Research Article Generalized Derivations in Semiprime Gamma Rings

Σχετικά έγγραφα
SEMI DERIVATIONS OF PRIME GAMMA RINGS

Γ derivation and Jordan Γ derivation on Prime Γ-ring with Involution

Congruence Classes of Invertible Matrices of Order 3 over F 2

2 Composition. Invertible Mappings

and Institute for Mathematical Research (INSPEM) Universiti Putra Malaysia MALAYSIA 2,3 Department of Mathematics

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

A Note on Intuitionistic Fuzzy. Equivalence Relation

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

SOME PROPERTIES OF FUZZY REAL NUMBERS

Commutative Monoids in Intuitionistic Fuzzy Sets

Generating Set of the Complete Semigroups of Binary Relations

Homomorphism in Intuitionistic Fuzzy Automata

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 13 - Root Space Decomposition II

Statistical Inference I Locally most powerful tests

Other Test Constructions: Likelihood Ratio & Bayes Tests

derivation of the Laplacian from rectangular to spherical coordinates

ST5224: Advanced Statistical Theory II

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Intuitionistic Fuzzy Ideals of Near Rings

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

C.S. 430 Assignment 6, Sample Solutions

Homomorphism of Intuitionistic Fuzzy Groups

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 3: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

CRASH COURSE IN PRECALCULUS

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

1. Introduction and Preliminaries.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Inverse trigonometric functions & General Solution of Trigonometric Equations

Math221: HW# 1 solutions

Matrices and Determinants

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

6.3 Forecasting ARMA processes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

5. Choice under Uncertainty

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Uniform Convergence of Fourier Series Michael Taylor

Solution Series 9. i=1 x i and i=1 x i.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Fractional Colorings and Zykov Products of graphs

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

On a four-dimensional hyperbolic manifold with finite volume

Lecture 15 - Root System Axiomatics

Fuzzifying Tritopological Spaces

F A S C I C U L I M A T H E M A T I C I

Section 7.6 Double and Half Angle Formulas

Second Order Partial Differential Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

The Simply Typed Lambda Calculus

Lecture 2. Soundness and completeness of propositional logic

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

arxiv: v1 [math.ra] 19 Dec 2017

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order RLC Filters

( y) Partial Differential Equations

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Solutions to Exercise Sheet 5

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

New bounds for spherical two-distance sets and equiangular lines

Approximation of distance between locations on earth given by latitude and longitude

Cyclic or elementary abelian Covers of K 4

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Quadratic Expressions

1 String with massive end-points

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

The k-α-exponential Function

Abstract Storage Devices

PARTIAL NOTES for 6.1 Trigonometric Identities

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A summation formula ramified with hypergeometric function and involving recurrence relation

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Strain gauge and rosettes

Transcript:

International Mathematics and Mathematical Sciences Volume 2012, Article ID 270132, 14 pages doi:10.1155/2012/270132 Research Article Generalized Derivations in Semiprime Gamma Rings Kalyan Kumar Dey, 1 Akhil Chandra Paul, 1 and Isamiddin S. Rakhimov 2 1 Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh 2 Department of Mathematics, FS, and Institute for Mathematical Research INSPEM), Universiti Putra Malaysia, 43400 Serdang, Malaysia Correspondence should be addressed to Kalyan Kumar Dey, kkdmath@yahoo.com Received 10 November 2011; Revised 5 December 2011; Accepted 5 December 2011 Academic Editor: Christian Corda Copyright q 2012 Kalyan Kumar Dey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition aαbβc aβbαc for all a, b, c M, α, β Γ,andletD : M M be an additive mapping such that D xαx D x αx xαd x for all x M, α Γ and for some derivation d of M. We prove that D is a generalized derivation. 1. Introduction Hvala 1 first introduced the generalized derivations in rings and obtained some remarkable results in classical rings. Daif and Tammam El-Sayiad 2 studied the generalized derivations in semiprime rings. The authors consider an additive mapping G : R R of a ring R with the property G x 2 G x x xd x for some derivation D of R. They prove that G is a Jordan generalized derivation. Aydin 3 studied generalized derivations of prime rings. The author proved that if I is an ideal of a noncommutative prime ring R, a is a fixed element of R and F is an generalized derivation on R associated with a derivation d then the condition F x, a 0or F x,a 0 for all x I implies d x λ x, a. ÇevenandÖztürk 4 have dealt with Jordan generalized derivations in Γ-rings and they proved that every Jordan generalized derivation on some Γ-rings is a generalized derivation. Generalized derivations of semiprime rings have been treated by Ali and Chaudhry 5. The authors proved that if F is a commuting generalized derivation of a semiprime ring

