ T ζ S g 3a 2 r3 p + r 3 p r3 With P top zero, we have K =1 p dζ = ζ T g p 3a 2 r3 dζ gr T3 p T ζ S 3a 2 + gr 3 S p S 3a 2 ( ( ˆr 3 +1 ˆr 3 ) p + r 3 ˆp +1 ˆp + * - ), = ˆr S 3 p S let p = f ( ˆp +1, ˆp ) Then we have so p = f ˆp +1 ˆp +1 + f ˆp ˆp and f ˆp +1 + f ˆp =1 K =1 ( ˆr 3 +1 ˆr 3 ) f 3 ˆp + r +1 ˆp +1 + ( ˆr 3 +1 ˆr 3 ) f 3 ˆp r ˆp = ˆr S 3 p S 10 April 2014 PDEs 2014, H. Juang 22

For simplicity, we let f ˆp = f ˆp +1 = 1 2 so r 3 = 1 2 ˆr 3 +1 + 1 2 ˆr 3 since ˆr 3 = +1 ˆr 3 + 3! κh pg so r 3 = ˆr 3 + 3 2! κh pg a 2 ( ˆp ˆp ) +1 a 2 (!ˆp!ˆp ) +1 remove layer value we have ˆr 3 +1 = ˆr 3 + 3 a2 g κ h ˆ p ˆp +1 p so r 3 = ˆr 3 1 + 3 a2 g 1 ˆp κ i h i ˆp i+1 i + 3 i=1 p i 2 a 2 g κ h ˆ p ˆp +1 p 10 April 2014 PDEs 2014, H. Juang 23

We have ˆr 3 +1 a 2 = ˆr 3 a + 3! κh 2 pg ( p!ˆ!ˆp ) +1 then transform to spectral for r to do derivative, then transform bac to grid space for nonlinear computing. du * dv * = u * w r = v * w r * + f s v * f s u f c * w 2 * m 2 s r κ h p sinφ κ h p a r p a g 6 a r p a ϕ g 6 ˆp ˆp +1 a p!ˆ!ˆp +1 r ˆp ˆp +1 a p!ˆ!ˆp +1 r ˆr 3 a a + ˆr 3 +1 2 a 2 ˆr 3 a ϕ a + ˆr 3 +1 2 a 2 10 April 2014 PDEs 2014, H. Juang 24

! Select two forms of advection of PGF dp 1 p κh dp γ p = p H p κh p V H )+ p κh p ( p r w V H H r = p H p κh p V H ) p p κh ( p Continue discretization, we have ( ) r w V H H r ( ) dp = γ p 1!p κh H!p κh p V 1!p κh H ) γ p (!p κh p p p! = γ p H ( V H ) + 1 Δr V 3 H H Δr 3 1 Δr Δ ( V 3 H H r 3 ) + a2 Δ!w r 2 Δr!! = γ p + µ µ! + u *! v * - = γ p m 2 r + - r - ϕ -, λ 1 λ 2 3 ˆr + λ λ +1 2 3 ˆr +1 + µ 1 µ 2 Δr 3 10 April 2014 PDEs 2014, H. Juang 25 ) ( p p κh p r w V H H r 3 ˆr µ + µ µ +1 2 ( ) 3 ˆr +1 µ r w V H H r + a2 ( ) ) (! Δ!w r 2 Δr! * u 1 u * ˆr 3 r 1 r +! u * u * +1 ˆr 3 +1 r r +1 +! v * 1 v * ˆr 3 r 1 r ϕ +! v * v * +1 r r +1 ˆr 3. +1 0 ϕ 0 2Δr 3 0 0 / + a2 ) (! Δ!w r 2 Δr

So we use dp/ from momentum equation to thermodynamic equation, thus total energy will be conserved. dh so ) u * v * + = γ κ h m 2 r + ( * r ( + ϕ (, + m 2 * u 1 * r 1 u r dh κh p dp = 0 ( ˆr 3 + u * u * +1 ( ˆr 3 +1 r r +1 + v * 1 v * ( ˆr 3 r 1 r ϕ + v * v * +1 r r +1 ( ˆr 3 +1 ϕ 2Δr 3 Δ!w ( r 2 Δr + a2. + / + 0 + where w = r2 a 2 w 10 April 2014 PDEs 2014, H. Juang 26

dw = s * 2 m2 r + m2 f u * κh c* p p r g = s * 2 m2 r + m2 f * c u * + g r2 Δp a 2 Δ p g dr 2 w and so ( ) 2 = 2rw 2 + r 2 dw = 2 r 2 w + m 2 rs * r 3 w = r2 a 2 w d w = w 2 2a2 r + r 2 3 m2 a 2 s* + m 2 r 2 a 2 2 + m 2 r 2 f * c u * + ga 2 r 4 Δp a 4 Δ p 1 ( f c * u * + g r 4 Δp a 4 Δ p 1 ( Since And BC r 2 w = 1 2 ˆr 2 +1ŵ+1 + 1 2 ˆr 2 ŵ so w = 1 2 ŵ+1 + 1 2 ŵ * * ŵ 1 = m 2 u 1 ˆr 1 ˆr 1 + v 1 ˆr 1 m2 ˆr 1 ϕ so ŵ1 = ˆr 1 m2 a u 1 * ˆr 1 a + v * ˆr 1 1 a ϕ Then we have w at all levels 10 April 2014 PDEs 2014, H. Juang 27