2 International Mathematics and Mathematical Sciences R associated with a derivation d then d x y, z 0 for all x, y, z R and d is central. They characterized a decomposition of R relative to the generalized derivations. Atteya 6 proved that if U is nonzero ideal of a semiprime ring R and R admits a generalized derivation D such that D xy xy Z R then R contains a nonzero central ideal. Rehman 7, 8 studied the commutativity of a ring R by means of generalized derivations acting as homomorphisms and antihomomorphisms. In this paper, we prove the following results Let M be a 2-torsion-free semiprime Γ-ring satisfying the following assumption: aαbβc aβbαc a, b, c M, α, β Γ, and D : M M be an additive mapping. If there exists a derivation d of M such that D xαx D x αx xαd x for all x M, α Γ, then D is a Jordan generalized derivation. 2. Preliminaries Let M and Γ be additive abelian groups. M is called a Γ-ring if there exists a mapping M M M M such that for all a, b, c M, α, β Γ the following conditions are satisfied: i aβb M, ii a b αc aαc bαc, a α β b aαb aβb, aα b c aαb aαc, aαb βc aα bβc. For any a, b M and for α, β Γ the expressions aαb bαa is denoted by a, b α and αaβ βaα are denoted by α, β a. Then one has the following identities: [ ] aβb, c α aβ b, c α a, c α βb a[ β, α ] c b, [ a, bβc ]α bβ a, c α a, b α βc b[ β, α ] a c, 2.1 for all a, b, c M and for all α, β Γ. Using the assumption the above identities reduce to [ ] aβb, c α aβ b, c α a, c α βb, [ a, bβc ]α bβ a, c α a, b α βc, 2.2 for all a, b, c M and α, β Γ. Further M stands for a prime Γ-ring with center Z M. The ring M is n-torsion-free if nx 0, x M implies x 0, where n is a positive integer, M is prime if aγmγb 0 implies a 0orb 0, and it is semiprime if aγmγa 0 implies a 0. An additive mapping T : M M is called a left right centralizer if T xαy T x αy T xαy xαt y for x, y M, α Γ and it is called a Jordan left right centralizer if T xαx T x αx T xαx xαt x x M, α Γ. 2.3 A mapping θ : M M M is called biadditive if it is additive in both arguments. An additive mapping D : M M is called a derivation if D xαy D x αy xαd y for all

International Mathematics and Mathematical Sciences 3 x, y M, α Γ and it is called a Jordan derivation if D xαx D x αx xαd x for all x M, α Γ. A derivation D is inner if there exists a M, such that D x aαx xαa holds for all x M, α Γ. Every derivation is a Jordan derivation. The converse is in general not true. An additive mapping D : M M is said to be a generalized derivation if there exists a derivation d : M M such that D xαy D x αy xαd y for all x, y M, α Γ. The maps of the form x aαx xαb where a, b are fixed elements in M and for all α Γ called the generalized inner derivation. An additive mapping D : M M is said to be a Jordan generalized derivation if there exists a derivation d : M M such that D xαx D x αx xαd x for all x M, α Γ. Hence the concept of a generalized derivation covers both the concepts of a derivation and a left centralizers and the concept of a Jordan generalized derivation covers both the concepts of a Jordan derivation and a left Jordan centralizers. An example of a generalized derivation and a Jordan generalized derivation is given in 4. 3. Main Results We start from the following subsidiary results. Lemma 3.1. Let M be a semiprime Γ-ring. If a, b M are such that aαxβb 0 for all x M, α, β Γ, thenaαb bαa 0. Proof. Let x M. Then aαbβxγaαb aα bβxγa ) αb 0, bαaβxγbαa bα aβxγb ) αa 0. 3.1 By semiprimeness of M with respect to β, γ Γ, it follows that aαb bαa 0. Lemma 3.2. Let M be a semiprime Γ-ring and θ, ϕ : M M M biadditive mappings. If θ x, y αwβϕ x, y 0for all x, y, w M, thenθ x, y αwβϕ u, v 0for all x, y, u, v, w M, α, β Γ. Proof. First we replace x with x u in the relation θ x, y αwβϕ x, y 0, and use the biadditivity of the θ and ϕ. Then we have θ x u, y ) αwβϕ x u, y ) 0 θ ) αwβϕ u, y ) θ u, y ) αwβϕ ). 3.2 Then θ ) αwβϕ u, y )) γzδ θ ) αwβϕ u, y )) θ u, y ) αwβϕ )) γzδ θ u, y ) αwβϕ u, y )) 0. 3.3 Hence θ x, y αwβϕ u, y 0 by semiprimeness of M with respect to γ,δ Γ. Nowwereplacey by y v and obtain the assertion of the lemma with the similar observation as above.

4 International Mathematics and Mathematical Sciences Lemma 3.3. Let M be a semiprime Γ-ring satisfying the assumption and a be a fixed element of M.Ifaβ x, y α 0 for all x, y M, α, β Γ, thena Z M. Proof. First we calculate the following expressions using the assumption, z, a α βxδ z, a α zαaβxδ z, a α aαzβxδ z, a α zαaβ z, xαa δ zαaβ z, x δ αa aα z, zδxαa β aα z, zδx β αa. 3.4 Since aβ x, y α 0 for all x, y M, α, β Γ, weget z, a α βxδ z, a α 0. By the semiprimeness of M we get z, a α 0 for all α Γ. Hence a Z M. Lemma 3.4. Let M be a Γ-ring satisfying the condition and D : M M be a Jordan generalized derivation with the associated derivation d.letx, y, z M and α, β Γ. Then i D xαy yαx D x αy D y αx xαd y yαd x. In particular, if M is 2-torsion-free, then ii D xαyβx D x αyβx xβd yβx, iii D xαyβz zβyαx D x αyβz D z βyαx xαd yβz zβd yαx. Proof. i We have D xαx D x αx xαd x, for all x M, α Γ. Then replacing x by x y, and following the series of implications below we get the result: D x y ) α x y )) D x y ) α x y ) x y ) αd x y ) D xαx xαy yαx yαy ) D x αx D y ) αx D x αy D y ) αx xαd y ) xαd x yαd y ) yαd x D xαx yαy ) D xαy yαx ) D x αx xαd x D y ) αy yαd y )) D x αy D y ) αx xαd y ) yαd x D xαy yαx ) D x αy D y ) αx xαd y ) yαd x, x, y M, α Γ. 3.5 ii Replace y by xβy yβx in the above relation 3.5, then we get, D xα xβy yβx ) xβy yβx ) αx ) D x α xβy yβx ) D xβy yβx ) αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. D xαxβy yβxαx ) D xαyβx ) D xβyαx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) xβy yβx ) αd x, x, y, z M, α, β Γ. 3.6

International Mathematics and Mathematical Sciences 5 Using the assumption, we conclude that D xαxβy yβxαx ) 2D xαyβx ) D x αxβy D x αyβx D x βyαx D y ) βxαx xβd y ) αx yβd x αx xαd xβy yβx ) Again, replacing x by xβx in 3.5 xβy yβx ) αd x, x, y, z M, α, β Γ. 3.7 D xβxαy yαxβx ) D xβx ) αy D y ) αxβx xβxαd y ) yαd xβx ), x, y M, α, β Γ, D xβxαy yαxβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) Adding both sides 2D xαyβx, weget, yαd x βx yαxβd x, x, y M, α, β Γ. D xβxαy yαxβx ) 2D xαyβx ) D x βxαy xβd x αy D y ) αxβx xβxαd y ) yαd x βx yαxβd x 2D xαyβx ), x, y M, α, β Γ. 3.8 3.9 Comparing 3.7 and 3.9 we obtain, 2D xαyβx ) 2 { D x αyβx xαyβd x xαd y ) βx }. 3.10 Since M is 2-torsion-free, it gives D xαyβx ) D x αyβx xαd yβx ). 3.11 iii Replace x for x z in 3.12,weget, D x z αyβ x z ) D x z αyβ x z x z αd yβ x z ) D xαyβx xαyβz zαyβx zαyβz ) D x αyβx D z αyβx D x αyβz D z αyβz xαd yβx ) xαd yβz ) zαd yβx yβz ) D xαyβx zαyβz ) D xαyβz zαyβx ) D x αyβx D z αyβz xαd yβx ) zαd yβz )) D z αyβx D x αyβz xαd yβz ) zαd yβx ))