Linearize for SISL Collect discretized equations Linearization Matrixes for semi-implicit Add semi-lagrangian with semi-implicit 10 April 2014 PDEs 2014, H. Juang 28

To linearize, we define a base state start ˆp 01 =101.326 ; ˆr 01 = a = 6371220 ; h o = C Pd T 0 ; T 0 = 300 ˆ p 0 = Â + ˆB ˆp 01 ; Δ p 0 = ˆp 0 ˆp 0+1 ; 0 = R d / C Pd Since p equals to p bar, so p r2 r = ρg a 2 = pg r κh So we can get all r at interface as ( ) a2 then use ˆp 0 ˆp 0+1 =!ˆp 0!ˆp 0+1 r 0 ˆr 0+1 = ˆr 0 + κ 0h 0 g ln ˆp 0 ˆ p 0+1 ( ) 2 ; p 0 = 1 2 ˆp 0 + ˆp 0+1 then and r 0 ( ) Δp 0 = ˆp 0 ˆp 0+1 3 = 1 2 ˆr 3 3 0 + ˆr 0+1 ε 0 = r 0 a 10 April 2014 PDEs 2014, H. Juang 29

Summary of linear equations in matrix/vector short form!!!!! D p s Dt dp dh d w dd * L L L L = Π 1i D i * L = b 0 p s + Γ i p i = d 0 D * + Μ i w i = f 0 D * + Ζ i w i = n(n +1) a 2 ( Α i p i + Β i h i + e p s ) 10 April 2014 PDEs 2014, H. Juang 30

δd * n(n +1) αδt ( Α a 2 i δ p i + Β i δh i + e δ p ) s = S D* δ w +αδt ( b 0 δ p s Γ i δ p ) i = S w δh +αδt ( f 0 δd * Ζ i δ w ) i = S h δ p +αδt ( d 0 δd * Μ i δ w ) i = S p δ p s +αδtπ 1i δd i * = S p s To solve it, we put ps and p into w to get w as function of D Then put w as function of D into h and p, thus we get p, h, and ps are all function of D, then put them into D equation to solve D 10 April 2014 PDEs 2014, H. Juang 31

Hydrostatic IC Surface pressure Divergence/vorticity => U/V Use coordinate pressure to interpolation Use hydrostatic pressure as coordinate pressure and nonhydrostatic pressure Generate vertical velocity from w=dz/ equation 10 April 2014 PDEs 2014, H. Juang 32

From hydrostatic system, we have all p at interfaces as ˆp = Â + ˆB p s ( p!ˆ ) = (!ˆp ) +1 + a + ẑ +1 hydro hydro ( ) 3 ( a + ẑ ) 3 3a 2 pg κh The new nonhydrostatic coordinate pressure is From hydrostatic relation, we have ẑ +1 = ẑ + ( ˆp ˆp +1 ) κ h p g So coordinate pressure in hydrostatic system is!ˆ p = Â + ˆB!ˆp s p = 1 ( 2 ˆp + ˆp +1 ) So interpolate u, v, h, and q from hydro to new coordinates 10 April 2014 PDEs 2014, H. Juang 33

Remaining p and w at deep atmospheric system From coordinate pressure definition ˆr 3 = +1 ˆr 3 + 3! κh a 2 (!ˆp!ˆp ) +1 pg and hydrostatc relaton ˆr +1 = ˆr + ( ˆp ˆp +1 ) κ h p g combine both by eliminating h/(pg), we have! ˆp ˆp +1 = 3 ˆr +1 ˆr a 2 (!ˆp ˆr 3 +1 ˆr 3!ˆp ) +1 can obtain p from top to surface p = 1 ( 2 ˆp + ˆp +1 ) 10 April 2014 PDEs 2014, H. Juang 34

Get vertical velocity w in deep atmospheric system ˆr 3 = +1 ˆr 3 + 3! κh a 2 ( ˆp ˆp ) from +1 Do d/ pg We have where! dp! = γ p H V H ŵ+1 = ŵ + κ h p g ΔB d ˆp s K = m 2 ˆp ˆp +1 =1 ( ) + 1 d ˆp s ( ) u * v * r + ( r ( ϕ ( Δ p κ h γ p 2 g Δr V 3 H H Δr3 1 Δr Δ V 3 H H r3 dp ( ) + a2 Δ w r 2 Δr and ŵ1 = m2 ˆr 1 a u 1 * ˆr 1 a + v * ˆr 1 1 a ϕ w = 1 2 ŵ+1 + 1 2 ŵ 4/10/14 Henry Juang 35

Summary Deep atmospheric dynamics is discretized in generalized hybrid coordinates Semi-implicit semi-lagrangian is used Initial condition with hydrostatic system is used It is suitable for very high resolution and coupling with space model Details can be found in Juang 2014, NCEP office note 477 Coded and still under testing. 10 April 2014 PDEs 2014, H. Juang 36