6 International Mathematics and Mathematical Sciences D xαyβz zαyβx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ) D xαyβz zβyαx ) D x αyβz D z αyβx xαd yβz ) zαd yβx ), x, y M, α, β Γ. 3.12 Definition 3.5. Let M be a Γ-ring and D : M M be a Jordan generalized derivation with the associated derivation d. Define G α x, y D xαy D x αy xαd y for all x, y M and α Γ. Lemma 3.6. The function G α x, y has the following properties: i G α x, y G α y, x 0. ii G α x, y z G α x, y G α x, z. iii G α x y, z G α x, z G α y, z. iv G α β x, y G α x, y G β x, y. Proof. The results easily follow from Lemma 3.4 i. Remark 3.7. D is a generalized derivation if and only if G α x, y 0 for all x, y M, α Γ. Theorem 3.8. Let M be a 2-torsion-free semiprime Γ-ring satisfying the condition. Letx, y, z M and β, δ Γ. Then i G α x, y βzδ x, y α 0 for all z M, ii G α x, y β x, y α 0. Proof. i From Lemma 3.4 iii we get D xαyβz zβyαx ) D x αyβz D z βyαx xαd yβz ) zβd yαx ). 3.13 We set A xαyβzδyαx yαxβzδxαy. 3.14 Since D A D xαyβzδyαx yαxβzδxαy ) D xα yβzδyαx ) yα xβzδxαy )) D x αyβzδyαx xαd yβzδyαx ) D y ) αxβzδxαy yαd xβzδxαy )

International Mathematics and Mathematical Sciences 7 D x αyβzδyαx xαd y ) βzδyαx xαyβd zδyαx ) D y ) αxβzδxαy yαd x βzδxαy yαxβd zδxαy ), x, y, z M, α, β, δ Γ. 3.15 Again D A D xαyβzδyαx yαxβzδxαy ) D xαy ) βzδ yαx ) yαx ) βzδ xαy )) D xαy ) βzδyαx D yαx ) βzδxαy xαyβd zδyαx ) yαxβd zδxαy ), x, y, z M, α, β, δ Γ. 3.16 From 3.15 and 3.16 we find, ) )) ) ) ) D xαy D x αy xαd y βzδyαx D yαx D y αx yαd x βzδxαy 0. G α ) βzδyαx y, x ) βzδxαy 0, G α ) βzδyαx ) βzδxαy 0, 3.17 ) [ G α x, y βzδ y, x 0, ]α ) [ G α x, y βzδ x, y 0, for x, y M, α, β, δ Γ. ]α ii According to Lemma 3.4 ii we have, D xαyβz ) D x αyβz xαd yβz ). 3.18 Replace z by xαy in 3.18 we find D xαyβxαy ) D x αyβxαy xαd yβxαy ) D xαy ) β xαy )) D x αyβxαy xαd yβxαy ) D xαy ) βxαy xαyβd xαy ) D x αyβxαy xαd yβxαy ) 0 D xαy ) D x αy xαd y )) βxαy ) xαyβd xαy ) xαyβd xαy ) 0 ) G α x, y βxαy 0. 3.19 Similarly G α x, y βyαx 0. Therefore, ) ) ) [ G α x, y βxαy x, y βyαx x, y β x, y 0. 3.20 ]α Lemma 3.9. G α x, y Z M, for all x, y M, α Γ. Proof. From Theorem 3.8 ii, we have G α x, y β x, y α 0. Therefore due to Lemma 3.4 ii G α x, y Z M.

8 International Mathematics and Mathematical Sciences Theorem 3.10. Let M be a 2-torsion-free semiprime Γ-ring satisfying the assumption and D : M M be a Jordan generalized derivation with associated derivation d on M. ThenD is a generalized derivation. Proof. In particular, rγg α x, y, G α x, y γr Z M for all r M, α, γ Γ. This gives ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) yβg α x, y δ x, y αx ) ) yαg α x, y δ x, y βx. 3.21 Then 4D xαg α x, y δg α x, y βy 4D yβg α x, y δg α x, y αx. Now we will compute each side of this equality by using 3.15 and the above relation, 4D ) ) ) xαg α x, y δ x, y βy 2D ) ) ) ) ) xαg α x, y δ x, y βy x, y δ x, y βyαx ) ) ) ) ) 2D x αg α x, y δ x, y βy 2xαd x, y δ x, y βy 2D ) ) ) ) ) G α x, y δ x, y βy αx 2 x, y δ x, y βyαd x ) ) ) ) ) )) 2D x αg α x, y δ x, y βy D x, y δ x, y βy yβ x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x ) ) )) ) 2D x αg α x, y δ x, y βy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyαx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x. 3.22 So we get 4D ) ) ) xβg α x, y δ x, y αy ) ) )) ) 2D x βg α x, y δ x, y αy D x, y δ x, y βyαx ) )) ) ) ) G α x, y δd x, y βyx D y β x, y δ x, y αx ) ) ) ) )) G α x, y δ x, y βd y αx yβd x, y δ x, y αx 2xαd ) ) ) ) ) G α x, y δ x, y βy 2 x, y δ x, y βyαd x, x,y M, α, β, δ Γ. 3.23 Moreover, 4D yβg α ) αx ) 2D yβg α ) αx ) βxαy ) 2D y ) βg α ) αx 2yβd ) αx ) 2D G α ) βx ) αy 2 ) βxαd y )

International Mathematics and Mathematical Sciences 9 2D y ) βg α ) αx D ) βx xβ )) αy 2yβd G α ) αx ) 2 ) βxαd y ) 2D y ) βg α ) αx D ) ) βxαy G α ) δd )) βxαy D x β ) αy G α ) αd x βy xαd )) βy 2yβd G α ) αx ) 2 ) αxβd y ). 3.24 So we get 4D ) ) ) yβg α x, y δ x, y αx 2D y ) ) ) )) ) βg α x, y δ x, y αx D x, y δ x, y αxβy ) )) ) ) G α x, y δd x, y αxβy D x β x, y δ x, y αy ) ) ) )) G α x, y δ x, y αd x βy xαd x, y δ x, y βy 2yβd ) ) ) ) ) ) G α x, y δ x, y αx 2 x, y δ x, y αxβd y, x, y M, α, β, δ Γ. 3.25 Comparing the results of 3.22 and 3.24 and using the above relations ) ) G α x, y βyαx x, y βyαx ) xαg α x, y βy ) xαg α x, y βy ) G α x, y βxαy, ) )) )) ) G α x, y δd x, y βyαx d x, y δ x, y βyαx d )) ) G α x, y δ x, y αxβy ) )) G α x, y δd x, y αxβy, ) )) )) ) xβg α x, y δd x, y αy d x, y αxδ x, y βy d )) ) G α x, y δ x, y βxαy d )) ) G α x, y δ x, y αyβx ) )) G α x, y βyδd x, y αx ) )) yβg α x, y δd x, y αx, 3.26 we obtain ) ) ) ) ) D x αg α x, y δ x, y βy xα x, y δ x, y βd y D y ) ) ) ) ) αg α x, y δ x, y βx yα x, y δ x, y βd x, 3.27

10 International Mathematics and Mathematical Sciences which gives ϕ α ) β ) ϕα y, x ) α ), 3.28 where ϕ α x, y stands for D x αy xαd y. On the other hand, we have 4D xαyβg α )) 4D xα ) δyβ )). 3.29 Now we use 3.15 and the properties of G α x, y, to derive 4D xαyβg α )) 2D ) ) ) ) ) xαyβg α x, y δ x, y x, y δ x, y αxβy 2D xαy ) ) ) ) )) βg α x, y δ x, y 2xαyβd x, y δ x, y 3.30 2D G α )) αxβy 2 ) βd xαy ), which gives 4D xαyβg α )) 2D xαy ) β ) 2xαyβd )) 2D G α )) αxβy 2G α ) βd xαy ), x,y M, α, β, δ Γ. 3.31 Moreover, 4D ) )) xαg α x, y δyβ x, y 2D ) ) ) )) xαg α x, y δyβ x, y yβ x, y δxα x, y 2D ) ) ) ) ) ) G α x, y αx δ x, y βy 2 x, y αxδd x, y βy 2D ) ) ) ) ) ) G α x, y βy δ x, y αx 2 x, y βyδd x, y αx D ) ) ) ) ) ) ) xαg α x, y x, y αx δ x, y βy 2 x, y αxδd x, y βy D ) ) ) ) ) ) ) yβg α x, y x, y βy δ x, y αx 2 x, y βyδd x, y αx 3.32 ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y αxβy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx.

International Mathematics and Mathematical Sciences 11 So we obtain 4D ) )) xαg α x, y δyβ x, y ) ) )) ) D x αg α x, y δ x, y βy D x, y δ x, y βxαy xαd )) ) ) ) G α x, y δ x, y βy x, y αd x δ x, y βy ) ) ) ) ) ) 2G α x, y αxδd x, y βy D y β x, y δ x, y αx D )) ) )) ) G α x, y δ x, y βyαx yβd x, y δ x, y αx ) ) ) ) ) ) G α x, y βd y δ x, y αx 2 x, y βyδd x, y αx, x, y M, α, β, δ Γ. 3.33 Comparing 3.31 and 3.33, we derive 2D xαy ) βg α ) ϕ α ) β ) ϕα y, x ) β ), x,y M, α, β, δ Γ. 3.34 Finally using 3.31 we get D xαy βg α x, y δg α x, y ϕ α x, y βg α x, y δg α x, y. But G α x, y D xαy ϕ α x, y. By the semiprimeness of M, we have ϕ α x, y βg α x, y 0. Again by the primeness of M, wegetg α x, y. The proof is complete. It is clear that if we let the derivation d to be the zero derivation in the above theorem, we get the following result. Theorem 3.11. Let M be a 2-torsion-free semiprime Γ-ring and D : M M be an additive mapping which satisfies D xαx D x αx for all x M, α Γ. ThenD is a left centralizer Proof. We have D xαx D x αx. 3.35 If we replace x by x y, weget D xαy yαx ) D x αy D y ) αx. 3.36 By replacing y with xαy yαx and using 3.5, we arrive at D xα xαy yαx ) xαy yαx ) αx ) D x αxαy D x αyαx D x αyαx D y ) αxαx. 3.37 But on the other hand, D xαxαy yαxαx ) 2D xαyαx ) D x αxαy D y ) αxαx 2D xαyαx ). 3.38

12 International Mathematics and Mathematical Sciences Comparing 3.37 and 3.38 we obtain D xαyαx ) D x αyαx. 3.39 If we linearize 3.39 in x, weget D xαyαz zαyαx ) D x αyαz D z αyαx. 3.40 Now we shall compute D xαyαzαyαx yαxαzαxαy in two different ways. If we use 3.39 we have D xαyαzαyαx yαxαzαxαy ) D x αyαzαyαx D y ) αxαzαxαy. 3.41 But if we use 3.40 we have D xαyαzαyαx yαxαzαxαy ) D xαy ) αzαyαx D yαx ) αzαxαy. 3.42 Comparing 3.41 and 3.42 and introducing a bi-additive mapping G α x, y D xαy D x αy we arrive at G α ) αzαyαx y, x ) αzαxαy 0. 3.43 Equality 3.36 can be rewritten in this notation as G α x, y G α y, x. Using this fact and 3.43 we obtain ) [ G α x, y αzα x, y 0. 3.44 ]α Using first Lemma 3.2 and then Lemma 3.1 we have G α ) αzα u, v α 0. 3.45 Nowfixsomex, y M and using Lemma 3.3 we get G α x, y Z. In particular, rβg α x, y, G α x, y βr Z for all r M. This gives xβg α ) βy ) ΓyΓx yγg α ) Γx yγg α ) Γx. 3.46

International Mathematics and Mathematical Sciences 13 Therefore 4D xγg α x, y ΓG α x, y Γy 4D yγg α x, y ΓG α x, y Γx. Both sides of this equality will be computed in few steps using 3.36, 2D ) ) ) ) ) xγg α x, y Γ x, y Γy x, y Γ x, y ΓyΓx 2D ) ) ) ) ) yγg α x, y Γ x, y Γx x, y Γ x, y ΓxΓy, 2D x ΓG α ) Γy 2D ) Γy ) Γx 2D y ) ΓG α ) Γx 2D ) Γx ) Γy, 2D x ΓG α ) Γy D ) Γy yγ )) Γx 2D y ) ΓG α ) Γx D ) ) Γx xγ ) Γy, 2D x ΓG α ) Γy D ) ) ΓyΓx D y ) Γx 2D y ) ΓG α ) Γx D ) ) ΓxΓy D x ΓG α ) Γy, D x ΓG α ) Γy D ) ) ΓyΓx D y ) ΓG α ) Γx D ) ) ΓxΓy. 3.47 Since G α x, y ΓyΓx G α x, y ΓyΓx xγg α x, y Γy xγg α x, y Γy G α x, y ΓxΓy, we obtain D x ΓG α ) Γy D y ) Γx. 3.48 On the other hand, we also have 4D ) )) ) )) xγyγg α x, y Γ x, y 4D xγ x, y ΓyΓ x, y, 2D ) ) ) ) ) xγyγg α x, y Γ x, y x, y Γ x, y ΓxΓy 2D ) ) ) )) xγg α x, y ΓyΓ x, y yγ x, y ΓxΓ x, y, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy 2D G α ) Γx ) Γy 2D ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D xγg α ) ) Γx ) Γy D yγ ) ) Γy ) Γx, 2D xγy ) ΓG α ) 2D ) ) ΓxΓy D x ΓG α ) Γy D ) ) ΓxΓy D y ) ΓG α ) Γx D ) ) ΓxΓy, 2D xγy ) ΓG α ) D x ΓyΓG α ) D y ) ΓxΓ ). 3.49

14 International Mathematics and Mathematical Sciences Finally using 3.48 we arrive at D xγy ΓG α x, y ΓG α x, y D x ΓyΓG α x, y ΓG α x, y,but this means that G α x, y ΓG α x, y ΓG α x, y 0. Hence, G α ) ΓMΓ ) ) ΓM 0, G α ) ΓMΓ ) ) ΓM 0, 3.50 which implies G α x, y 0. The proof is complete. Acknowledgments The paper was supported by Grant 01-12-10-978FR MOHE Malaysia. The authors are thankful to the referee for valuable comments. References 1 B. Hvala, Generalized derivations in rings, Communications in Algebra, vol. 26, no. 4, pp. 1147 1166, 1998. 2 M. N. Daif and M. S. Tammam El-Sayiad, On generalized derivations in semiprime rings, International Contemporary Mathematical Sciences, vol. 2, no. 29 32, pp. 1481 1486, 2007. 3 N. Aydin, A note on generalized derivations of prime rings, International Algebra, vol. 5, no. 1 4, pp. 17 23, 2011. 4 Y. Çeven and M. A. Öztürk, On Jordan generalized derivations in gamma rings, Hacettepe Mathematics and Statistics, vol. 33, pp. 11 14, 2004. 5 F. Ali and M. A. Chaudhry, On generalized derivations of semiprime rings, International Algebra, vol. 4, no. 13 16, pp. 677 684, 2010. 6 M. J. Atteya, On generalized derivations of semiprime rings, International Algebra, vol. 4, no. 9 12, pp. 591 598, 2010. 7 N.-U. Rehman, On commutativity of rings with generalized derivations, Mathematical Okayama University, vol. 44, pp. 43 49, 2002. 8 N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Matematički. Serija III, vol. 39, no. 1, pp. 27 30, 2004.

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization